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Abstract

This article aims to study the existence of the cooperative search technique to find a
Brownian target. We have 2n cooperative searchers coordinate their search to find a
Brownian target that moves on one of n disjoint real lines. Each line has two
searchers. All of these searchers start the searching process from the origin. Rather
than finding the conditions that make the expected value of the first interviewing
time between one of the searchers and the target is finite, we compute the
approximate value of this expected value.
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Introduction
The searching problem for the lost targets that move with random movement is one of

the most important contemporary problems that the mathematicians seek to solve it in

different ways to reduce the cost of the search. One of these random movements is the

Brownian motion. In an earlier work, this problem has been discussed on the real line,

plan, and space by studying different kinds of search plans such as the linear search

plan as in El-Hadidy et al [1, 2]., El-Rayes et al. [3], and Corwin [4]. They presented

the finiteness of the search strategy which was used by founding the conditions that

make E(τ) (the first interviewing time expected value for one of the searchers and the

target where τ denote to this time) finite. In addition, they showed the existence of this

optimal search plan and El-Hadidy [1] found it.

One of the famous search techniques is the coordinated search technique. Reyniers

[5, 6] was the first one who investigated this technique on the line. This technique con-

sidered two searchers starting together at the origin of the real line with unit speed.

These searchers aimed to find the expected time for detecting a hidden target after

one of them return to the origin to tell the other. In addition, they aimed to minimize

this expected time. But, the returning time increases this expected time. Here, we will

treat this defect by not repeating the searching process on the searched parts.

In recent works, El-Hadidy and Abou-Gabal [7] presented a coordinated search tech-

nique to find a random Walk target, which moves randomly on the real line. Rather

than showing the existence of the optimal search strategy that minimizes this first

interviewing time, El-Hadidy and Abou-Gabal [7] found the conditions that make E(τ)
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finite. El-Hadidy et al. [8–10] also studied this technique on the plan and space when

the target is hidden at any random point. They found the expected value of the time to

detect the target by one of the searchers. Besides that, they found the optimal search

plan that minimizes this expected value. For different kinds of search plans on the line,

plan, and space, the reader can see, El-Hadidy et al. [11–20], Kagan and Ben-Gal [21],

Guerrier and Holcman [22], Palyulin et al. [23], Radmard and Croft [24], Stone et al.

[25], and Jia et al. [26].

In this work, we use the technique which was presented in Reyniers [5, 6] and El-

Hadidy and Abou-Gabal [7] but without repeating the searching process on the

searched parts of n disjoint real lines. This technique is the generalization of the tech-

nique which was used in El-Hadidy and Alzulaibani [27]. We use n cooperative

searchers to seek a Brownian target which moves in one of the n disjoint cylinders (real

lines). This idea is supported through modern communication methods. Each line has

two searchers starting at the same time from the origin. One of these searchers goes to-

wards +∞ to search the right part of the real line and the other goes towards to −∞ to

search the left part of the real line. This will reduce E(τ) (cost). Thus, we aim to show

the existence of a finite search plan and compute this expected value.

The organization of this paper appears as follows: the “Problem formulation” section

describes our search problem. We show the existence and finiteness of our search plan

in the “Existence of the finite search plan” section. The computation of E(τ) appears in

“Computational expected value for τ” section. Finally, we discuss the results and future

works which were obtained in the conclusion part.
Problem formulation
We always seek for reducing the cost to detect the Brownian moving target on one of

the n real lines. To do this, we use n cooperative searchers as in El-Hadidy et al. [1, 2,

20, 28]. But, the technique which was used in El-Hadidy et al. [1, 2, 20, 28] wasted a lot

of costs because the searching process is repeated in the same part more than once.

Our model does not waste this cost because the searchers do not repeat the searching

process by using the connection technology methods. Besides that, we calculate the ap-

proximated expected value of the Brownian target detection.
The searching framework

The space of search

The search space is the n axis of n cylinders (n real lines Li, i = 1, 2, ..., n), see Fig. 1.
The target

Our target moves with a Brownian motion {B(t), t ≥ 0}, where the target’s initial position

is unknown, but its probability distribution is known at time 0.
The means of search

All the searchers Sj, j = 1, 2, ..., 2n start the searching process from the origin. Each line

Li, i = 1, 2, ..., n needs two unit speed searchers S2j − 1 and S2j, where the searcher S2j − 1

searches in the right part and S2j in the left part of the real line. After searching succes-

sively common distances, they do not return to the origin of Li. The searching process



Fig. 1 The search space (n disjoint cylinders)
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on Li would conduct as follows: begin at H0i = 0 and go to the right (left) as far as H ðþÞ
1i

ðH ð−Þ
2i Þ. Then, the first one of S2j − 1 and S2j which meets the target will tell the other by

using the wireless communication methods. If the target is not found, then do the

above step again at the point H ðþÞ
1i ðH ð−Þ

2i Þ to search the right (left) part of H ðþÞ
1i ðH ð−Þ

2i Þ as
far as ½H ðþÞ

3i −H ðþÞ
1i �ð½jH ð−Þ

4i −H
ð−Þ
2i j�Þ and so on, see Fig. 2.
Existence of the finite search plan
In this section, we aim to get the conditions that make the search plan be finite. On

the line Li, i = 1, 2, ..., n the two searchers S2j − 1 and S2j are coordinating their search
Fig 2 The search plan without returning to the origin of S2j − 1 and S2j for finding a Brownian target on Li
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and following the search paths φ2 j−1 : Rþ→R and φ2 j : Rþ→R; respectively, to meet

the target, where

j φ2j−1 t1ð Þ−φ2j−1 t2ð Þ j ≤v þð Þ j t1−t2 j & j φ2 j t1ð Þ−φ2 j t2ð Þ j ≤v −ð Þ j t1−t2 j ∀ t1; t2∈R
þ; ð1Þ

