

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

Necessity and sufficiency for hypergeometric functions to be in a subclass of analytic functions

M.K. Aouf ^a, A.O. Mostafa ^a, H.M. Zayed ^{b,*}

Received 11 October 2014; revised 17 November 2014; accepted 3 January 2015 Available online 23 February 2015

KEYWORDS

Univalent; Starlike; Convex; Uniformly starlike; Uniformly convex; Hypergeometric function **Abstract** The purpose of this paper is to introduce necessary and sufficient condition of (Gaussian) hypergeometric functions to be in a subclass of uniformly starlike and uniformly convex functions. Operators related to hypergeometric functions are also considered. Some of our results correct previously known results.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 30C45; 30A20; 34A40

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A denote the class of functions f(z) of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disc $\mathbb{U}=\{z:z\in\mathbb{C} \text{ and } |z|<1\}$, and let \mathcal{S} be the subclass of all functions in \mathcal{A} , which are univalent. Let $g(z)\in\mathcal{A}$, be given by

E-mail addresses: mkaouf127@yahoo.com (M.K. Aouf), adelaeg254@yahoo.com (A.O. Mostafa), hanaa_zayed42@yahoo.com (H.M. Zayed). Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

$$g(z) = z + \sum_{n=0}^{\infty} g_n z^n,$$
 (1.2)

then, the integral convolution of two power series f(z) and g(z) is given by (see [1]):

$$(f \circledast g)(z) = z + \sum_{n=2}^{\infty} \frac{a_n g_n}{n} z^n = (g \circledast f)(z).$$
 (1.3)

Let $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ denote the subclasses of starlike and convex functions of order α , respectively. We note that $\mathcal{S}^*(0) = \mathcal{S}^*$ and $\mathcal{K}(0) = \mathcal{K}$, the subclasses of starlike and convex functions (see, for example, Srivastava and Owa [2]).

Goodman [3,4] introduced the classes UCV and UST of uniformly convex and uniformly starlike functions. Following Goodman, Rønning [5] (see also [6]) gave one variable analytic characterization for UCV, that is, a function f(z) of the form (1.1) is in the class UCV if and only if

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \left|\frac{zf''(z)}{f'(z)}\right| (z \in \mathbb{U}). \tag{1.4}$$

^a Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

^b Department of Mathematics, Faculty of Science, Menofia University, Shebin Elkom 32511, Egypt

^{*} Corresponding author.

Goodman proved the classical Alexander's result $f(z) \in \mathcal{UCV} \iff zf'(z) \in \mathcal{UST}$, does not hold. On later, Rønning [7] introduced the class S_p which consists of functions such that $f(z) \in \mathcal{UCV} \iff zf'(z) \in S_p$. Also in [5], Rønning generalized the classes \mathcal{UCV} and S_p by introducing a parameter α in the following.

Definition 1 [5]. A function f(z) of the form (1.1) is in the class $S_p(\alpha)$, if it satisfies the following condition:

$$\Re\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \left|\frac{zf'(z)}{f(z)} - 1\right| (-1 \leqslant \alpha < 1; \ z \in \mathbb{U}), \tag{1.5}$$

and $f(z) \in \mathcal{UCV}(\alpha)$, the class of uniformly convex functions of order α if and only if $zf'(z) \in \mathcal{S}_p(\alpha)$.

Also in [8], Bharati et al. introduced the classes $\mathcal{UCV}(\alpha, \beta)$ and $S_{\rho}(\alpha, \beta)$ as follows:

Definition 2 [8]. A function f(z) of the form (1.1) is said to be in the class $S_p(\alpha, \beta)$, if it satisfies the following condition:

$$\Re\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right| \ (-1 \leqslant \alpha < 1; \beta \geqslant 0; z \in \mathbb{U}), \tag{1.6}$$

and $f(z) \in \mathcal{UCV}(\alpha, \beta)$ if and only if $zf'(z) \in \mathcal{S}_p(\alpha, \beta)$.

Denote by T, the subclass of S consisting of functions of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \ (a_n \ge 0).$$
 (1.7)

Denote also by $T^*(\alpha) = \mathcal{S}^*(\alpha) \cap T$, $\mathcal{C}(\alpha) = \mathcal{K}(\alpha) \cap T$, the subclasses of starlike and convex functions of order α with negative coefficients, which were introduced and studied by Silverman (see [9]). Also let $\mathcal{UCT}(\alpha) = \mathcal{UCV}(\alpha) \cap T$, $\mathcal{S}_pT(\alpha) = \mathcal{S}_p(\alpha) \cap T$, $\mathcal{UCT}(\alpha, \beta) = \mathcal{UCV}(\alpha, \beta) \cap T$ and $\mathcal{S}_pT(\alpha, \beta) = \mathcal{S}_p(\alpha, \beta) \cap T$.

