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1. Introduction

Swift-Hohenberg equation was first used as a toy model for
the convective instability in the Rayleigh-Bénard problem
(see [1] or [2]). Today it is one of the celebrated equations
for the examination of the dynamics of pattern formation.

Near the bifurcation the equation exhibits two widely sep-
arated characteristic time-scales and it is desirable to obtain
a simplified equation which governs the evolution of the dom-
inant modes. These equations are referred to as amplitude
equations. The approximation of SPDEs on bounded domains
via amplitude equations was first rigorously verified in [3] for a
simple Swift-Hohenberg model, and later extended in [4-8]. In
all these publications the amplitude equation for the dominant
modes is given by an ODE or a SDE.

Mohammed et al. [9,10] studied the Equation

du = [—(1+8i)2u+vsu+yu2—u3]dz—|—0'8dW, (1)

in case the noise-strength is g, = ¢, and the noise does not act
directly on the dominant modes. Here additional deterministic
terms appear, due to the presence of noise, that change the sta-
bility of the system. In this paper, we will study two cases
o, =& and o, = ¢, and suppose that the noise acts directly
on the dominant modes.

The main result of this paper is to show that near a change
of stability on a time-scale of order ¢ (n = 2 or 4) the solution
of (1) with respect to Neumann boundary conditions on the
interval [0, 7] is of the type

u(t, x) = eb(&"t) cos(x) + error, (2)

where b is the solution of the amplitude equation on the slow
time-scale T = ¢"t given by

Orb = vb + G(b) + 7P, (3)
where §,(T) := &p,(¢"T) is a rescaled version of the Brown-
ian motion, and G(b) is given by

3 38 5\ .3
o) = —3(1-37)7 @

27
38

n=4,0,=¢ and > =2 G(b) is quintic and given by
G(b) == —Cob’, (5)

with Cy ~ 1.8.

The remainder of this paper is organized as follows. In
the next section we formulate the assumptions that we
need in this paper. In Section 3 we derive the amplitude
equation with error term and state without proof the
approximation theorem. In Section 4 we give bounds for
high modes. Finally, we give the proof of the main
results.

in the case of n = 2,0, = & and y?> < 2L, while in the case of

2. Preliminaries

We work in some Hilbert space H equipped with scalar prod-
uct (-, -) and norm |-]|. We denote by {e;};~, and {Ac},-, an
orthonormal basis of eigenfunctions and the corresponding

eigenvalues such that —(1 +8i)2ek = Jgey, (cf. Courant and
Hilbert [11]). In our case

L if k =0
VR ! )
ex(x) =

- and 4, = (1 — kz)z.
\/%cos(kx) if k>0,

Suppose that A := ker A= span{cos}, where A= —(1 +8i)2.
Define by S=AN" the orthogonal complement of A in H
and by P, the projection P.:H—N. Define P, :=7—P,,
where 7 is the identity operator on H. As the dimension of
N is finite, it is well known that both P, and P, are bounded
linear operators on H.

Let us define the space H' by Fourier series:

o0 o0 ~ -
Hl_{zykek: kzy,z(<oo}withnorm Z’Ykgk :Zkz“//zc
k=1 k=1 — 2 -

The operator A generates an analytic semigroup {é"A}t;o
defined by

et kaek = Ze*’t"’y,&,ek Vit=0.
k=1 =1
Also, it has the following property that for all
t>0,w=/, and all u € H'
He/APSuHH. < e || Psul|yp- (6)
In an abstract setting we need the following assumption,
which is trivial to check in the concrete examples.

Assumption 1. Define the nonlinear term G(b) : R — R via

g(b) _ _Cb2n+] ,

Assume there exists a constant ; > 0 such that for u € R the
following inequality is satisfied

(G(u), u) < = [u™""?, forn=1,2.

For the noise we suppose the following:

forn=1,2.

Assumption 2. Let W be a Wiener process on an abstract
probability space (2, F,P). For t > 0, we can write W(¢) (cf.
Da Prato and Zabczyk [12]) as

Wi =S by (e
k=0
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where (), are independent, standard Brownian motions in
R and (o4).y, are real numbers. We assume

= ) 1
Zkzai/l,%’*l < oo, forsomeye (07—).
k1 2

For our result we rely on a cutoff argument. We consider
only solutions that are not too large, as given by the next
definition.