(i.e., the search paths should satisfy the Lipschitz condition), and v(+) and v(−) are the

velocities of the searchers in the right and left part, respectively. Assuming that θi(+),

θi(−), λi(+), and λi(−) are positive integer numbers greater than one. For any line, Li, i = 1,

2, ..., n define the sequences fGðþÞ
ki gk ≥1;i¼1;2;:::;n; fG

ð−Þ
ki gk ≥1;i¼1;2;:::;n; fH

ðþÞ
ki gk ≥1;i¼1;2;:::;n

and fH ð−Þ
ki gk ≥ 1;i¼1;2;:::;n (see El-Rayes et al. [3]), respectively, to obtain the distances

which the searchers should do them as a function of θi(+), θi(−), λi(+), and λi(−). The main

idea of this model is all searchers do not return to the origin as in Fig. 1 that is redu-

cing E(τ). Thus, we can define GðþÞ
ik ¼ λiðþÞðθkiðþÞ−1Þ;Gð−Þ

ik ¼ λið−Þðθkið−Þ−1Þ: This leads to
the traveled distances at the time step k, k = 1, 2, ... are given by H ðþÞ

ki ¼ Ci
ðþÞðGðþÞ

ki þ 2Þ
;H ð−Þ

ki ¼ Ci
ð−ÞðGð−Þ

ki þ 2Þ; in the right and left part of Li, i = 1, 2, ..., n, respectively, where

Ci
ðþÞ ¼ ϖ i

ðþÞðθiðþÞ−1Þ
ðθiðþÞþ1Þ ;Ci

ð−Þ ¼ ϖ i
ð−Þðθið−Þ−1Þ
ðθið−Þþ1Þ ; and ϖi

(+), ϖi
(−) are rational numbers. Conse-

quently, the search path in the right part of Li, i = 1, 2, ..., n can be defined as follows:

for any t ∈ R+, if GðþÞ
ð2k−3Þi≤ t≤G

ðþÞ
ð2k−1Þi, we have

φi tð Þ ¼ H þð Þ
2k−1ð Þi−H

þð Þ
2k−3ð Þi

� �
þ t−G þð Þ

2k−1ð Þi
� �

ð2Þ

And, in the left part for any t ∈ R+, if Gð−Þ
ð2k−2Þi≤ t≤G

ð−Þ
ð2kÞi, we have

φi tð Þ ¼ − H −ð Þ
2kð Þi−H

−ð Þ
2k−2ð Þi

� �
þ t−G −ð Þ

2kð Þi
� �h i

ð3Þ

Let the notations ψðGðþÞ Þ ¼ BðGðþÞ Þ−C ðþÞðGðþÞ Þ; ~ψðGð−Þ Þ ¼ BðGð−Þ Þ
ð2k−1Þi ð2k−1Þi i ð2k−1Þi ð2kÞi ð2kÞi

þCi
ð−ÞðGð−Þ

ð2kÞiÞ; i ¼ 1; 2; :::; n; k ¼ 1; 2; ::: are held. Then,

τ ¼ inf t : either one of φi tð Þ ¼ Z0i þ B tð Þ or φi tð Þ ¼ Z0i þ B tð Þf g; i ¼ 1; 2; :::; ng; ð4Þ

where Z0i is a random variable which represents the target’s initial position on Li, i = 1, 2,
..., n and independent with {B(t), t > 0}. Also, let the search plan be represented by ðφ1;φ2;

:::;φn;φ1;φ2; :::;φnÞ∈Φ0, where Φ0 ¼ fðΦ;ΦÞ : φi ∈Φ;φi ∈Φ ∀i ¼ 1; 2; :::; ng.
For t > 0, we have an infinite number of possible outcomes, thus the probability dens-

ity function which represents the target’s position can be described as a calendar for

the continuity of the relative frequencies of the data in a given interval. Consequently,

the probability of any certain value of the target’s position at time step k is equal to

zero. Logically, the first interviewing time event and the target’s position zi ∈ Zi on any

line Li, i = 1, 2, ..., n at time step k on [0,∞] or [−∞, 0] have a known probability value

greater than zero. This leads us to study our problem in a new space (probability

space). Let this probability space be (Ω, Σ, γ) where Ω is the sample space of all ex-

pected meeting points, Σ is the σ− algebra which represents the collection of all mutu-

ally exclusive events that show the target’s position at any time step k, and γ is the

probability measure which used as a measure of an integrator factor into our
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probability space. Now, we will study the existence of the finite search plan as in the

following theorems.