Let $S_{\gamma}(f; \alpha, \beta)$ $(-1 \le \alpha < 1, \beta \ge 0 \text{ and } 0 \le \gamma \le 1)$ be the subclass of S consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$\Re\left\{\frac{zf'(z) + \gamma z^{2}f''(z)}{(1 - \gamma)f(z) + \gamma zf'(z)} - \alpha\right\}$$

$$> \beta \left| \frac{zf'(z) + \gamma z^{2}f''(z)}{(1 - \gamma)f(z) + \gamma zf'(z)} - 1 \right| (z \in \mathbb{U}).$$
(1.8)

The class $S_{\gamma}(f; \alpha, \beta)$ was introduced and studied by Aouf et al. [10, with $g(z) = \frac{z}{1-z}$]. Further, we define the class $TS_{\gamma}(f; \alpha, \beta)$ by $TS_{\gamma}(f; \alpha, \beta) = S_{\gamma}(f; \alpha, \beta) \cap T$.

Let F(a,b;c;z) be the (Gaussian) hypergeometric function defined by

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} z^n,$$

where $c \neq 0, -1, -2, \dots$ and

$$(\lambda)_n = \begin{cases} 1 & \text{if } n = 0, \\ \lambda(\lambda + 1)(\lambda + 2) \cdots (\lambda + n - 1) & \text{if } n \in \mathbb{N} = \{1, 2, \dots\}. \end{cases}$$

We note that $F(a,b;\ c;\ 1)$ converges for $\Re(c-a-b)>0$ and is related to Gamma functions by

$$F(a,b; c; 1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}.$$
(1.9)

Also, we define the functions

$$g(a,b; c; z) = zF(a,b; c; z),$$
 (1.10)

and

$$h_{\mu}(a,b;\ c;\ z) = (1-\mu)(g(a,b;c;z)) + \mu z(g(a,b;\ c;\ z))'(\mu \geqslant 0). \tag{1.11}$$

The mapping properties of a function $h_{\mu}(a, b; c; z)$ was studied by Shukla and Shukla [11].

Corresponding to the Gaussian hypergeometric function ${}_2F_1(a,b;\ c;\ z)$, we define the linear operator $\mathcal{M}_{a,b,c}:\mathcal{A}\to\mathcal{A}$ by the integral convolution

$$[\mathcal{M}_{a,b,c}(f)](z) = g(a,b; c; z) \circledast f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \frac{a_n}{n} z^n \ (c \neq 0, -1, -2, ...), \ (1.12)$$

and the linear operator $\mathcal{N}_{\mu}:\mathcal{A}\to\mathcal{A}$ by the integral convolution

$$[\mathcal{N}_{\mu}(f)](z) = h_{\mu}(a, b; c; z) \circledast f(z)$$

$$= z + \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \frac{a_n}{n} z^n$$

$$\times (c \neq 0, -1, -2, \ldots). \tag{1.13}$$

Merkes and Scott [12] and Ruscheweyh and Singh [13] used continued fractions to find sufficient conditions for $zF(a,b;\ c;\ z)$ to be in the class $\mathcal{S}^*(\alpha)$ $(0 \le \alpha < 1)$ for various choices of the parameters $a,\ b$ and c. Carlson and Shaffer [14] showed how some convolution results about the class $\mathcal{S}^*(\alpha)$ may be expressed in terms of a linear operator acting on hypergeometric functions. Recently, Silverman [15] gave a necessary and sufficient conditions for $zF(a,b;\ c;\ z)$ to be in the classes $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$.

2. Main results

Unless otherwise mentioned, we assume throughout this paper that $-1 \le \alpha < 1$, $\beta \ge 0$ and $0 \le \gamma \le 1$.

To establish our results, we need the following lemmas due to Aouf et al. [10].