Definition 3 (Stopping time). For the N x S -valued stochastic
process (a, V) defined later in (10) we define, for some T > 0
and k € (0,5) for n =1 or 2, the stopping time t* as

=Ty AInf{T > 0: ||a(T)|l,p > & or|y(T)|,p > & *}.
()

Definition 4. For a real-valued family of processes
{X.(1)},50 We say X, = O(f,), if for every p > 1 there exists
a constant C, such that

E sup |X,(0)f" < G, (8)

1€[0,7]

We use also the analogous notation for time-independent ran-
dom variables.

3. Formal derivation and main result

In this section, we derive the amplitude equation with error
term and state without proof the approximation theorem.

For short, let A=—(1+ aﬁ)z, B(u) = B(u,u) = u*, and
F(u) = F(u,u,u) = u*. So, we can rewrite the Eq. (1) as follows
du = [Au+ vau + yB(u) — F(u)|dt + o.dW. 9)
We are interested here in studying the behavior of solutions to

(9) on time-scales of order ¢, for n = 2 or 4. So, we split the
solution u into

u(t) = ea(e"t) + ey (e"t), (10)

where a € N and € S. After rescaling to the slow time-scale
T = ¢"t, we obtain the following system of equations:

da= [va+2ye " B.(a,) +ye "B (W) — e "2F (a+e)|dT +dW .,

(11)
and
Ay = [s’”ASl// + v +e"yBy(a+ey) — e Fola+ ap)} dT+¢'dw,,
(12)

where W(T) = ¢/>W(e™T) is a rescaled version of the Wie-
ner process and ¢, = ¢? if n = 2 or 6, = &* if n = 4. We denoted
the projections by indices. This means 7, = P.F or 7, = P, F.
We define B,, B, W,, W, and A, in a similar way.

Integrating Eq. (11) from 0 to T, we obtain

a(T) = a(0) + /T[va + 297" B.(a, ) + ye" P B. (Y, )
— e "2 F (a4 ep))ds + W (T), (13)

Applying 1t6’s formula to B(.(a,A;‘Ip), yields

T T
26 [ Blawds =47 [ B(Bla). A Wi
0

0

T
+2yg / B.(F.(a), A )ds — 2y "2
Jo

T

T
x / B.(a, A7 B.(a,a))ds — 4y / Bu(a, A B(a, ) ds
0 0

T
- 2«,’287”4/ B.(a,A;' By(y))ds + 6y

0
T T
></ B(.(a,.A;l]-'S(a,a,I//))ds+2ys’”+3/ B.(a,A;' F(a))ds+ Ry,
0 0
(14)

where R, is given by
Ri(T) = 28%B(a(T), AT'W(T)) — 2%yB(a(0), A 'y(0))

T T
—apet [ Bla A s -2 [ BB,
0 0
T
x A "W)ds + 63)8’”*5/ B(F.(a,a, ), A" W)ds
0

T
+ 6yt / Bo(Fela, ), A" )ds + 2ye7*7
0
T

T
< [ B, A s -2 [ )
0 0
T
+6y87"+5/ Bc(aw“_;']-'s(a,t//,l,b))ds+2yg*”+6
0

! -1 o ’ ‘ “1rF
></0 Bla, A F,())ds 2,3/0 Bu(a, A" dW,).(15)

By direct estimates we show that all terms in R, are small.
Now, let us consider two cases depending on the value of n
and 7%

3.1. First Case: n =2 and y° < %

In this case, by substituting from (14) into (13) we obtain the
following amplitude equation with error term

a(T) = a(0) + v/o a(r)d‘c+/0 E_}(a(r))err WL,(T) + Iél(T),

(16)
where the cubic term G(a) and the remainder R, are given by
~ 3 38
G(a)=—2y*B.(a, A, B,(a,a))+F.(a)= ~2 (l —ﬁ"ﬁ) (a,e;)’e,

(17)
and

Ri(T) = R\(T) — 42 / BB ). A W)ds + 2907

0
' 4 c 9 vil d_42 ' c ) -71 s bl
x/()B(}'(a)Aiw)s ys/OB(aAAB(alﬁ))