Theorem 1: The combination of the search plans ðφ1;φ2; :::;φn;φ1;φ2; :::;φnÞ∈Φ0 is

finite if the following
R
0

∞ P
k¼2

∞
θ2k−2iðþÞ PðψðGðþÞ

ð2k−3ÞiÞ > −ziÞγ iðdziÞ and
R
−∞

0 P
k¼2

∞
θ2i−2ð−Þ Pð~ψðGð−Þ

ð2k−2ÞÞ

< −ziÞγ iðdziÞ are finite for all i = 1, 2, ..., n, where
P
i¼1

n
γ i ¼ 1:

Proof Since the target may be met at one of n lines, then τφi
; i ¼ 1; 2; :::; n “the first

interviewing time between one of the searchers S2j − 1, j = 1, 2, ..., 2n in the right parts of

all lines Li, i = 1, 2, ..., n and the Brownian target” and τφi
; i ¼ 1; 2; :::; n “the first inter-

viewing time between one of the searchers S2j, j = 1, 2, ..., 2n in the left parts and the

Brownian target” of all lines Li, i = 1, 2, ..., n are mutually exhaustive events. Then, for

any k ≥ 0, we have

P τ > tð Þ ¼ P τφ1
> t or τφ2

> t or ::: or τφn
> t or τφ1

> t or τφ2
> t or ::: or τφn

> t
� �

¼ ∪
n

i¼1
P τφi

> t
� �þ P τφi

> t
� �� �

¼
Xn
i¼1

P τφi
> t

� �þ P τφi
> t

� �� �
:

Then, we obtain

E τð Þ ¼
Z∞

0

P τ > tð Þdt≤
Xn
1¼1

X∞
k¼1

ZG þð Þ
2k−1ð Þi

G þð Þ
2k−3ð Þi

P τφi
> t

� �
dt þ

ZG −ð Þ
2k−1ð Þi

G −ð Þ
2k−2ð Þi

P τφi
> t

� �
dt

2
664

3
775

≤
Xn
i¼1

X∞
k¼1

G þð Þ
2k−1ð Þi−G

þð Þ
2k−3ð Þi

� �
P τφi

> G þð Þ
2k−3ð Þi

� �h �
þ G −ð Þ

2kð Þi−G
−ð Þ
2k−2ð Þi

� �
P τφi

> G −ð Þ
2k−2ð Þi

� �
�

≤
Xn
i¼1

X∞
k¼1

λi þð Þ θ2k−1i þð Þ −θ
2k−3
i þð Þ

� �
P τφi

> G þð Þ
2k−3ð Þi

� �
þ λi −ð Þ θ2ki −ð Þ−θ

2k−2
i −ð Þ

� �
P τφi

> G −ð Þ
2k−2ð Þi

� �h i

¼
Xn
i¼1

ðλi þð Þθi þð ÞP τφi
> 0

� �þ λi þð Þθi þð Þ θ2i þð Þ−1
� �X∞

k¼2

θ2k−2i þð Þ P τφi
> G þð Þ

2k−3ð Þi
� �

þλi −ð Þθi −ð ÞP τφi
> 0

� �
þ λi −ð Þθ

2
i −ð Þ θ2i −ð Þ−1

� � X∞
k¼2

θ2k−2−ð Þ P τφi
> G −ð Þ

2k−2ð Þi
� �

Þ:

ð5Þ

Also, at time step k on the line Li, i = 1, 2, ..., n, we have
P τφi
> G þð Þ

2k−3ð Þi
� �

≤
Z∞

0

P Z0i þ B G þð Þ
2k−3ð Þi

� �
> H þð Þ

2k−3ð ÞijZ0i ¼ zi
� �

γ i dzið Þ; k≥1:

By using the above notation ψðGðþÞ
ð2k−3ÞiÞ ¼ BðGðþÞ

ð2k−3ÞiÞ−Ci
ðþÞðGðþÞ

ð2k−3ÞiÞ; we can get

ψðGðþÞ
ð2k−3ÞiÞ > −zi (El-Hadidy et al. [1, 2]), then Pðτφi

> GðþÞ
ð2k−3ÞiÞ≤

R
0

∞
PðψðGðþÞ

ð2k−3ÞiÞ > −ziÞγ iðdziÞ;

and by using the another notation ~ψðGð−Þ
ð2kÞiÞ ¼ BðGð−Þ

ð2kÞiÞ þ Ci
ð−ÞðGð−Þ

ð2kÞiÞ; we get

Pðτφi
> Gð−Þ

ð2k−2ÞÞ≤
R
−∞

0
Pð~ψðGð−Þ

ð2k−2ÞiÞ < −ziÞγ iðdziÞ: Consequently,

E τð Þ ¼
Xn
i¼1

gi þ λi þð Þθi þð Þ θ2i þð Þ−1
� � Z∞

0

Mi zið Þγi dzið Þ þ λi −ð Þθ
2
i −ð Þ θ2i −ð Þ−1

� � Z0

−∞

Li zið Þγi dzið Þ
2
4

3
5;

where gi = (λi(+)θi(+) + λi(−)θi(−))P (τ > 0), P (τ > 0) is the knowing initial probability of τ
and MiðziÞ ¼
P
k¼2

∞
θ2k−2iðþÞ PðψðGðþÞ

ð2k−3ÞiÞ > −ziÞ and LiðziÞ ¼
P
k¼2

∞
θ2k−2ið−Þ Pð~ψðGð−Þ

ð2k−2ÞiÞ < −ziÞ:

Thus, E(τ) is finite if
R
0

∞
MiðziÞγ iðdziÞ and

R
−∞

0
LiðzÞγ iðdziÞ are finite. The prove is

completed.■
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This model is the first investigation of the cooperative search technique by using 2n

searchers which reduces E(τ). But the above conditions in Theorem 1 are not sufficient

to get the finite expected search time. Thus, we want to get more conditions to make

this model more applicable and effective.