Lemma 2.1 [10, Theorem 1, with $g(z) = \frac{z}{1-z}$]. A sufficient condition for f(z) defined by (1.1) to be in the class $S_{\gamma}(f; \alpha, \beta)$ is

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)]|a_n| \le 1-\alpha.$$
 (2.1)

Lemma 2.2 [10, Theorem 2, with $g(z) = \frac{z}{1-z}$]. A necessary and sufficient condition for f(z) defined by (1.7) to be in the class $TS_{\gamma}(f; \alpha, \beta)$ is

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)]a_n \leqslant 1-\alpha.$$
 (2.2)

By using Lemmas 2.1 and 2.2, we get the following results.

M.K. Aouf et al.

Theorem 2.1. Let a, b > 0 and c > a + b + 2, then the sufficient condition for g(a,b; c; z) to be in the class $S_{\gamma}(g; \alpha, \beta)$ is that

$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{ab[(1+\beta) - \gamma(\alpha-\beta-2)]}{(1-\alpha)(c-a-b-1)} + \frac{\gamma(1+\beta)(a)_2(b)_2}{(1-\alpha)(c-a-b-2)_2} \right] \leqslant 2.$$
(2.3)

Also, condition (2.3) is necessary and sufficient for $F_1(a,b;\ c;\ z)=z(2-F(a,b;\ c;\ z))$ to be in the class $\mathcal{TS}_\gamma(F_1;\alpha,\beta)$.

Proof. Since

$$g(a,b; c; z) = z + \sum_{n=0}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n,$$

then, according to Lemma 2.1, we need only to show that

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \leq 1-\alpha.$$

Thus

$$\begin{split} &\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\ &= (1-\alpha) \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} + [(1+\beta) - \gamma(\alpha-\beta-2)] \\ &\times \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-2}} + \gamma(1+\beta) \sum_{n=3}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-3}}. \end{split} \tag{2.4}$$

Since $(\lambda)_n = \lambda(\lambda + 1)_{n-1}$, then from (1.9), we may express (2.4) as

$$\begin{split} &(1-\alpha)\left[\sum_{n=0}^{\infty}\frac{(a)_n(b)_n}{(c)_n(1)_n}-1\right] + \left[(1+\beta)-\gamma(\alpha-\beta-2)\right]\frac{ab}{c}\sum_{n=0}^{\infty}\frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} \\ &+\gamma(1+\beta)\frac{(a)_2(b)_2}{(c)_2}\sum_{n=0}^{\infty}\frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_n} = (1-\alpha)\left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}-1\right] \\ &+\left[(1+\beta)-\gamma(\alpha-\beta-2)\right]\frac{ab}{c}\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \\ &+\gamma(1+\beta)\frac{(a)_2(b)_2}{(c)_2}\frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \\ &\times\left[(1-\alpha)+\frac{ab[(1+\beta)-\gamma(\alpha-\beta-2)]}{(c-a-b-1)}+\frac{\gamma(1+\beta)(a)_2(b)_2}{(c-a-b-2)_2}\right]-(1-\alpha). \end{split}$$

But this last expression is bounded above by $(1 - \alpha)$ if (2.3) holds. Since

$$F_1(a,b; c; z) = z - \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n,$$

the necessity of (2.3) for $F_1(a, b; c; z)$ to be in the class $TS_{\gamma}(F_1; \alpha, \beta)$ follows from Lemma 2.2. This completes the proof of Theorem 2.1. \square

Remark 2.1.

- (i) Putting $\beta = \gamma = 0$ in Theorem 2.1, we obtain the result obtained by Silverman [15, Theorem 1].
- (ii) Putting $\beta = 0$ and $\gamma = 1$ in Theorem 2.1, we obtain the result obtained by Silverman [15, Theorem 3].
- (iiii) Putting $\beta = 1$ and $\gamma = 0$ in Theorem 2.1, we obtain the result obtained by Cho et al. [16, Theorem 2.1].
- (iv) Putting $\beta = \gamma = 1$ in Theorem 2.1, we obtain the result obtained by Cho et al. [16, Theorem 2.3].

- (v) Putting $\gamma = 0$ in Theorem 2.1, we obtain the result obtained by Swaminathan [17, Theorem 2.1] (see also Kwon and Cho [18, (ii) of Theorem 2.3]).
- (vi) Putting $\gamma = 1$ in Theorem 2.1, we obtain the result obtained by Swaminathan [17, Theorem 2.3] (see also Kwon and Cho [18, (ii) of Theorem 2.4]).