T

T
X ds — 2y282/ B.(a, A;'B,())ds + 2ys/ B.(a, A;'
o G
x Fy(a))ds + ye/ B.(Y,)dr — & / F.(Y)dr — 3¢
0 0

X /OT]-'(.(a, a, y)dr — 382/0T.7-'c(a, W, W) dr, (18)

with R; defined in (15).
We fix v, = ve? and g, = &°. Then the main result in this case
is given in the following theorem:
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Theorem 5 (Approximation 1). Under Assumptions 1 and 2 let u where we used
be a solution of (1) with the splitting introduced in (10 ) and initial | 22
condition u(0) = ea(0) + &2y(0) such that a(0) €N and - Fe(a) — =5 B.(a, A 'Bi(a,a)) =0,
¥ (0) € S where a(0) and y(0) are of order one. Let b be a solution & &
of (3) withb(0) = (a(0),e). Thenforallp > 1 and Ty > 0andall ~ when y* =3I, and
Kk € (0,4, € (0, 1), there exists a constant C > 0 such that T
R3 = Rl + R2 - 8/ .7-'5.(1//)ds, (23)

[P’( sup ||u(r) — eb(¢*1) cos||,, > & 28”) < Ce. (19) 0

1€(0,72 o where R, and R, are defined in (15) and (21), respectively.

3.2. Second case: n =4 and y? =Z

The second case is slightly more stable, as we loose the cubic in
the amplitude equation. Thus we need a different scaling. In this
case, we apply 1t6’s formula to B.(,ex, ¥,e¢) in order to obtain

L v [ aipen

1 297 /
=— —_— B.(B - )d:
gsz(;vk+)»é) (Bi(a)ex, Y er) S+Z Ak_’_M)

k.t

T %y
y / B(BlaVec el =3 s

></ B.(Fi(a)ex, yrec)ds + Ry, (20)
0

where we used B (w) = (B(w), ex) and Fi(w) = (F(w), e) for
shorthand notation. The error R, in Eq. (20) is defined by

Ri(T)= ZMH (0)e ¥ (0)ec) — Be(W(Thex, r(The)]
+2¢° 'LZ/

ke

L (WrewsPeer) ds+sz 0 +)
PZ )k+M

X/OYBL(]-'A(aa W)ee,er)ds — 822
o
*ngm/o BB(Fr(ap,p)ex,er) +eBe(Fi(W)ex, ec)|ds
(21

.
x / B.(Bu(W)errer)d
0

oy
(A + 2¢)

2B, (Yrex.er)

Olp Ol ~ -~
=382 1 gy Belewsendb | db

Again, we show later that all terms in R, are of order &. By
substituting (14) and (20) into (13) we obtain

a(T):a(O)+v/Tads—4y2/TB(,(B(,(a,lp),A;ll//)derZy
0 0
X/TB (F(a) A’lw)ds—ﬁ/TB (a, A" By(a,i))ds
o ‘[T ¢ IAde) ¢ 0 Tf IA) s ?
—2y2/ B(,(a,A;lBA.(lj/))derﬁ/ B.( a,AilfS(a))ds
Jo
+6y/T Be(a, A, Fy(a,ap))ds +~ ZzyBk a)

/uk-i-})
T
X e, \rpep)ds +
| Bterbien me

T
x / 2B, (Bi(a,)exeer) — B(Fila)er, wyedlds

1 [ Filaawis- [ Fiap v,
0 0
@)

Now, we need to remove  from the right hand side of (22).
To do this, we explicitly average all terms by applying It6 for-
mula to every term containing ¥ on the right hand side. For
the first term containing ¥ in (22) we apply It6 formula to

B.(B.(a,yex), A;llheé) and obtain

-4 /0 TB(V(B(r(a, ), A )ds = 87" Bi(a)

] A[(/lk + /1[)

’ ) 8y*By(a)By(a)
X B.(B.(a,e),y,e)ds + O PRl e E ‘7
/0 (Be(a, e0), Yeer) ( ) [ jj(/hk + )

X /TBC(BC(a7 er), er)ds + O(e' 7). (24)

For the second term containing ¥ in (22) we consider
Bo(Fe(a), A AY) to get
T T
2 / Bo(Fo(a), A ) ds = -2 / Bo(F (@), A" A By(a))ds
0 0
_‘_O(glfléhc). (25)

