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Abstract

We extend the applicability of a cubically convergent nonlinear system solver using
Lipschitz continuous first-order Fréchet derivative in Banach spaces. This analysis avoids
the usual application of Taylor expansion in convergence analysis and extends the
applicability of the scheme by applying the technique based on the first-order
derivative only. Also, our study provides the radius of convergence ball and
computable error bounds along with the uniqueness of the solution. Furthermore, the
generalization of this analysis using Hölder condition is provided. Various numerical
tests confirm that our analysis produces better results and it is useful in solving such
problems where previous methods can not be implemented.
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Introduction
The main aim of this paper is to extend the applicability of a third-order nonlinear system
solver for estimating a locally unique solution s∗ of

G(s) = 0, (1)

where G : � ⊆ X → Y is a Fréchet differentiable operator with values in the Banach
space Y and � is a convex subset of the Banach space X. In the domain of engineer-
ing and applied sciences, plenty of problems are solved by converting into nonlinear
equations of the form (1). For example, the integral equations arise in radiative transfer
theory, problems in optimization, several boundary value problems, and many others can
be transformed into the equations in the form (1). For solving these equations, the most
commonly used technique is iterative algorithms. A popular and widely accepted iterative
procedure for solving (1) is Newton’s algorithm, which is expressed as:

sk+1 = sk − [
G′ (sk)

]−1G (sk) , k ≥ 0. (2)
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Some classical cubically convergent schemes like Chebyshev’s, Super-Halley’s, and the
Halley’s algorithms are generated by substituting (β = 0), (β = 1) and (β = 1

2 )
respectively in

sk+1 = sk −
(
1 + 1

2
(1 − βHG (sk))−1HG(sk)

)
[
G′(sk)

]−1G (sk) , (3)

where HG (sk) = G′ (sk)−1G′′ (sk)G′ (sk)−1G (sk).
Convergence analysis is an important part in the study of iterative methods. This is gen-

erally categorized into two types, viz. semi-local and local convergence. “The semi-local
convergence is based on the information around an initial point and gives criteria that
ensures the convergence of iteration procedures”. “The local convergence analysis of iter-
ative schemes is based on the information around a solution and provides the radius of
convergence ball as well as the convergence domain”[1]. “The choice of the initial point is
a shot in the dark, in general since the radius of convergence is not computed. The radius
of convergence is useful even in cases when the solution is not known. Also, the local
analysis provides computable error bounds as well as the uniqueness of the solution” [2].
Numerous researchers [1, 3–5] studied the local convergence analysis of different vari-
ants of Chebyshev-Halley type schemes including modified Halley-like, deformed Halley,
and improved Chebyshev-Halley type methods. In addition to that, the local convergence
study for Newton-type, Jarratt-type, Weerakoon-type, etc., is studied in Banach spaces
in [2, 6–15]. In this study, our primary focus is to enhance the applicability of a third-
order scheme using Lipschitz continuity condition only on first-order Fréchet derivative
in Banach spaces.
In [16], the authors derived a third-order algorithm applying quadrature rule for

obtaining the solutions of nonlinear systems. The scheme is given as:

tk = sk−[G′(sk)]−1G(sk)

sk+1 = sk − 4
[
G′(sk) + 3G′

(
1
3
(sk + 2tk)

)]−1
G(sk)

(4)

To execute this scheme, we require the computation of the first-order Fréchet derivative.
However, the analysis of convergence is established by applying the Taylor series approach
based on higher-order derivatives. These techniques, which need the higher-order deriva-
tives, limit the applicability of the algorithm. As an illustration, define a function G on
� = [− 1

2 ,
5
2
]
by

G(s) =
{
s3 log(s2) + s5 − s4, if s �= 0
0, if s = 0

It is important to note that G′′′ is unbounded on �. Therefore, the theory based on
higher-order derivatives [16] fail to solve the above problem. Also, one can get no idea
about the domain of convergence in [16]. The local convergence study gives valuable
information regarding the radius of convergence ball. For the algorithm (4), we discuss
the local convergence by following the approach based on G′ to stay away from the eval-
uation of higher-order Fréchet derivatives. In particular, we consider that the first-order
Fréchet derivative belongs to the Lipschitz class. This analysis enlarges the utility of the
method (4) by solving such problems for which earlier studies can not be used due to the
computation higher-order Fréchet derivatives.
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We arrange the manuscript as follows: the “Local convergence analysis” section deals
with the local convergence study of the algorithm (4). The “Numerical examples” is dedi-
cated to the numerical applications of our analytical results. The “Conclusions” section is
placed in the last section.