Theorem 2.2. Let a, b > 0 and c > a + b + 3, then the sufficient condition for $h_{\mu}(a,b; c; z)$ to be in the class $S_{\gamma}(h_{\mu}; \alpha, \beta)$ is that

$$\begin{split} &\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{ab[(1+\beta)(1+2\gamma+2\mu+2\gamma\mu) - (\alpha+\beta)(\gamma+\mu+\gamma\mu)]}{(1-\alpha)(c-a-b-1)} \right. \\ &\left. + \frac{(a)_2(b)_2[(1+\beta)(\gamma+\mu+4\gamma\mu) - \gamma\mu(\alpha+\beta)]}{(1-\alpha)(c-a-b-2)_2} + \frac{\gamma\mu(1+\beta)(a)_3(b)_3}{(1-\alpha)(c-a-b-3)_3} \right] \leqslant 2. \end{split}$$

Also, condition (2.5) is necessary and sufficient for $h^*(a,b;\ c;\ z)=z\Big(2-\frac{h_\mu(a,b;\ c;\ z)}{z}\Big)$ to be in the class $\mathcal{TS}_\gamma(h^*;\alpha,\beta)$.

Proof. Since

$$h_{\mu}(a,b;\ c;\ z) = z + \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n,$$

then, according to Lemma 2.1, we need only to show that

$$\begin{split} \sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)] [1+\gamma(n-1)] [1+\mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\ \leqslant 1-\alpha. \end{split}$$

Thus

$$\begin{split} &\sum_{n=2}^{\infty} [n(1+\beta)-(\alpha+\beta)][1+\gamma(n-1)][1+\mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)] \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-2}} \\ &+ [(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)] \sum_{n=3}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-3}} \\ &+ \gamma\mu(1+\beta) \sum_{n=4}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-4}} + (1-\alpha) \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu) \\ &- (\alpha+\beta)(\gamma+\mu+\gamma\mu)] \frac{ab}{c} \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} \\ &+ [(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)] \frac{(a)_2(b)_2}{(c)_2} \sum_{n=0}^{\infty} \frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_n} \\ &+ \gamma\mu(1+\beta) \frac{(a)_3(b)_3}{(c)_3} \sum_{n=0}^{\infty} \frac{(a+3)_n(b+3)_n}{(c+3)_n(1)_n} + (1-\alpha) \left[\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} - 1 \right] \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu) \\ &- (\alpha+\beta)(\gamma+\mu+\gamma\mu)] \frac{ab}{c} \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \end{split}$$

$$\begin{split} &+ \left[(1+\beta)(\gamma + \mu + 4\gamma \mu) \right. \\ &- \gamma \mu (\alpha + \beta) \right] \frac{(a)_2(b)_2}{(c)_2} \frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ \gamma \mu (1+\beta) \frac{(a)_3(b)_3}{(c)_3} \frac{\Gamma(c+3)\Gamma(c-a-b-3)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ (1-\alpha) \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right] \\ &= \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[(1-\alpha) \right. \\ &+ \frac{ab[(1+\beta)(1+2\gamma+2\mu+2\gamma\mu) - (\alpha+\beta)(\gamma+\mu+\gamma\mu)]}{(c-a-b-1)} \\ &+ \frac{(a)_2(b)_2[(1+\beta)(\gamma+\mu+4\gamma\mu) - \gamma\mu(\alpha+\beta)]}{(c-a-b-2)_2} + \frac{\gamma\mu(1+\beta)(a)_3(b)_3}{(c-a-b-3)_3} \right] - (1-\alpha). \end{split}$$

But this last expression is bounded above by $(1 - \alpha)$ if (2.5) holds. Since

$$h^*(a,b;\ c;\ z) = z - \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n,$$

the necessity of (2.5) for $h^*(a,b;c;z)$ to be in the class $TS_{\gamma}(h^*; \alpha, \beta)$ follows from Lemma 2.2. This completes the proof of Theorem 2.2. \square

Remark 2.2. Putting $\alpha = \gamma = 0$ in Theorem 2.2, we obtain the result obtained by Ramachandran et al. [19, Theorem 2.1, with p = 2 and q = 1].

Putting $\alpha = 0$ and $\gamma = 1$ in Theorem 2.2, we get the correct form of the result obtained by Ramachandran et al. [19, Theorem 2.3, with p = 2 and q = 1].