Theorem 2: At any time step k, the chosen search plan Φ0 ¼ fðΦ;ΦÞ : φi∈Φ;φi∈ Φ ∀i

¼ 1; 2; :::; ng should satisfy ½M1ðzk1Þ;M2ðzk2Þ; :::;MnðzknÞ�≤ ½ ~M1ðjzk1jÞ; ~M2ðjzk2jÞ; :::; ~Mn

ðjzknjÞ� and ½L1ðzk1Þ; L2ðzk2Þ; :::; LnðzknÞ�≤ ½~L1ðjzk1jÞ; ~L2ðjzk2jÞ; :::; ~LnðjzknjÞ� where ½ ~M1ðjzk1j
Þ; ~M2ðjzk2jÞ; :::; ~MnðjzknjÞ� and ½~L1ðjzk1jÞ; ~L2ðjzk2jÞ; :::; ~LnðjzknjÞ� are vectors of linear

functions.

Proof At time step k, if zki ≤ 0 on the line Li, i = 1, 2, ..., n, then [M1(zk1),M2(zk2), ...,

Mn(zkn)] ≤ [M1(0),M2(0), ...,Mn(0)] but for zki > 0, we get Mið0Þ ¼
P
k¼2

∞
θ2k−2iðþÞ PðψðGðþÞ

ð2k−1ÞiÞ
> 0Þ: Consequently,

M1 zk1ð Þ;M2 zk2ð Þ; :::;Mn zknð Þ½ � ¼ ½M1 0ð Þ þ
X∞
k¼2

θ2k−21 þð ÞP ψ G þð Þ
2k−1ð Þ1

� �
≤0

� �
;M2 0ð Þ þ

X∞
k¼2

θ2k−22 þð ÞP ψ G þð Þ
2k−1ð Þ2

� �
≤0

� �
; :::;Mn 0ð Þ

þ
X∞
k¼2

θ2k−2n þð ÞP ψ G þð Þ
2k−1ð Þn

� �
≤0

� �
�:

ð6Þ

If the target starts its motion at time step k on the real line Li, i = 1, 2, ..., n from the

random point zki with drift μ and variance σ2, then on the right part of Liand for t≥

GðþÞ
ð2k−1Þi > 0; we have

P B tð Þ≥αitð Þ≤P B G þð Þ
2k−1ð Þi

� �
≥αiG

þð Þ
2k−1ð Þi

� �
¼ P σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þð Þ

2k−1ð Þi

q
Z þ μG þð Þ

2k−1ð Þi≥αiG
þð Þ
2k−1ð Þi

� �
;

where αi, i = 1, 2, ..., n are constants. This leads to
p Z≥
αi−μð ÞG þð Þ

2k−1ð Þi

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þð Þ

2k−1ð Þi
q

0
B@

1
CA ¼

Z∞

k

1ffiffiffiffiffiffi
2π

p e−
z2
2 dz ¼

Z∞

0

1ffiffiffiffiffiffi
2π

p e−
xþκið Þ2

2 dx≤
1
2
εG

þð Þ
2k−1ð Þi ; ð7Þ

ðαi−μÞGðþÞ
ð2k−1Þi
where κi ¼

σ

ffiffiffiffiffiffiffiffiffiffiffi
GðþÞ

ð2k−1Þi

q ; i ¼ 1; 2; :::; n. Also, in the left part of Li, we can get

P Z <
αi−μð ÞG −ð Þ

2k−2ð Þi

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G −ð Þ

2k−2ð Þi
q

0
B@

1
CA≤1−

1
2
εG

−ð Þ
2k−2ð Þi : ð8Þ

From (7) and (8) in (6), we obtain

½M1ð0Þ;M2ð0Þ; :::;Mnð0Þ� < ½P
k¼2

∞
θ2k−21ðþÞε

GðþÞ
ð2k−1Þ1

1 ;
P
k¼2

∞
θ2k−22ðþÞε

GðþÞ
ð2k−1Þ2

2 ; :::;
P
k¼2

∞
θ2k−2nðþÞε

GðþÞ
ð2k−1Þn

n �; 0 < εi < 1; i ¼ 1; 2; :::; n:

For any two random positions z2i ≤ z1i of the target on the right part of Li, we get

Pðz2i≤BðtÞ≤z1iÞ≤Pðz2i≤BðGðþÞ
ð2k−1ÞiÞ≤z1iÞ is non-increasing with time GðþÞ

ð2k−1Þi; where

t≥GðþÞ
ð2k−1Þi≥ maxðz1iμ ; z2iμ Þ;

because
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P z2i≤B G þð Þ
2k−1ð Þi