Local convergence analysis
We describe the local convergence analysis of the algorithm (4) in this segment. Let the
notations for the closed and open balls with center c and radius ρ > 0 be B̄(c, ρ) and
B(c, ρ) respectively. BL(Y ,X) is the notation for the set of all bounded linear operators
from Y to X. k0, k1 be two positive parameters with k0 ≤ k1. In Theorems 1 and 2, we
provide the local convergence analysis of the scheme (4).

Local convergence analysis of the method (4) under Lipschitz continuity condition

We define the function �1 on the interval
[
0, 1

k0

)
by

�1(u) = k1u
2(1 − k0u)

(5)

and the parameter

η1 = 2
2k0 + k1

<
1
k0

.

It is easy to observe that �1(η1) = 1. Again, we define the functions �2 and �2 on
[
0, 1

k0

)

by

�2(u) = 1
3

(1 + 2�1(u)) (6)

and

�2(u) = �2(u) − 1.

Now, �2(0) = − 2
3 < 0 and lim

u→
(

1
k0

)−�2(u) = +∞. The intermediate value theorem con-

firms the existence of the zeros of the function �2(u) in
(
0, 1

k0

)
. We denote the smallest

zero of �2(u) in
(
0, 1

k0

)
as η2. Again, we define �3 and �3 on

[
0, 1

k0

)
by

�3(u) = k0
4

(1 + 3�2(u))u (7)

and

�3(u) = �3(u) − 1.

Now, �3(0) = −1 < 0 and lim
u→

(
1
k0

)−�3(u) = +∞. So, The zeros of the function �3(u)

lies in (0, 1
k0 ). We denote the smallest zero of �3(u) in

(
0, 1

k0

)
as η3. Lastly, we define �4

and �4 on [ 0, η3) by

�4(u) = k1
[
1 + 3

2�2(u)
]
u

2(1 − �3(u))
(8)

and

�4(u) = �4(u) − 1.
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Now,�4(0) = −1 < 0 and lim
u→η−

3

�4(u) = +∞. Let η4 be the notation for the smallest zero

of �4(u) in (0, η3). The existence of η4 is guaranteed by the intermediate value theorem.
We choose

R′ = min{η1, η2, η4} (9)

to confirm the followings.

0 ≤ �1(u) < 1, (10)

0 ≤ �2(u) < 1, (11)

0 ≤ �3(u) < 1 (12)

and

0 ≤ �4(u) < 1, (13)

for each u ∈[ 0,R′). Also, we use the following assumptions on the Fréchet differentiable
operator G : � ⊆ X → Y .

G(s∗) = 0, G′(s∗)−1 ∈ BL(Y ,X), (14)

||G′ (s∗
)−1

(G′(s) − G′ (s∗
)
)|| ≤ k0||s − s∗||, ∀s ∈ � (15)

and

||G′ (s∗
)−1 (

G′(s) − G′(t)
) || ≤ k1||s − t||, ∀s, t ∈ �. (16)

Now, we discuss the local convergence analysis of the algorithm (4) in Theorem 1.