For the third term containing v in (22) we apply It6 formula to
B.(a, A;'B,(a, A;")). This yields

49 [T 493
- L B(’(a’ -A;IB.\‘(aa l//))dS = /

& 0 &

Bo(a, A, B.(a, A, B(a)))ds + 8

B.(a, A;" By(a, A; ' By(a,)))ds — 4’

B.(a, .A;lBS(a7 .A;lBS(a7 A;lBS(a))))ds — 4y

B.(a, A, ' By(a, A;' F(a)))ds + O(c'713%). (26)

J
J
x /OTB«(a, A;'By(a, A, Fy(a))ds + O(e'13) = —8*
J
J

For the fourth term containing ¥ in (22) we work with
B.(a, A B,(ex, 1)) to obtain

T
_2y2/ BL.(a,A;lBS(zp))ds
0
_2—4‘/3&
T (A +2e)

4o T
_ Z 4y Bk B ((l) / Bt»(a,A;lBS(Bk,G[))dS+0(81715’().
[ 0

T
/ B.(a, A, By(expe0))ds + O(e' ")
0

A[ Ak + )»/
(27)

For the fifth term containing i in (22) we apply 1t6 formula to
B.(a, A, Fy(a,a, A;'})) in order to obtain
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T T
@/wa@fwwwwk:4f/B&wﬁfwwﬁf
0 0
x By(a)))ds + (9(81’14"). (28)

For the sixth term containing ¥ in (22) we consider
B ‘(B/((a)e/m lp/el)'

T 27 Bi(a)Bi(a)
fE B (e oends — 2 S 1 Bkla) Bila)
Ak+/1/ / (Bela)ew, Yer)ds s%: TG+ 70)
></ d+§j4’B" /TB( Bi(a,¥)e;)d
e e, AY €L, e\ A, ep)as
0 o ee) Ae(Aie + o) o ¢

2/ Bk ' 1-13x
- ZM (A + 20 / B.(ex, Fe(a)ey)ds + O(e' )

,Z 47" Bi(a) /TB(e Bi(a, A;'B,(a))e;)ds
A[)A‘i‘j:[ c\Ck, Do\t Ay s 14

—Z 27 Bila /T (e, Fol@)er)ds + O, (29)
/% /Lk +/{[ c\Ckyv 1 4 .

For the seventh term containing { in (22) we work with
B.(Bi(a, l///ej)e,c7 V,e0) to obtain

4 /T 4y’ By(a)
—_ B.(By(a, o Wen)ds = BT re—
k.l (j'k + /16) 0 ( / ( lp)e} lp[eé) ; (j'k + /1[)(/“7 + /Ll)
V' By(a)

T
X ej)ex, eq)ds + —_—
/0 ((Bulaye)ew kzéjzkw)(ﬂjuf)

T
></ B.(By(a,e))ex, ,e)ds + O(e' ")
0

8y*B;(a)B(a) /T .
- B.(Bu(a.e)er. e)ds + O 1),
Z/lé(ik + /ﬂug)(}vj + /L[) 0 ( k(a ef,)ek g/) /s + (8 )

(30)
For the eighth term. we apply It6 formula to B,.(Fi(a)ex, ¥, e;).

Z(A%VA/) /0 Be(Fr(a)er, Yoen)ds =

kl

—2y2F(a)By(a)
Ae(Ai + 20)

T
></ Bu(ex, e)ds + O(c"4). (31)
0

For the ninth term containing  in (22) we apply It6 formula
to F.(a,a, A,"W).

/}'aalﬁ 73?/.7:aa.,4 B (a))ds — 3

></ ]-',,(a,a,A;'fy(a))ds—i—6y/ f,,(a,a,Angs(a,lp))ds
0 0

_'_(/)(817131\') —

T
—3/ Fela,a, A;lflv(a))ds— 6y°
0

- /on«'(av a, A By(a, A By())ds + O ), (32)

where we used that F.(a,a, A, ' By(a)) = 0. For the last term
containing  in (22). Consider F (a, ek, ¥ e,) in order to
obtain