� �
≤z1i

� �
¼ P z2i≤σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þð Þ

2k−1ð Þi

q� �
Z þ μG þð Þ

2k−1ð Þi≤z1iÞ

¼ P
z2i−μG

þð Þ
2k−1ð Þi

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þð Þ

2k−1ð Þi
q ≤Z≤

z1i−μG
þð Þ
2k−1ð Þi

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G þð Þ

2k−1ð Þi
q

0
B@

1
CA:

If μ < 0, then
z2i−μG

ðþÞ
ð2k−1Þi

σ

ffiffiffiffiffiffiffiffiffiffiffi
GðþÞ

ð2k−1Þi

q ≥0; d
dGðþÞ

ð2k−1Þi
ðz2i−μG

ðþÞ
ð2k−1Þi

σ

ffiffiffiffiffiffiffiffiffiffiffi
GðþÞ

ð2k−1Þi

q Þ≥0; z1i−μG
ðþÞ
ð2k−1Þi

σ

ffiffiffiffiffiffiffiffiffiffiffi
GðþÞ

ð2k−1Þi

q ≤0 and d
dGðþÞ

ð2k−1Þi
ðz1i−μG

ðþÞ
ð2k−1Þi

σ

ffiffiffiffiffiffiffiffiffiffiffi
GðþÞ

ð2k−1Þi

q Þ≤0.

Thus, Pðz2i≤BðGðþÞ
ð2k−1ÞiÞ≤z1iÞ be non-increasing.

Assuming that ½ψ1ðkÞ;ψ2ðkÞ; :::;ψnðkÞ� ¼ ½P
ℓ¼1

k
yℓ1;

P
ℓ¼1

k
yℓ2; :::;

P
ℓ¼1

k
yℓn�; where {yℓi}ℓ ≥ 1, i = 1,

2, ..., n is a sequence of i.i.d.r.vs which represents the target position at time step k on

the line Li, i = 1, 2, ..., n and yik~N(μ − αi, σ
2). Consider the following: ½dk1; dk2; :::; dkn�

¼ ½GðþÞ
ð2kþ1Þ1;G

ðþÞ
ð2kþ1Þ2; :::;G

ðþÞ
ð2kþ1Þn� ¼ ½λ1ðþÞðθ2kþ1

1ðþÞ −1Þ; λ2ðþÞðθ2kþ1
2ðþÞ −1Þ; :::; λnðþÞðθ2kþ1

nðþÞ −1Þ�
and ½U1ð j; jþ 1Þ;U2ð j; jþ 1Þ; :::;Unð j; jþ 1Þ� ¼ ½P

k¼1

∞
P½−ð jþ 1Þ < ψ1ðkÞ≤− j�;

P
k¼1

∞
P½−ð j

þ1Þ < ψ2ðkÞ≤− j�; :::;
P
k¼1

∞
P½−ð jþ 1Þ < ψnðkÞ≤− j�� . By choosing ½dm1; dm2; :::; dmn� ¼ ½

maxð0; zm1
μ Þ; maxð0; zm2

μ Þ; :::; maxð0; zmn
μ Þ� and also for any line Li, i = 1, 2, ..., n, we choose

aiðkÞ ¼ P½−zki < ψiðkÞ≤0� ¼
P
j¼1

jzkij
P½−ð jþ 1Þ < ψiðnÞ≤− j� . Thus, if k > dmi for all k ≥ 1,

i = 1, 2, ..., n and since Pðz2i≤BðGðþÞ
ð2k−1ÞiÞ≤z1iÞ is non-increasing with time GðþÞ

ð2k−1Þi at

step k, then we have ai(k) is a non-increasing also. Consequently, ½M1ðzk1Þ;M2ðzk2Þ; ::: ;

MnðzknÞ�−½M1ð0Þ;M2ð0Þ; :::;Mnð0Þ� ¼ ½P
k¼1

m
θ2kþ1
1ðþÞ a1ðdk1Þ þ α1

P
k¼mþ1

∞ ðdk1−dðk−1Þ1Þa1ðdk1Þ ;
P
k¼1

m

θ2kþ1
2ðþÞ a2ðdk2Þ þ α2

P
k¼mþ1

∞ ðdk2−dðk−1Þ2Þa2ðdk2Þ; :::;
P
k¼1

m
θ2kþ1
nðþÞ anðdknÞ þ αn

P
k¼mþ1

∞ ðdkn−dðk−1ÞnÞanðdknÞ�:

From Lemma 1 in El-Hadidy et al [1], we have ½M1ðzk1Þ;M2ðzk2Þ; :::;MnðzknÞ�−½M1ð0Þ ;

M2ð0Þ; :::;Mnð0Þ�≤ ½
P
k¼1

m
θ2kþ1
1ðþÞ þ α1

P
k¼dm

∞
a1ðkÞ;

P
k¼1

m
θ2kþ1
2ðþÞ þ α2

P
k¼dm

∞
a2ðkÞ; :::

P
k¼1

m
θ2kþ1
nðþÞ þ α2

P
k¼dm

∞
an

ðkÞ�≤ ½dm1 þ λ1ðþÞð1−θnðþÞÞ
P
j¼0

jzk1j
U1ð j; jþ 1Þ; dm2 þ λ2ðþÞð1−θ2ðþÞÞ þ

P
j¼0

jzk2j
U2ð j; jþ 1Þ; :::dmn

þλnðþÞð1−θnðþÞ þ
P
j¼0

jzknj
Unð j; jþ 1ÞÞ�:

Since ½ψ1ðkÞ;ψ2ðkÞ; :::;ψnðkÞ� ¼ ½P
ℓ¼1

k
yℓ1;

P
ℓ¼1

k
yℓ2; :::;

P
ℓ¼1

k
yℓn�; and {yℓi}ℓ ≥ 1,i=1,2,...,n, then

[U1(j, j + 1),U2(j, j + 1), ...,Un(j, j + 1)] satisfies the renewal theorem as in Feller [29].