Theorem 1 Let s∗ ∈ �. Suppose the Fréchet differentiable operator G : � ⊆ X → Y
obeys (14)–(16) and

B̄
(
s∗,R′) ⊆ �, (17)

where R′ is given in (9). Starting from s0 ∈ B
(
s∗,R′) the scheme (4) produces the sequence

{sk} which is well defined, {sk}k≥0 ∈ B
(
s∗,R′) and converges to s∗. Also, the followings hold

∀k ≥ 0

||tk − s∗|| ≤ �1
(||sk − s∗||) ||sk − s∗|| < ||sk − s∗|| < R′, (18)

∣∣
∣
∣
∣

∣∣
∣
∣
∣

[
G′(sk) + 3G′

(
1
3
(sk + 2tk)

)]−1
G′(s∗)

∣∣
∣
∣
∣

∣∣
∣
∣
∣
≤ 1

4 (1 − �3 (||sk − s∗||)) (19)

and

||sk+1 − s∗|| ≤ �4(||sk − s∗||)||sk − s∗|| < ||sk − s∗|| < R′, (20)

where the functions �1, �3, and �4 are provided in (5), (7), and (8) respectively. For δ ∈
[R′, 2

k0 ), the equation G(s) = 0 has only one solution s∗ in B̄ (s∗, δ) ∩ �.

Proof It follows from (9), (15) and the assumption s0 ∈ B
(
s∗,R′) that

||G′ (s∗
)−1 (

G′(s0) − G′ (s∗
)) || ≤ k0||s0 − s∗|| < k0R′ < 1. (21)

Now, Banach Lemma on invertible operators [17–21] ensures that G′(s0)−1 ∈ BL(Y ,X)

and

||G′ (s0)−1G′ (s∗
) || ≤ 1

1 − k0||s0 − s∗|| <
1

1 − k0R′ . (22)
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Therefore, t0 is well defined. Again,

t0 − s∗ = s0 − s∗ − G′ (s0)−1G (s0)

= − [
G′(s0)−1G′(s∗)

]
[∫ 1

0
G′ (s∗

)−1 (
G′ (s∗ + θ

(
s0 − s∗

))−G′ (s0)
) (
s0− s∗

)
dθ

]
.

(23)

Using (5), (9), (10), (16), (22) and (23), we find

||t0 − s∗|| ≤ [||G′(s0)−1G′ (s∗
) ||]

[∣
∣∣∣

∣
∣∣∣

∫ 1

0
G′ (s∗

)−1 (
G′ (s∗ + θ

(
s0 − s∗

)) − G′ (s0)
) (
s0 − s∗

)
dθ

∣
∣∣∣

∣
∣∣∣

]

≤ k1||s0 − s∗||
2 (1 − k0||s0 − s∗||) ||s0 − s∗||

= �1
(||s0 − s∗||) ||s0 − s∗|| < ||s0 − s∗|| < R′.

(24)

So, (18) holds for k = 0. Now,
∣
∣
∣
∣

∣
∣
∣
∣
1
3
(s0 + 2t0) − s∗

∣
∣
∣
∣

∣
∣
∣
∣ ≤ 1

3
∣
∣
∣
∣(s0 + 2t0) − 3s∗

∣
∣
∣
∣

≤ 1
3

(||s0 − s∗|| + 2||t0 − s∗||)

≤ 1
3

(||s0 − s∗|| + 2�1
(||s0 − s∗||) ||s0 − s∗||)

= 1
3

(
1 + 2�1

(||s0 − s∗||)) ||s0 − s∗||
= �2

(||s0 − s∗||) ||s0 − s∗|| < ||s0 − s∗|| < R′.

(25)

So, 13 (s0 + 2t0) ∈ B
(
s∗,R′). Then, our claim is

[
G′(s0) + 3G′ ( 1

3 (s0 + 2t0)
)]−1 ∈ BL(Y ,X).

The equations (7), (9), (12), (15), (24), and (25) are used to deduce
∣
∣
∣
∣

∣
∣
∣
∣(4G

′(s∗))−1
[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)
− 4G′ (s∗

)
]∣
∣
∣
∣

∣
∣
∣
∣

≤ 1
4

[
||G′ (s∗

)−1 (
G′(s0) − G′ (s∗

)) || + 3
∣
∣
∣∣

∣
∣
∣∣G

′ (s∗
)−1

(
G′

(
1
3

(s0 + 2t0)
)

− G′(s∗)
)∣

∣
∣∣

∣
∣
∣∣

]

≤ k0
4

[
||s0 − s∗|| + 3

∣
∣
∣
∣

∣
∣
∣
∣
1
3
(s0 + 2t0) − s∗

∣
∣
∣
∣

∣
∣
∣
∣

]

≤ k0
4

[||s0 − s∗|| + 3�2
(||s0 − s∗||) ||s0 − s∗||]

= k0
4

[
1 + 3�2

(||s0 − s∗||)] ||s0 − s∗||
= �3

(||s0 − s∗||) < �3
(
R′) < 1.