Corollary 2.1. Let a, b > 0 and c > a + b + 3, then the sufficient condition for $h_u(a, b; c; z)$ to be in the class $UCV(\beta)$ is that

$$\mu(1+\beta)\frac{(a)_3(b)_3}{(c)_3}F(a+3,b+3;\ c+3;\ 1)$$

$$+(4\mu\beta+5\mu+\beta+1)\frac{(a)_2(b)_2}{(c)_2}F(a+2,b+2;\ c+2;\ 1)$$

$$+(2\mu\beta+4\mu+2\beta+3)\frac{ab}{c}F(a+1,b+1;\ c+1;\ 1)$$

$$+F(a,b;\ c;\ 1) \leq 2. \tag{2.6}$$

Also, the condition (2.6) is necessary and sufficient for $h^*(a,b;\ c;\ z)=z\Big(2-\frac{h_\mu(a,b;\ c;\ z)}{z}\Big)$ to be in the class $\mathcal{UCT}(\beta)$.

Theorem 2.3. Let a, b > -1, ab < 0 and c > a + b + 2, then the necessary and sufficient condition for g(a,b;c;z) to be in the class $TS_{\gamma}(g;\alpha,\beta)$ is that

$$\gamma(1+\beta)(a)_2(b)_2 + [(1+\beta) - \gamma(\alpha-\beta-2)]ab(c-a-b-2) + (1-\alpha)(c-a-b-2)_2 \ge 0.$$
(2.7)

Proof. Since

$$g(a,b; c; z) = z + \frac{ab}{c} \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n$$
$$= z - \left| \frac{ab}{c} \right| \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n,$$

then, according to Lemma 2.2, we need only to prove that

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \le \left| \frac{c}{ab} \right| (1-\alpha). \tag{2.8}$$

Thus

$$\begin{split} \sum_{n=2}^{\infty} \left[n(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(n-1) \right] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \\ &= \left[(1+\beta) - \gamma(\alpha-\beta-2) \right] \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-2}} \\ &+ \gamma(1+\beta) \sum_{n=3}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-3}} + (1-\alpha) \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \\ &= \left[(1+\beta) - \gamma(\alpha-\beta-2) \right] \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} \\ &+ \gamma(1+\beta) \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_n} + (1-\alpha) \frac{c}{ab} \left[\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} - 1 \right] \\ &= \left[(1+\beta) - \gamma(\alpha-\beta-2) \right] \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ \gamma(1+\beta) \frac{(a+1)(b+1)}{(c+1)} \frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ (1-\alpha) \frac{c}{ab} \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right] \\ &= \frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \left[\left[(1+\beta) - \gamma(\alpha-\beta-2) \right] (c-a-b-2) \\ &+ \gamma(1+\beta)(a+1)(b+1) + \frac{(1-\alpha)}{ab} (c-a-b-2)_2 \right] - (1-\alpha) \frac{c}{ab}. \end{split} \tag{2.9}$$

Hence (2.8) is equivalent to

$$\frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)}[[(1+\beta)-\gamma(\alpha-\beta-2)](c-a-b-2)$$

$$+\gamma(1+\beta)(a+1)(b+1) + \frac{(1-\alpha)}{ab}(c-a-b-2)_{2}$$

$$\leqslant (1-\alpha)\frac{c}{ab} - (1-\alpha)\frac{c}{ab} = 0. \tag{2.10}$$

Thus, from (2.10), we have

$$\begin{split} &[(1+\beta) - \gamma(\alpha - \beta - 2)](c - a - b - 2) + \gamma(1+\beta)(a+1)(b+1) \\ &+ \frac{(1-\alpha)}{ab}(c - a - b - 2)_2 \leqslant 0. \end{split}$$

or, equivalently,

$$\gamma(1+\beta)(a)_2(b)_2 + [(1+\beta) - \gamma(\alpha - \beta - 2)]ab(c - a - b - 2) + (1-\alpha)(c - a - b - 2)_2 \ge 0.$$

This completes the proof of Theorem 2.3. \Box

Remark 2.3.

- (i) Putting $\beta = \gamma = 0$ in Theorem 2.3, we obtain the result obtained by Silverman [15, Theorem 2].
- (ii) Putting $\beta = 1$ and $\gamma = 0$ in Theorem 2.3, we obtain the result obtained by Cho et al. [16, Theorem 2.2].
- (iii) Putting $\gamma = 0$ in Theorem 2.3, we obtain the result obtained by Swaminathan [17, Theorem 2.2] (see also Kwon and Cho [18, (i) of Theorem 2.3]).