Hence, [U1(j, j + 1),U2(j, j + 1), ...,Un(j, j + 1)] is bounded ∀j by a constant. Hence,

½M1ð zk1Þ ;M2ðzk2Þ; :::;MnðzknÞ�≤ ½M1ð0Þ;M2ð0Þ; :::;Mnð0Þ� þ ½M1;M2; :::;Mn�þ ½M1ðj
zk1jÞ;M2ðjzk2jÞ; :::;MnðjzknjÞ�½ ~M1ðjzk1jÞ; ~M2ðjzk2jÞ; :::; ~MnðjzknjÞ�: By the same method,
we can show that ½L1ðzk1Þ; L2ðzk2Þ; :::; LnðzknÞ�≤ ½~L1ðjzk1jÞ; ~L2ðjzk2jÞ; :::; ~LnðjzknjÞ� in the left

parts of Li, i = 1, 2, ..., n.■
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In addition, to the conditions in the previous theorems, we need to prove another import-

ant condition that is E ∣Z0 ∣ <∞. This condition confirms the existence of the finiteness.

Theorem 3: If ðφ1;φ2; :::;φn;φ1;φ2; :::;φnÞ∈Φ0 are a combination of finite search,

then E ∣ Z0∣ is finite.

Proof It is clear that E(τ) <∞ if (P(τ is finite) = 1. Thus, we have

P τ is finiteð Þ ¼ Pðτφ1
is finite or τφ2

is finite or:::orτφn
is finite or τφ1

is finite or τφ2
is finite

or::: orτφn
is finiteÞ

¼ ∪
n

i¼1
P τφi

is finite
� �þ P τφi

is finite
� �� �

¼
Xn
i¼1

P τφi
is finite

� �þ P τφi
is finite

� �� �
:

But, we have only one of ðPðτφ is finiteÞ ¼ 1orPðτ is finiteÞ ¼ 1 for all i = 1, 2, ..., n.

i φi

If we suppose that Pðτφi
is finiteÞ þ Pðτφi

is finiteÞ ¼ 1, then we have Z0 ¼ φiðτφi
Þ−Bðτφi

Þ þ φiðτφi
Þ−Bðτφi

Þ ¼ φiðτφi
Þ þ φiðτφi

Þ−ðBðτφi
Þ þ Bðτφi

ÞÞ with probability one and

hence, j Z0 j ≤ j φiðτφi
Þ þ φiðτφi

Þ j þ j Bðτφi
Þ þ Bðτφi

Þ j ≤τφi
þ τφi

þ j Bðτφi
Þ þ Bðτφi

Þ
j; E j Z0 j ≤Eðτφi

Þ þ Eðτφi
Þ þ E j Bðτφi

Þ j þE j Bðτφi
Þ j. But, j Bðτφi

Þ j ≤τφi
and j Bðτφi

Þ
j ≤τφi

, then E j Bðτφi
Þ þ Bðτφi

Þ j ≤Eðτφi
þ τφi

Þ leads to E j Bðτφi
Þ j þE j Bðτφi

Þ j ≤Eð
τφi

Þ þ Eðτφi
Þ. If Eðτφi

Þ < ∞ and Eðτφi
Þ < ∞, then E j Bðτφi

Þ j< ∞,E j Bðτφi
Þ j< ∞, and

E ∣ Z0∣ is finite. Also, if Pðτφℏ
is finiteÞ þ pðτφ

ℏ

is finiteÞ = 1 for all ℏ ≠ i, i = 1, 2, ..., n

then Z0 ¼ φiðτφi
Þ−Bðτφi

Þ þ φiðτφi
Þ−Bðτφi

Þ ¼ φiðτφi
Þ þ φiðτφi

Þ−ðBðτφi
Þ þ Bðτφi

ÞÞ with

probability one; similarly, we get E ∣ Z0∣ is finite. ■
The direct result to the realization of the previous theorems confirming a finite

search plan if E ∣ Z0∣ is finite.

Computational expected value for τ
From the Markovian property of the Brownian motion and its dependence on normal dis-

tribution, we can use this information to compute E(τ) which depends on the probability

of meeting the target on the line Li, i = 1, 2, ..., n at the time step k. This probability is

given by GðþÞ
ð2k−1Þi which is depending on the probability of the meeting at the time GðþÞ

ð2k−3Þi.