Now, we obtain
[
G′(s0) + 3G′ ( 1

3 (s0 + 2t0)
)]−1 ∈ BL(Y ,X) using Banach Lemma on

invertible operators. Also,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)]−1
G′(s∗)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ 1

4(1 − �3(||s0 − s∗||)) . (26)
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Hence, s1 is well defined. We use (8) (9), (13), (16), (25), and (26) to derive

||s1 − s∗|| ≤
(∣∣

∣
∣
∣

∣∣
∣
∣
∣

[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)]−1
G′ (s∗

)
∣∣
∣
∣
∣

∣∣
∣
∣
∣

)

(∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0
G′ (s∗

)−1 (
G′(s0) − G′ (s∗ + θ

(
s0 − s∗

))) (
s0 − s∗

)
dθ

∣
∣
∣
∣

∣
∣
∣
∣

+3
∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0
G′ (s∗

)−1
(
G′

(
1
3
(s0 + 2t0)

)
− G′ (s∗ + θ

(
s0 − s∗

))
)

(
s0 − s∗

)
dθ

∣
∣
∣
∣

∣
∣
∣
∣

)

≤
k1
2 ||s0 − s∗||2 + 3k1

∫ 1
0

(|| 13 (s0 + 2t0) − s∗ − θ (s0 − s∗) ||) dθ ||s0 − s∗||
4 (1 − �3(||s0 − s∗||))

≤
k1
2 ||s0 − s∗||2 + 3k1

(
|| 13 (s0 + 2t0) − s∗|| + ||s0−s∗||

2

)
||s0 − s∗||

4(1 − �3(||s0 − s∗||))

≤
k1
2 ||s0 − s∗||2 + 3k1

[
�2 (||s0 − s∗||) ||s0 − s∗|| + ||s0−s∗||

2

]
||s0 − s∗||

4(1 − �3(||s0 − s∗||))
= (2k1||s0 − s∗|| + 3k1�2 (||s0 − s∗||) ||s0 − s∗||)||s0 − s∗||

4(1 − �3(||s0 − s∗||))
= k1

[(
1 + 3

2�2 (||s0 − s∗||)) ||s0 − s∗||] ||s0 − s∗||
2(1 − �3(||s0 − s∗||))

= �4(||s0 − s∗||)||s0 − s∗|| < ||s0 − s∗|| < R′.
(27)

Therefore, we prove that (20) is true for k = 0. We find the estimates (18)-(20) by
substituting sk , tk and sk+1 in place of s0, t0 and s1 respectively in the earlier estimations.
From the inequality ||sk+1 − s∗|| ≤ �4

(
R′) ||sk − s∗|| < R′, we have sk+1 ∈ B

(
s∗,R′) and

limk→∞ sk = s∗. Now, we have to show the uniqueness part. Let t∗ ( �= s∗) ∈ B(s∗, δ) be
such that 0 = G (t∗). Consider B = ∫ 1

0 G′ (t∗ + θ (s∗ − t∗)) dθ . From Eq. (15), we get

||G′(s∗)−1(B − G′(s∗))|| ≤
∫ 1

0
k0||t∗ + θ(s∗ − t∗) − s∗|| dθ

≤ k0
2

||s∗ − t∗||

≤ k0δ
2

< 1.

Applying Banach Lemma, we confirm that B−1 ∈ BL(Y ,X). The identity 0 = G (s∗) −
G(t∗) = B (s∗ − t∗) implies that s∗ = t∗.

Local convergence analysis of the method (4) under Hölder continuity condition

There are numerous problems for which the technique based on Lipschitz condition
fails to solve without using higher-order derivatives. As an illustration, we consider the
following problem given in [6].