- 3/0 fc(a7l//7¢)dsz Z /Ik“’) / ‘F (l Bk( )é’k,l//[€/)

k.t
6“/ Bk /
F(a, e, e)
= mm+m o

+O(E ), (33)

By substituting from (24)-(33) into (22) we obtain the follow-
ing amplitude equation with error

a(T):a(0)+v/ d‘H—/ G(a

where the quintic term G(a) is given by

5 v 87" Bi(a)Bi(a) de) o) — 22
G(a) _; /ﬁukﬁ‘ii) B.(Bc(a,er),e0) — 27" B(F

4 0(81715;{) —_

Vde + W.(T) + Ry(T),

(34)

(), A"

x A, 'By(a)) — 8y"B.(a, A, B,(a, A, ' B,(a, A; ' B,(a))))

49* By (a) B,(a)

— 47’ B.(a, A" By(a, A F () — (2 + )

(24

B.(a, A" By(ex,e,)) — 67
Z 4/4Bk
T (e + A

2)12]:1((&)3[(
72 Akl elewser +Z) h—f—}

kj

B.(a, A;' Fy(a,a, A, ' By(a)))

B.(ex, Bi(a, A By(a))e;)

(a)
/“/ + /1/)

k.t

x B.(Bi(a,¢)ex, er) — 3F.(a,a, A, F(a))

6y*Bi.(a)Bi(a)

- 6’})2‘7:0(617 a7 A.:IBS(Ch 'A;]Bi(a))) - A/(;Lk +A/)

k.t

X ‘F(,'(a7 Ek,eg) = _C0<a7€|>56|7

with Cy ~ 1.8 and the error term R,(T) is defined by
Ry = Ry + O(e' 1), (35)

where R; was defined in (23).
The main result in this case (with the scaling v, = ve* and
o, = &%) is given in the following:

Theorem 6 (Approximation 2). Under Assumptions 1 and 2 let
u be a solution of (1) defined in (10) with initial condition
u(0) = ga(0) + e2y(0) where a(0) € N and y(0) € S such that
a(0) and Y(0) are of order one. Let b be a solution of (3) with
b(0) = (a(0),e1). Then for all p > 1,6 € (0,1), and To > 0 and
all k € (0,75) , there exists C > 0 such that

[P’( sup ||u(r) — eb(g*r) cos||,, > & 34”) < Ce. (36)
[

1€[0,64Tp)

4. Bounds for the high modes

In the following lemma we show that in (10) the modes ¥ € S
are essentially an OU-process plus a quadratic term in the
modes a € N.
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Lemma 7. Under Assumption 2 let Z(T) be the S-valued
process solving for n = 2,4 the SDE

dZ = e "AZdT + e 'dW,, Z(0) = (0). (37)
Then for ¢ € (0,1) and 0 < T < 1

1-9
< Ce ™",

o - 20— [ B (o)

H]
(38)

Proof. The mild formulation of (12) is

un =2+ [ &0
0
x [wp+e"yB(a+ep) — e "' F(a+ep)|de.  (39)

Thus we obtain

<C
H]

Hl//(r) —Z(T)—ye™" /O.Tef"A‘(T*’)B&.(a(r))a’r

T
/ & "44(T—-1) wd,[

0

/ e "I B (a(1), (1)) de

0

+ Cg—n+1
1

H H!

T
+ 6—n+2c / esi"A”(Tir)BS(l//)d‘E

0

+ CF—WH
HI

T
/ e"fu'\(T")]-}(a +ey)de

0

=hL+hL+5+14.
Hl

We now bound all four terms separately. For the first term,
using (6), we obtain for all 7' < 7*

e "oT
W< Csup W)l [ ey < o,
0

1€0,7%]

where we used the definition of 7*. For the second term we
obtain

T
egcwﬂA64MWW&wmwumww

e "oT
< Cosup (L@ [Wlo) - [ erdn < cits
[

7€[0,7*

where we used again the definition of 7*. Analogously, we
derive for the third term
7€(0,7*

e "ol
I; < Ce? sup Hl//(‘z:)”;] / e dy < Ce? ",
(0.7 0

For the fourth term we obtain by using (6) and the definition
of 7*, that

T
L < Cet! / 678—71(0(7‘*1) ny(a(f) + gzﬁ(‘[))HHl dr
0

"ol
< Ce (sup|a|;1 +£sup||lj/|;1> / edy < Ce' %,
[0,77] [0,7%] 0

Combining all results, yields (38). The proof is complete. [

The next lemma provides bounds for the stochastic
convolution Z(T) defined in (37).