Theorem 4: The approximated value of E(τ)is given by

E τð Þ ¼
Xn
i¼1

�
λi þð Þθi þð Þ þ λi þð Þθi þð Þ θ2i þð Þ−1

� �X∞
k¼2

θ2k−2i þð Þ

Z∞

0

ZH þð Þ
2k−3ð Þi−zi

−∞

1−Φ G þð Þ
2k−5ð Þi−zi

� �h i

dΦ G þð Þ
2k−5ð Þi−zi

� �
γ i dzið Þ þ λi −ð Þθi −ð Þ þ λi −ð Þθ

2
i −ð Þ θ2i −ð Þ−1

� �

X∞
k¼2

θ2k−2−ð Þ

Z0

−∞

ZH −ð Þ
2k−2ð Þiþzi

−∞

Φ G −ð Þ
2k−4ð Þi þ zi

� �
dΦ G −ð Þ

2k−4ð Þi þ zi
� �

γ i dzið Þ
�
:

ð9Þ
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where ðGðþÞ
ð2k−5Þi−ziÞ � Nð0; ðGðþÞ

ð2k−3Þi−G
ðþÞ
ð2k−5ÞiÞÞ and ðGð−Þ

ð2k−4Þi þ ziÞ � Nð0; ðGð−Þ
ð2k−2Þi−

Gð−Þ
ð2k−4ÞiÞÞ with the distribution functions ΦðGðþÞ

ð2k−5Þi−ziÞ and ΦðGð−Þ
ð2k−4Þi þ ziÞ , respect-

ively, at time step k on the line Li, i = 1, 2, ..., n.

Proof From (5), we get

E τð Þ ¼
Xn
i¼1

�
λi þð Þθi þð ÞP τφi

> 0
� �þ λi þð Þθi þð Þ θ2i þð Þ−1

� �

X∞
k¼2

θ2k−2i þð Þ P τφi
> G þð Þ

2k−3ð Þi
� �

þ λi −ð Þθi −ð ÞP τφi
> 0

� �

þλi −ð Þθ
2
i −ð Þ θ2i −ð Þ−1

� �X∞
k¼2

θ2k−2−ð Þ P τφi
> G −ð Þ

2k−2ð Þi
� ��

:

ð10Þ

Also, at the time step k on the right part of the line Li, i = 1, 2, ..., n, we have

Pðτφi
> G þð Þ

2k−3ð Þi
� �

≤
Z∞

0

P Z0i þ B G þð Þ
2k−3ð Þi

� �
> H þð Þ

2k−3ð Þi
� �

jZ0i ¼ zi
� �

γ i dzið Þ:

Consequently, we can find that

P Z0i þ B G þð Þ
2k−3ð Þi

� �
> H þð Þ

2k−3ð ÞijZ0i ¼ zi
� �

¼ PððB G þð Þ
2k−3ð Þi

� �
> H þð Þ

2k−3ð Þi−zi
� �

¼ 1−PðB G þð Þ
2k−3ð Þi≤ H þð Þ

2k−3ð Þi−zi
� �� �

: ð11Þ

Generally, for any times t, s, we have B(t) − B(s) is a normal random variable with
mean 0 and variance t − s where s < t. Therefore, we can find that

P B G þð Þ
2k−3ð Þi

� �
≤ H þð Þ

2k−3ð Þi−zi
� �� �

≤
Z∞

−∞

P
�
B G þð Þ

2k−5ð Þi
� �

≤ H þð Þ
2k−5ð Þi−zi

� �
; ½B G þð Þ

2k−3ð Þi
� �

þB G þð Þ
2k−5ð Þi

� �
−B G þð Þ

2k−5ð Þi
� �

�≤ H þð Þ
2k−5ð Þi−zi

� �
j B G þð Þ

2k−5ð Þi
� �

¼ G þð Þ
2k−5ð Þi−zi

� ��

� 1

G þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� � ffiffiffiffiffiffi
2π

p � e
−1
2

G
þð Þ
2k−5ð Þi−zi

ðG þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� �2

d G þð Þ
2k−5ð Þi−zi

� �

¼
Z∞

−∞

P
�h

B G þð Þ
2k−3ð Þi

� �
þ B G þð Þ

2k−5ð Þi
� �

�−B G þð Þ
2k−5ð Þi

� �
≤ H þð Þ

2k−5ð Þi−zi
� �

jB G þð Þ
2k−5ð Þi

� �
¼ G þð Þ

2k−5ð Þi−zi
� ��

� 1

G þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� � ffiffiffiffiffiffi
2π

p e

−1
2

G
þð Þ
2k−5ð Þi−zi

G
þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� �
0
@

1
A

2

d G þð Þ
2k−5ð Þi−zi

� �
(see Klebaner [30]). By considering that the first meeting is not done at the time t

¼ GðþÞ
ð2k−5ÞiÞ, then
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PðB G þð Þ
2k−3ð Þi≤ H þð Þ

2k−3ð Þi−zi
� �� �

¼
ZH þð Þ

2k−3ð Þi−zi

−∞

P
�h�

B G þð Þ
2k−3ð Þi

� �
≤ H þð Þ

2k−3ð Þi−zi
� �

�− B G þð Þ
2k−5ð Þi

� �
≤ H þð Þ

2k−5ð Þi
� �

−zi
� �h i

≤− G þð Þ
2k−5ð Þi−zi

� ��
� 1

G þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� � ffiffiffiffiffiffi
2π

p

�e

−1
2

G
þð Þ
2k−5ð Þi−zi

G
þð Þ
2k−3ð Þi−G

þð Þ
2k−5ð Þi

� �
0
@

1
A

2

d G þð Þ
2k−5ð Þi−zi

� �

¼
ZH þð Þ

2k−3ð Þi−zi

−∞

Φð− G þð Þ
2k−5ð Þi−zi

� �
dΦ G þð Þ

2k−5ð Þi−zi
� �

¼
ZH þð Þ
2i−3−z

−∞

1−Φ G þð Þ
2k−5ð Þi−zi

� �h i
dΦ G þð Þ

2k−5ð Þi−zi
� �

;