G(s)(x) = s(x) − 3
∫ 1

0
G1(x, y) s(y)

5
4 dy,

where s(x) ∈ C[ 0, 1] and G1(x, y) is Green’s function defined on [ 0, 1]×[ 0, 1] by

G1(x, y) =
{

(1 − x)y, if y ≤ x
x(1 − y), if x ≤ y
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Then,

||G′(s) − G′(t)|| ≤ 15
32

||s − t|| 14 .
It is important to note that G′ does not obey Lipschitz condition. However, G′ is Hölder
continuous. So, we discuss the local convergence of the method (4) with Hölder contin-
uous first-order Fréchet derivative. This analysis also generalizes the local convergence
analysis presented in the previous section.

For q ∈ (0, 1], we define 
1 on
[
0,

(
1
k0

) 1
q
)
by


1(w) = k1wq

(q + 1)(1 − k0wq)
(28)

and the parameter

ξ1 =
(

(q + 1)
(q + 1)k0 + k1

) 1
q

<

(
1
k0

) 1
q
.

Observe that 
1 (ξ1) = 1. Again, we define functions 
2 and �2 on
[
0,

(
1
k0

) 1
q
)
by


2(w) = 1
3
(1 + 2
1(w)) (29)

and

�2(w) = 
2(w) − 1.

Now, �2(0) = − 2
3 < 0 and lim

w→
((

1
k0

) 1
q
)−�2(w) = +∞. The intermediate value theorem

confirms the existence of the zeros of the function �2(w) in
(
0,

(
1
k0

) 1
q
)
. We denote the

smallest zero of �2(w) in
(
0,

(
1
k0

) 1
q
)
as ξ2. Again, we define 
3 and �3 on

[
0,

(
1
k0

) 1
q
)
by


3(w) = k0
4

[
1 + 3
2(w)q

]
wq (30)

and

�3(w) = 
3(w) − 1.

Now, �3(0) = −1 < 0 and lim
w→

(
(

1
k0

) 1
q
)−�3(w) = +∞. So, the zeros of the function �3(w)

lies in
(
0,

(
1
k0

) 1
q
)
. We denote the smallest zero of �3(w) in

(
0,

(
1
k0

) 1
q
)
as ξ3. Lastly, we

define 
4 and �4 on [ 0, ξ3) by


4(w) =
k1

(
4

q+1 + 3
2(w)q
)
wq

4(1 − 
3(w))
(31)

and

�4(w) = 
4(w) − 1.

Now, �4(0) = −1 < 0 and lim
w→ξ−

3

�4(w) = +∞. Let ξ4 be the notation for the smallest zero

of �4(w) in (0, ξ3). The existence of ξ4 is guaranteed by the intermediate value theorem.
We choose
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R = min {ξ1, ξ2, ξ4} (32)

to confirm the followings.

0 ≤ 
1(w) < 1, (33)

0 ≤ 
2(w) < 1, (34)

0 ≤ 
3(w) < 1 (35)

and

0 ≤ 
4(w) < 1, (36)

for each w ∈[ 0,R). Also, we use the following assumptions on the Fréchet differentiable
operator G : � ⊆ X → Y .

G(s∗) = 0, G′(s∗)−1 ∈ BL(Y ,X), (37)

||G′(s∗)−1(G′(s) − G′(s∗))|| ≤ k0||s − s∗||q, ∀s ∈ � (38)

and

||G′ (s∗
)−1

(G′(s) − G′(t))|| ≤ k1||s − t||q, ∀s, t ∈ �. (39)

Theorem 2 Let s∗ ∈ �. Suppose the Fréchet differentiable operator G : � ⊆ X → Y
obeys (37)–(39) and

B̄(s∗,R) ⊆ �, (40)

where R is given in (32). Starting from s0 ∈ B(s∗,R), the scheme (4) yields the sequence
{sk} which is well defined, {sk}k≥0 ∈ B(s∗,R) and converges to s∗. Also, the following holds
∀k ≥ 0

||tk − s∗|| ≤ 
1
(||sk − s∗||) ||sk − s∗|| < ||sk − s∗|| < R, (41)