Lemma 8. Under Assumption 2, for every ko >0 and p > 1,
there exists a constant C, depending on p, oy, A, ko and Ty,
such that

E sup [|Z(T)]f, < Ce ™,

T€0,Ty]

Proof. See the proof of Lemma 20 in [7]. O

We now need the following simple estimate.

Lemma 9. Using t defined in Definition 3, then for n = 2,4 we
obtain

[E( sup
Tel0,7%]

Sforall e € (0,1).

p

T
/ ef”A"(T’T)BX(a, a)dt

0

]> < CePr, (40)
H

Proof. Using (6) we obtain, for T < t*, that

The following corollary states that y(7) is with high prob-
ability much smaller than ¢ as asserted by the Definition
3 for T < t*. We will show later t* > T, with high probability
(cf. proof of Theorem 5).

T
/ e ”A"(T’T)Bs(a)dr

AT
<o sup la@ly [ ey
0 1 ] 0

7€(0,7*

H
< Cen—ZK. 0

Corollary 10. Under the assumptions of Lemmas T and 8, if
Y (0) = O(1), then for p >0 and for all ky > 0 there exists a
constant C > 0 such that

[E( sup |lﬁ(73||§;1> <G (41)
Tel0,t*]

Proof. From (39), by triangle inequality and Lemmas 8 and 9,
we obtain

[E( sup |'//(T)||€-ﬂ> < CH Ce™0 4 Ce™%  CeP™r",
Tel0,7]

for K<$ and xo < k. This yields (41). The proof is
complete. O

Now the next step is to bound the remainder R; in the case
n=2 (or R, for n =4). This was defined in (18) (or (35)) we
use it in order to show the approximation result later.

Lemma 11. We assume that Assumption 2 holds. Then for all
p >0, there exists a constant C > 0 such that

[E( sup |‘RM(T)’|;}-(1> < Ce 70, (42)
Te[0,7%]
where 6, = 3u+9 with u =14 for n=2,4.

Proof. We use similar arguments as in the proof of Lemma
7 to obtain (42).

5. Proof of the main result

In order to prove the approximation result, we first need the
following a-priori estimate for solutions of the amplitude
equation.
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Lemma 12. Let Assumption 1, holds. Define b(t) in R as the
solution of (3). If the initial condition satisfies E|b(0)|” < C for
some p > 1, then there exists another constant C such that

E sup [H(T)" < C. (43)

Tel0,7%]

Proof. The existence and uniqueness of solutions for Eq. (3)
are standard. To verify the bound in (43), we define Y as

Y(T) = b(T) — (7). (44)

Substituting this into (3), we obtain

OrY =v(Y+af)+G(Y+oup)). (45)
Taking the scalar product (-, Y), on both sides of (45), yields
1 -

SOHYE = (Y + 21 ), Vg + (G(Y +of), Vg

Using Young and Cauchy-Schwarz inequalities and Assump-
tion 1, for n = 2,4, we obtain that

‘n+2 ‘n+2

1 ~ " 5
587|Y|2<C+C\[)’1 —o|Y["? < C+ Clp,
Taking g-th power and expectation, we obtain, for u=1,2

where y =1
p p p pu+1)
Esup|Y|” < CTy + CTy [Esup]ﬁ | < C.
(0,7

Together with (44), this implies

Esup|b|’ < C[Esup\Y|p+C[Esup|ﬁ1| <C. O
[0.75] [0,70]

Definition 13. Fix u =4 and x € (0,515;) for n=2 or 4 .

Define the set Q* C Q such that the following three estimates

supll¥lla < Ce ¥, (46)
[solignzéﬂuw < Cglmowr, (47)
and

[soufp]|b| < Cei, (48)
hold on Q".

Proposition 14. The set Q° has approximately probability 1.
Proof.

P(@) > 1 - P(suplyl > Ce )
[0,7%]

P(sup|b| > Ce 7).