M.K. Aouf et al.

Putting $\beta = 0$ and $\gamma = 1$ in Theorem 2.3, we obtain the following corollary which corrects the result obtained by Silverman [15, Theorem 4].

Corollary 2.2. Let a, b > -1, ab < 0 and c > a + b + 2, then the necessary and sufficient condition for g(a,b; c; z) to be in the class $C(\alpha)$ is that

$$(a)_2(b)_2 + (3-\alpha)ab(c-a-b-2) + (1-\alpha)(c-a-b-2)_2 \geqslant 0.$$

Putting $\beta = \gamma = 1$ in Theorem 2.3, we obtain the following corollary which corrects the result obtained by Cho et al. [16, Theorem 2.4].

Corollary 2.3. Let a, b > -1, ab < 0 and c > a + b + 2, then the necessary and sufficient condition for g(a,b; c; z) to be in the class $UCT(\alpha)$ is that

$$2(a)_2(b)_2 + (5-\alpha)ab(c-a-b-2) + (1-\alpha)(c-a-b-2)_2 \ge 0.$$

Putting $\gamma = 1$ in Theorem 2.3, we obtain the following corollary which corrects the result obtained by Swaminathan [17, Theorem 2.4] and the result obtained by Kwon and Cho [18, (i) of Theorem 2.4]).

Corollary 2.4. Let a, b > -1, ab < 0 and c > a + b + 2, then the necessary and sufficient condition for g(a,b; c; z) to be in the class $UCT(\alpha,\beta)$ is that

$$(1+\beta)(a)_2(b)_2 + (3+2\beta-\alpha)ab(c-a-b-2) + (1-\alpha)(c-a-b-2)_2 \ge 0.$$

Theorem 2.4. Let a, b > -1, ab < 0 and c > a + b + 3, then the necessary and sufficient condition for $h_{\mu}(a,b; c; z)$ to be in the class $TS_{\gamma}(h_{\mu}; \alpha, \beta)$ is that

$$\gamma \mu (1+\beta)(a)_{3}(b)_{3} + [(1+\beta)(\gamma + \mu + 4\gamma \mu)
- \gamma \mu (\alpha + \beta)](a)_{2}(b)_{2}(c - a - b - 3)
+ [(1+\beta)(1+2\gamma + 2\mu + 2\gamma \mu)
- (\alpha + \beta)(\gamma + \mu + \gamma \mu)]ab(c - a - b - 3)_{2}
+ (1-\alpha)(c - a - b - 3)_{3} \ge 0.$$
(2.11)

Proof. Since

$$\begin{split} h_{\mu}(a,b;\ c;\ z) &= z + \frac{ab}{c} \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n \\ &= z - \left| \frac{ab}{c} \right| \sum_{n=2}^{\infty} [1 + \mu(n-1)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n, \end{split}$$

then, according to Lemma 2.2, we need only to prove that

$$\sum_{n=2}^{\infty} [n(1+\beta) - (\alpha+\beta)][1+\gamma(n-1)][1+\mu(n-1)] \times \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-2}} \le \left|\frac{c}{ab}\right| (1-\alpha).$$
 (2.12)

Thus

$$\begin{split} &\sum_{n=2}^{\infty}[n(1+\beta)-(\alpha+\beta)][1+\gamma(n-1)][1+\mu(n-1)]\frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)]\sum_{n=2}^{\infty}\frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-2}} \\ &+ [(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)]\sum_{n=3}^{\infty}\frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-3}} \\ &+ \gamma\mu(1+\beta)\sum_{n=4}^{\infty}\frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-4}} + (1-\alpha)\sum_{n=2}^{\infty}\frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)]\sum_{n=0}^{\infty}\frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} \\ &+ [(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)]\frac{(a+1)(b+1)}{(c+1)}\sum_{n=0}^{\infty}\frac{(a+2)_{n}(b+2)_{n}}{(c+2)_{n}(1)_{n}} \\ &+ \gamma\mu(1+\beta)\frac{(a+1)_{2}(b+1)_{2}}{(c+1)_{2}}\sum_{n=0}^{\infty}\frac{(a+3)_{n-2}(b+3)_{n-2}}{(c+3)_{n-2}(1)_{n}} + (1-\alpha)\frac{c}{ab}\left[\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}-1\right] \\ &= [(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)]\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ [(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)]\frac{(a+1)(b+1)}{(c+1)}\frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ \gamma\mu(1+\beta)\frac{(a+1)_{2}(b+1)_{2}}{(c+1)_{2}}\frac{\Gamma(c+3)\Gamma(c-a-b-3)}{\Gamma(c-a)\Gamma(c-b)} \\ &+ (1-\alpha)\frac{c}{ab}\left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}-1\right] \\ &= \frac{\Gamma(c+1)\Gamma(c-a-b-3)}{\Gamma(c-a)\Gamma(c-b)}\left\{(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)\right\} \\ &\times (c-a-b-3)_{2}+[(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)](a+1)(b+1)(c-a-b-3) \\ &+ \gamma\mu(1+\beta)(a+1)_{2}(b+1)_{2}+\frac{(1-\alpha)}{ab}(c-a-b-3)_{3}\right]-(1-\alpha)\frac{c}{ab}. \end{split}$$