∣
∣∣
∣
∣

∣
∣∣
∣
∣

[
G′(sk) + 3G′

(
1
3

(sk + 2tk)
)]−1

G′(s∗)
∣
∣∣
∣
∣

∣
∣∣
∣
∣
≤ 1

4(1 − 
3(||sk − s∗||)) (42)

and

||sk+1 − s∗|| ≤ 
4
(||sk − s∗||) ||sk − s∗|| < ||sk − s∗|| < R, (43)

where the functions 
1, 
3, and 
4 are provided in (28), (30), and (31) respectively. For


 ∈
[
R,

(
q+1
k0

) 1
q
)
, the solution s∗ is the only solution of G(s) = 0 in B̄(s∗,
) ∩ �.

Proof It follows from (32), (38) and the assumption s0 ∈ B(s∗,R) that

||G′ (s∗
)−1 (

G′ (s0) − G′(s∗
)) || ≤ k0||s0 − s∗||q < k0Rq < 1. (44)

Now, Banach Lemma on invertible operators [17–21] ensures that G′(s0)−1 ∈ BL(Y ,X)

and

||G′(s0)−1G′ (s∗
) || ≤ 1

1 − k0||s0 − s∗||q <
1

1 − k0Rq . (45)
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Therefore, t0 is well defined. Again,

t0 − s∗ = s0 − s∗ − G′(s0)−1G(s0)

=− [
G′(s0)−1G′(s∗)

] [∫ 1

0
G′ (s∗

)−1 (
G′ (s∗ + θ

(
s0 − s∗

)) − G′ (s0)
)
(s0 − s∗) dθ

]
.

(46)

Using (28), (32), (33), (39), (45) and (46), we find

||t0 − s∗|| ≤ [||G′(s0)−1G′(s∗)||]
[∣
∣∣∣

∣
∣∣∣

∫ 1

0
G′(s∗)−1(G′(s∗ + θ(s0 − s∗)) − G′(s0))(s0 − s∗) dθ

∣
∣∣∣

∣
∣∣∣

]

≤ k1||s0 − s∗||q
(q + 1)(1 − k0||s0 − s∗||q) ||s0 − s∗||

= 
1(||s0 − s∗||)||s0 − s∗|| < ||s0 − s∗|| < R.

(47)

So, (41) holds for k = 0. Now,
∣
∣
∣
∣

∣
∣
∣
∣
1
3
(s0 + 2t0) − s∗

∣
∣
∣
∣

∣
∣
∣
∣ ≤ 1

3
∣
∣
∣
∣(s0 + 2t0) − 3s∗

∣
∣
∣
∣

≤ 1
3

(||s0 − s∗|| + 2||t0 − s∗||)

≤ 1
3

(||s0 − s∗|| + 2
1
(||s0 − s∗||) ||s0 − s∗||)

= 1
3

(
1 + 2
1

(||s0 − s∗||)) ||s0 − s∗||
= 
2

(||s0 − s∗||) ||s0 − s∗|| < ||s0 − s∗|| < R.

(48)

So, 13 (s0+2t0) ∈ B(s∗,R). Then, our claim is
[
G′(s0) + 3G′ ( 1

3 (s0 + 2t0)
)]−1 ∈ BL(Y ,X).

The Eqs. (30), (32), (35), (38), (47), and (48) are used to deduce
∣
∣
∣
∣

∣
∣
∣
∣(4G

′(s∗))−1
[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)
− 4G′(s∗)

]∣
∣
∣
∣

∣
∣
∣
∣

≤ 1
4

[
||G′(s∗)−1(G′(s0) − G′(s∗))|| + 3

∣
∣
∣∣

∣
∣
∣∣G

′(s∗)−1
(
G′

(
1
3
(s0 + 2t0)

)
− G′(s∗)

)∣
∣
∣∣

∣
∣
∣∣

]

≤ k0
4

[
||s0 − s∗||q + 3

∣
∣
∣
∣

∣
∣
∣
∣
1
3
(s0 + 2t0) − s∗

∣
∣
∣
∣

∣
∣
∣
∣

q]

≤ k0
4

[||s0 − s∗||q + 3
2(||s0 − s∗||)q||s0 − s∗||q]

= k0
4
[ 1 + 3
2(||s0 − s∗||)q] ||s0 − s∗||q

= 
3(||s0 − s∗||) < 
3(R) < 1.