—P(sup||R,[lp > Ce'~") —
[0,7%] (0,7]

for u =1 (or u = 2). Using Chebychev inequality, Corollary 10
and Lemmas 11, 12, we obtain for sufficiently large ¢ > 0 that

P(Q) > 1 — C[" 4 & + g1 > 1 — Car™ > 1 — C. O

(49)

In the following we identify A with R and rewrite the
amplitude Eq. (16) (or (34)) as
T T ~
al(T):al(O)JrV/ af(de+ [ Gla(1))dr+ou By (T)+R,(T),
0 0
(50)

where a; = (a,e1), R, = (R, e,
w=1(or 2).

yand G(a)) =

2t
—Ca**! for

Theorem 15. Assume that Assumption 1 holds and suppose
a1 (0) = O(1). Let b(t) be a solution of (3) and a, is defined as
in (50) If the initial condition satisfies a;(0) = b(0), then for
K< with n =2 (or n = 4),we obtain

i
sup |a;(T) — b(T)| < Ce~ 2% on @, (51)
Tel0,7%]

and

sup |a;(7)| < Ce 7 on Q. (52)
Te[0,7%]

Proof. Define ¢(7) as

o(T) = a(T)

From (50) we obtain

—R,,(T).

o(1)=a0)+v [ (o0 + R+ [ Glolr)+ R0k
0 0
(53)

Define now /(7T) by
WT) = o(T)— H(T). (54)
Subtracting (53) from (3), we obtain

:v/.Th(r)dr+v/T’RM(r)dr+/T[g(h+b+72u)—g(b)](r)dr.
Thus,
Orh = v(h +R,) +Gh+b+R,) — G(b). (55)

Taking the scalar product (-, h), on both sides of (55), yields

1

567|h|2 = (Orh, h)g
=v(hh)y + V(R hYg + (Gb+h+TR,) —

G(b), h)g,
where G(b) = —Cb™*" for =1 (or u = 2) where y = . Using

Young and Cauchy-Schwarz inequalities and Assumption 1,
we obtain the following linear ordinary differential inequality

arlhl® < CAP + h™?] + C|R,[* [1 R+ |b|2“+2].
Using (47) and (48), we obtain, for u =1 (or u = 2),
D7l < ClIAP + (™3] + C&2Cr+10% on 0

As long as || < 1, we obtain

drlh[ < 2CI|7 + C272(w 10k on @,

Integrating from 0 to 7" and using Gronwall’s lemma, yields

|h|2 < Cg220uHIx
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Thus,

sup|h| < Ce!~GrHIDx on @, (56)
(0.]

We finish the first part by using (54) and (56) and

supla; — b| = sup|h + ’RH‘ < suplh| + sup|RM|.
[0,7%] [0,7%] [0,7%] [0,7%]

For the second part of the theorem we consider
suplai| < supla; — b| + sup|b].
[0,7%] [0,7%] [0,7%]
Using the first part and (48), we obtain the final result (52). [

Now, we can use the previous results to prove the main
result of Theorem 5 in the case of n =2 (or Theorem 6 in
the case of n =4) for the approximation of the solution (2)
of the SPDE (1).

Proof of the Main Theorem. For the stopping time we note
that

[0,75] [0,70]

Q>{t"=Ty} D {sup||a||H1 <&, sup||y,p < 8‘3"} D Q"
Hence

P{t" < Ty} < [P’{sup|a||H1 > &7, sup||ylp > 83"} < Cef™,
[0,7%] [0,7%]

(57)

where we used Chebychev’s inequality and (41). Now let us
turn to the approximation result. Using (10) and triangle
inequality, yields on Q" that

sup |[u(e™"T) — eb(T)ei ||,y < & suplla — bey ||, + szsup||l//||H1
Te[0,t] [0,7%] [0,7%]
< & suplay — b| + &*sup||y|,.
[0,7%] 0,2]
From (46) and (51) we obtain for n =2 (or n = 4)
sup lu(r) —eb(e"D)erllys = sup [Ju(r) —eb("1)||,n < Ce 2,
1€[0,67" Ty) 1e[0,67"17*]

Thus

[P’( sup |Ju(r) — eb(&"t)||pp > 82_(3"+22)K> <1-P(QY).

1€[0.67"Tp)

Using (49), yields (19) for n = 2 (or (19) for n = 4). The proof
is complete. [
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