where ðGðþÞ −z Þ � Nð0; ðGðþÞ −GðþÞ ÞÞ and ΦðGðþÞ −z Þ is the distribution
ð2k−5Þi i ð2k−3Þi ð2k−5Þi ð2k−5Þi i

function of this variable. By a similar manner, on the left part of line Li, i = 1, 2, ..., n,

one can compute the probability at time step k by

P Z0i þ B G −ð Þ
2k−2ð Þi

� �
< H −ð Þ

2k−2ð ÞijZ0i ¼ zi
� �

¼ P B G −ð Þ
2k−2ð Þi

� �
− H −ð Þ

2k−2ð Þi þ zi
� �

< 0
� �

¼
ZH −ð Þ

2k−2ð Þiþzi

−∞

Φ G −ð Þ
2k−2ð Þi þ zi

� �
dΦ G −ð Þ

2k−2ð Þi þ zi
� �

:

Since the target starts its motion on the line Li, i = 1, 2, ..., n from a random point zi,
then we can assume that P ðτφi
> 0Þ ¼ P ðτφi

> 0Þ ¼ 1. In addition, the first interview-

ing time should be done on one real line by one searcher. Consequently, in (10), we

can obtain the approximate value of E(τ) by

E τð Þ ¼
Xn
i¼1

ðλi þð Þθi þð Þ þ λi þð Þθi þð Þ θ2i þð Þ−1
� �X∞

k¼2

θ2k−2i þð Þ

Z∞

0

ZH þð Þ
2k−3ð Þi−zi

−∞

1−Φ G þð Þ
2k−5ð Þi−zi

� �h i
dΦ G þð Þ

2k−5ð Þi−zi
� �

γ i dzið Þ þ λi −ð Þθi −ð Þ

þλi −ð Þθ
2
i −ð Þ θ2i −ð Þ−1

� �X∞
k¼2

θ2k−2−ð Þ

Z0

−∞

ZH −ð Þ
2k−2ð Þiþzi

−∞

Φ G −ð Þ
2k−4ð Þi þ zi

� �
dΦ G −ð Þ

2k−4ð Þi þ zi
� �

γ i dzið ÞÞ:■

0 H ðþÞ
2i−3−z
If we have X~N(0, σ2), then
R
−∞
dΦðxÞ ¼ 1

2 : This leads to
1
2 <

R
−∞

dΦðGðþÞ
2i−5−zÞ < 1 where

R
−∞

HðþÞ
ð2k−3Þi−zi

½1−ΦðGðþÞ
ð2k−5Þi−ziÞ�dΦðGðþÞ

2i−5−ziÞ ¼
R
−∞

H ðþÞ
ð2k−3Þi−zi

dΦðGðþÞ
ð2k−5Þi−ziÞ−

R
−∞

HðþÞ
ð2k−3Þi−zi

ΦðGðþÞ
ð2k−5Þi−ziÞdΦðGðþÞ

ð2k−5Þi−

ziÞ and H ðþÞ
ð2k−3Þi−zi > 0. From the fact

R
−∞

0
ΦðxÞdΦðxÞ ¼ R

0

1
2

xdx ¼ 1
8 <

1
2, one can easily con-

clude that 0 <
R

−∞

H ðþÞ
ð2k−3Þi−zi

ΦðGðþÞ
ð2k−5Þi−ziÞdΦðGðþÞ

ð2k−5Þi−ziÞ < 1
2. This also contributes to the assert-

iveness of the existence and finiteness of our search plan where the Brownian target is

not evading the searchers.

Concluding remarks

1) The existence of a cooperative search plan with multiple searchers that used the

coordinated linear search technique to find a Brownian target on one of n real line

has been presented.
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2) The random variable Z0 is used to give the target initial position.

3) We showed the finiteness of our continuous search plan by giving the conditions

that make E(τ) is finite as in Theorem 1.

4) At any time step k, we showed that the chosen search plan Φ0 ¼ fðΦ;ΦÞ : φi∈Φ;

φi∈Φ ∀i ¼ 1; 2; :::; ng should satisfy ½M1ðzk1Þ;M2ðzk2Þ; :::;MnðzknÞ�≤ ½ ~M1ðjzk1jÞ; ~M2

ðjzk2jÞ; :::; ~MnðjzknjÞ�, and ½L1ðzk1Þ; L2ðzk2Þ; :::; LnðzknÞ�≤ ½~L1ðjzk1jÞ; ~L2ðjzk2jÞ; :::; ~Lnðj
zknjÞ� where ½ ~M1ðjzk1jÞ; ~M2ðjzk2jÞ; :::; ~MnðjzknjÞ� and ½~L1ðjzk1jÞ; ~L2ðjzk2jÞ; :::; ~LnðjzknjÞ
� are vectors of linear functions, see Theorem 2.

5) Besides proving that E∣ Z0∣ <∞ in Theorem 3, we compute the approximated

value of E(τ) in Theorem 4.

6) In future research, one can study the finiteness of the expected value of the first

meeting time between one of n-cooperative searchers and n-dimensional Brownian

target and calculate this expected value.
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