Hence (2.12) is equivalent to

$$\frac{\Gamma(c+1)\Gamma(c-a-b-3)}{\Gamma(c-a)\Gamma(c-b)} \left[\{ (1+\beta)(1+2\gamma+2\mu+2\gamma\mu) - (\alpha+\beta)(\gamma+\mu+\gamma\mu) \} (c-a-b-3)_{2} + [(1+\beta)(\gamma+\mu+4\gamma\mu) - \gamma\mu(\alpha+\beta)](a+1)(b+1) \times (c-a-b-3) + \gamma\mu(1+\beta)(a+1)_{2}(b+1)_{2} + \frac{(1-\alpha)}{ab} (c-a-b-3)_{3} \right] \leqslant (1-\alpha)\frac{c}{ab} - (1-\alpha)\frac{c}{ab} = 0.$$
(2.13)

Thus, from (2.13), we have

$$\begin{split} &[(1+\beta)(1+2\gamma+2\mu+2\gamma\mu)-(\alpha+\beta)(\gamma+\mu+\gamma\mu)](c-a-b-3)_2\\ &+[(1+\beta)(\gamma+\mu+4\gamma\mu)-\gamma\mu(\alpha+\beta)](a+1)(b+1)(c-a-b-3)\\ &+\gamma\mu(1+\beta)(a+1)_2(b+1)_2+\frac{(1-\alpha)}{ab}(c-a-b-3)_3\leqslant 0, \end{split}$$

which implies to (2.11). This completes the proof of Theorem 2.4. \Box

Putting $\alpha = \gamma = 0$ in Theorem 2.4, we obtain the following corollary which corrects the result obtained by Ramachandran et al. [19, Theorem 2.2, with p = 2 and q = 1].

Corollary 2.5. Let a, b > -1, ab < 0 and c > a + b + 2, then the necessary and sufficient condition for $h_{\mu}(a,b; c; z)$ to be in the class $S_pT(\beta)$ is that

$$\mu(1+\beta)\frac{(a+1)(b+1)}{(c+1)}F(a+2,b+2;c+2;1) + [\mu(\beta+2)+\beta+1]F(a+1,b+1;c+1;1) + \frac{c}{ab}F(a,b;c;1) \le 0.$$

Putting $\alpha = 0$ and $\gamma = 1$ in Theorem 2.4, we obtain the following corollary which corrects the result obtained by Ramachandran et al. [19, Theorem 2.4, with p = 2 and q = 1].

Corollary 2.6. Let a, b > 0 and c > a + b + 3, then the sufficient condition for $h_u(a,b; c; z)$ to be in the class $UCT(\beta)$ is that

$$\begin{split} &\mu(1+\beta)\frac{(a+1)_2(b+1)_2}{(c+1)_2}F(a+3,b+3;\ c+3;\ 1)\\ &+(4\mu\beta+5\mu+\beta+1)\frac{(a+1)(b+1)}{(c+1)}F(a+2,b+2;\ c+2;\ 1)\\ &+(2\mu\beta+4\mu+2\beta+3)F(a+1,b+1;\ c+1;\ 1)\\ &+\frac{c}{ct}F(a,b;\ c;\ 1)\leqslant 0. \end{split}$$

Using similar arguments to the proof of the above theorems, we obtain the following theorems.