Now, we obtain
[
G′(s0) + 3G′ ( 1

3 (s0 + 2t0)
)]−1 ∈ BL(Y ,X) using Banach Lemma on

invertible operators. Also,
∣
∣∣
∣
∣

∣
∣∣
∣
∣

[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)]−1
G′(s∗)

∣
∣∣
∣
∣

∣
∣∣
∣
∣
≤ 1

4(1 − 
3(||s0 − s∗||)) . (49)

Table 1 Parameters for example 1

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

0.324947 0.324947 0.241437 0.241437 0.085221
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Table 2 Parameters for example 2

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

0.666667 0.666667 0.542573 0.542573 0.333333

Hence, s1 is well defined. We use (31) (32), (36), (39), (48), and (49) to derive

||s1 − s∗|| ≤
(∣

∣∣
∣
∣

∣
∣∣
∣
∣

[
G′(s0) + 3G′

(
1
3
(s0 + 2t0)

)]−1
G′(s∗)

∣
∣∣
∣
∣

∣
∣∣
∣
∣

)

(∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0
G′ (s∗

)−1 (
G′ (s0) − G′ (s∗ + θ

(
s0 − s∗

))) (
s0 − s∗

)
dθ

∣
∣
∣
∣

∣
∣
∣
∣

+3
∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0
G′ (s∗

)−1
(
G′

(
1
3
(s0 + 2t0)

)
− G′ (s∗ + θ

(
s0 − s∗

))
)

(s0 − s∗) dθ

∣
∣
∣
∣

∣
∣
∣
∣

)

≤
k1
q+1 ||s0 − s∗||q+1 + 3k1

∫ 1
0

(|| 13 (s0 + 2t0) − s∗ − θ (s0 − s∗) ||q) dθ ||s0 − s∗||
4(1 − 
3(||s0 − s∗||))

≤
k1
q+1 ||s0 − s∗||q+1 + 3k1

(
|| 13 (s0 + 2t0) − s∗||q + ||s0−s∗||q

q+1

)
||s0 − s∗||

4(1 − 
3(||s0 − s∗||))

≤
k1
q+1 ||s0 − s∗||q+1 + 3k1

[

2(||s0 − s∗||)q||s0 − s∗||q + ||s0−s∗||q

q+1

]
||s0 − s∗||

4(1 − 
3(||s0 − s∗||))

=
(

k1
q+1 ||s0 − s∗||q + 3k1

[

2(||s0 − s∗||)q||s0 − s∗||q + ||s0−s∗||q

q+1

])
||s0 − s∗||

4(1 − 
3(||s0 − s∗||))

=
(

4k1
q+1 ||s0 − s∗||q + 3k1 [
2(||s0 − s∗||)q||s0 − s∗||q]

)
||s0 − s∗||

4(1 − 
3(||s0 − s∗||))

=
k1

(
4

q+1 ||s0 − s∗||q + 3 [
2(||s0 − s∗||)q||s0 − s∗||q]
)

||s0 − s∗||
4(1 − 
3(||s0 − s∗||))

= 
4(||s0 − s∗||)||s0 − s∗|| < ||s0 − s∗|| < R.
(50)

Thus, we prove that (43) holds for k = 0.We find the estimates (41)-(43) by substituting
sk , tk , and sk+1 in place of s0, t0, and s1 respectively in the preceding estimations. From the
inequality ||sk+1−s∗|| ≤ 
4(R)||sk−s∗|| < R, we have sk+1 ∈ B(s∗,R) and limk→∞ sk = s∗.
Now, we have to show the uniqueness part. Let t∗ (�= s∗) ∈ B(s∗,
) be such that 0 =
G (t∗). Consider A = ∫ 1

0 G′(θs∗ + t∗(1 − θ)) dθ . From Eq. (38), we get

||G′(s∗)−1(A − G′(s∗))|| ≤
∫ 1

0
k0||t∗ + θ

(
s∗ − t∗

) − s∗||q dθ

≤ k0
q + 1

||s∗ − t∗||q

≤ k0
q

q + 1
< 1.