Theorem 2.5. Let a, b > 0 and c > a + b + 2. If the inequality (2.3) is satisfied, then $[\mathcal{M}_{a,b,c}(f)](z)$ maps the class \mathcal{S} (or \mathcal{S}^*) to the class $\mathcal{S}_{\nu}(f; \alpha, \beta)$.

Theorem 2.6. Let a > 1, b > 1 and c > a + b - 1. If the following inequality

$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[[(1+\beta) - \gamma(\alpha+\beta)] + \gamma(1+\beta) \frac{ab}{(c-a-b-1)} - (1-\gamma)(\alpha+\beta) \frac{(c-a-b)}{(a-1)(b-1)} \right] + (1-\gamma)(\alpha+\beta) \frac{(c-1)}{(a-1)(b-1)} \le 2(1-\alpha),$$
(2.14)

is true, then $[\mathcal{M}_{a,b,c}(f)](z)$ maps the class \mathcal{K} to the class $\mathcal{S}_{v}(f; \alpha, \beta)$.

Theorem 2.7. Let a, b > 0 and c > a + b + 3. If the inequality (2.5) is satisified, then $[\mathcal{N}_{\mu}(f)](z)$ maps the class $\mathcal{S}(or \mathcal{S}^*)$ to the class $\mathcal{S}_{\gamma}(f; \alpha, \beta)$.

Theorem 2.8. Let a > 1, b > 1 and c > a + b + 2. If the following inequality

$$\begin{split} &\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \bigg[\{ (1+\beta) - (\alpha+\beta)(\gamma+\mu-\gamma\mu) \} \\ &+ \frac{ab[(1+\beta)(\gamma+\mu+\gamma\mu) - \gamma\mu(\alpha+\beta)]}{(c-a-b-1)} \\ &+ \gamma\mu(1+\beta) \frac{(a)_2(b)_2}{(c-a-b-2)_2} \\ &+ (\alpha+\beta)(\gamma+\mu-\gamma\mu-1) \frac{(c-a-b)}{(a-1)(b-1)} \bigg] \\ &\leqslant 2(1-\alpha) + (\alpha+\beta)(\gamma+\mu-\gamma\mu-1) \frac{(c-1)}{(a-1)(b-1)}, \ \ (2.15) \end{split}$$

holds, then $[\mathcal{N}_{\mu}(f)](z)$ maps the class \mathcal{K} to the class $\mathcal{S}_{\gamma}(f; \alpha, \beta)$.

Remark 2.4. By specializing α , β and γ in Theorems from 2.5 to 2.8, we will obtain new results for different classes mentioned in the introduction.

Acknowledgment

The authors thank the referees for their valuable suggestions which led to the improvement of this paper.

References

- P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [2] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
- [3] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991) 87–92.
- [4] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991) 364–370.
- [5] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Marie Curie-Sklodowska Sect. A 45 (1991) 117–122
- [6] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992) 166–175.
- [7] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 190–196.
- [8] R. Bharati, R. Parvatham, A. Swaminathan, On subclasses of uniformly convex functions and a corresponding class of starlike functions, Tamkang J. Math. 28 (1997) 17–32.
- [9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109–116.
- [10] M.K. Aouf, R.M. El-Ashwah, S.M. El-Deeb, Certain subclasses of uniformly starlike and convex functions defined by convolution, Acta Math. Acad. Paedeg. Nyr. 26 (2010) 55–70.
- [11] N. Shukla, P. Shukla, Mapping properties of analytic function defined by hypergeometric function. II, Soochow J. Math. 25 (1) (1999) 29–36.
- [12] E. Merkes, B.T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961) 885–888.
- [13] St. Ruscheweyh, V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986) 1–11.
- [14] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl. 15 (1984) 737– 745
- [15] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993) 574–581.
- [16] N.E. Cho, S.Y. Woo, S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Calculus Appl. Anal. 5 (3) (2002) 303–313.
- [17] A. Swaminathan, Hypergeometric functions in the parabolic domain, Tamsui Oxf. J. Math. Sci. 20 (1) (2004) 1–16.
- [18] O.S. Kwon, N.E. Cho, Starlike and convex properties for hypergeometric functions, Int. J. Math. Math. Sci. (2008) 1–11.
- [19] C. Ramachandran, L. Vanitha, G. Murugusundaramoorthy, Starlike and uniformly convex functions involving generalized hypergeometric functions, IJPAM 92 (5) (2014) 691–701.