Table 3 Parameters for example 3

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

0.066667 0.066667 0.047233 0.047233 0.019896
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Table 4 Parameters for example 4

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

0.006896 0.006896 0.005613 0.005613 0.002500

Applying Banach Lemma, we confirm that A−1 ∈ BL(Y ,X). The identity 0 = G(s∗) −
G(t∗) = A(s∗ − t∗) implies that s∗ = t∗.

Numerical examples
In this section, we compute the radii of convergence balls for standard numerical prob-
lems. Also, we compare the convergence radii with that of the third order convergent
midpoint method obtained by the technique of Argyros and George provided in [10]. We
obtain better results using our technique in all cases.

Example 1 [6] Let G is defined on B̄(0, 1) for (s1, s2, s3)t by

G(s) =
(
es1 − 1,

e − 1
2

s22 + s2, s3
)t

We have s∗ = (0, 0, 0)t , q = 1, k0 = e − 1 and k1 = e. We compute the value of the radius
R employing “
′′ functions (Table 1).

Example 2 [6] Define G on � =[−1, 1] by

G(s) = sin(s)

We have s∗ = 0, q = 1 and k0 = k1 = 1. R is obtained using “
′′ functions (Table 2).

Example 3 [7] Consider the nonlinear Hammerstein type integral equation given by

G(s)(x) = s(x) − 5
∫ 1

0
x y s(y)3 dy,

where G(s) ∈ C[ 0, 1]. We have s∗ = 0, q = 1, k0 = 7.5 and k1 = 15. We use the definitions
of “
′′ functions to compute the value of R (Table 3).

Example 4 [6] Define G on � = [− 1
2 ,

5
2
]
by

G(x) =
{
s3 log

(
s2

) + s5 − s4, if s �= 0
0, if s = 0

We have s∗ = 1, q = 1 and k0 = k1 = 96.6628. The radius R is calculated from the
definitions of “
′′ functions.
Thus, we confirm the convergence of the scheme (4) with radius R = 0.005613 (Table 4).

Table 5 Parameters for example 5

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

0.025599 0.025599 0.014957 0.014957 0.003887
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Table 6 Parameters for example 6

Algorithm (4) Midpoint method [10]

ξ1 ξ2 ξ4 R r

1.973081 1.973081 0.598292 0.598292 0.055768

Example 5 [6] Consider the nonlinear Hammerstein type integral equation given by

G(s)(x) = s(x) − 5
∫ 1

0
x y s(y)

3
2 dy,

where s(x) ∈ C[ 0, 1]. We have s∗ = 0. Also, q = 0.5 and k0 = k1 = 15
4 . We use “
′′

functions to compute the radius R (Table 5).

Example 6 [6] Consider the nonlinear integral equation given by

G(s)(x) = s(x) − 3
∫ 1

0
G1(x, y) s(y)

5
4 dy,

where s(x) ∈ C[ 0, 1] and G1(x, y) is Green’s function. We have s∗ = 0. Also, q = 0.25 and
k0 = k1 = 15

32 . The radius R is computed using “
′′ functions.
Thus, we guarantee the convergence of the algorithm (4) for example 6 with radius R =

0.598292 (Table 6).

Conclusions
Local convergence analysis of a higher-order convergent nonlinear system solver (4) is
discussed. For expanding the applicability of the method, this study is provided under
the only condition that the first-order Fréchet derivative is Lipschitz continuous. This
technique is applicable in solving such problems for which previous studies can not be
applied. Also, the generalization of this analysis using Hölder condition is studied. At last,
standard examples are solved to show the convergence of the scheme.
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