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Abstract In this article, we study the periodicity, the boundedness and the global stability of the
positive solutions of the following nonlinear difference equation

b n=01,2

where the coefficients 4, B, C, b, d,e € (0,00), while k and / are positive integers. The initial
.,X_1, X are arbitrary positive real numbers such that £ < /. Some
numerical examples will be given to illustrate our results.
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1. Introduction

The qualitative study of difference equations is a fertile
research area and increasingly attracts many mathematicians.
This topic draws its importance from the fact that many real
life phenomena are modeled using difference equations.
Examples from economy, biology, etc. can be found in [1-6].
It is known that nonlinear difference equations are capable
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of producing a complicated behavior regardless its order. This
can be easily seen from the family x,1 = g,(x,), ¢ > 0,n > 0.
This behavior is ranging according to the value of u, from the
existence of a bounded number of periodic solutions to chaos.

There has been a great interest in studying the global attr-
activity, the boundedness character and the periodicity nature
of nonlinear difference equations. For example, in the articles
[7-13] closely related global convergence results were obtained
which can be applied to nonlinear difference equations in prov-
ing that every solution of these equations converges to a period
two solution. For other closely related results (see [14-23]) and
the references cited therein. The study of these equations is
challenging and rewarding and is still in its infancy. We believe
that the nonlinear rational difference equations are of para-
mount importance in their own right. Furthermore the results
about such equations offer prototypes for the development of

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.
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the basic theory of the global behavior of nonlinear difference
equations.

The objective of this article is to investigate some qualita-
tive behavior of the solutions of the nonlinear difference
equation

b.X",k
dxnfk —eXyy '
=0,1,2,... (1)

where the coefficients 4, B, C, b, d, e € (0,00), while k and / are
positive integers. The initial conditions x_y, .. L X 1, X0
are arbitrary positive real numbers such that k < /. Note that
the special cases of Eq. (1) have been studied discussed in
[24] when B=C =0, and kK =0,/=1,b is replaced by — b
and in [25] when B=C =0, and k =0, is replaced by — b
and in [26] when 4 = C=0,/=0,b is replaced by — b and
in [27] when B=C =10,/=0.

Our interest now is to study behavior of the solutions of Eq.
(1) in its general form. For the related work (see [28-30]). Let
us now recall some well known results [2] which will be useful
in the sequel.

Xn41 = Axy + Bx,_j + Cx, +

Xy

Definition 1. Consider a difference equation in the form

Xnt1 = F(xmxn—hxnf[)v n= 07 1725 s (2)

where F is a continuous function, while £ and / are positive
integers such that k < /. An equilibrium point X of this equa-
tion is a point that satisfies the condition X = F(X, X, X). That
is, the constant sequence {x,} with Xx, =X for all
n = —k > —l1is a solution of that equation.

Definition 2. Let X € (0, 00) be an equilibrium point of Eq. (2).
Then we have

(i) An equilibrium point ¥ of Eq. (2) is called locally stable
if for every &> 0 there exists ¢ >0 such that, if
X fyeeoy X gyeonyXq, X0 € (0,00)  with  |x_; —X|+---
+x_p =X+ -+ |x21 = X| + |xo — X| < 0, then |x, —X|
<gforallmn = —k = —L

(i) An equilibrium point X of Eq. (2) is called locally asymp-
totically stable if it is locally stable and there exists y > 0

such that, if x_,,...,x4,...,x_1, xo € (0,00) with
X =X+ o =X+ o =X+ X0 — X
<7, then

limx, = X.

n—o0

(iii) An equilibrium point ¥ of Eq. (2) is called a global

attractor if for every x_;,...,x_ 4, ... ,x_1, Xo € (0,00)
we have

limx, = X.

n—oo

(iv) An equilibrium point X of Eq. (2) is called globally
asymptotically stable if it is locally stable and a global
attractor.

(v) An equilibrium point X of Eq. (2) is called unstable if it is
not locally stable.

Definition 3. A sequence {x,},- , is said to be periodic with
period rif x,,, = x, foralln > —p. A sequence {x,}.- ,is said

n=

to be periodic with prime period r if r is the smallest positive
integer having this property.

Definition 4. Eq. (2) is called permanent and bounded if there
exists numbers m and M with 0 < m < M < oo such that for
any initial conditions x_j,...,Xx 4,...,x_1, Xg € (0,00) there
exists a positive integer N which depends on these initial
conditions such that

m<x, <M foralln > N.

Definition 5. The linearized equation of Eq. (2) about the
equilibrium point X is defined by the equation

Znt1l = PoZn + P1Zn—k + P2Zn-1 = 07 (3)
where
OF(X, X, X) OF(X, X, X) OF(X,X,X)
Po=—"F7. > P = y P2 = .
OX,, 8xn—k 8)(,1_]
The characteristic equation associated with Eq. (3) is
p(2) = A" = podt = p A = p, = 0. (4)

Theorem 1 [2]. Assume that Fis a C' — function and let X be an
equilibrium point of Eq. (2). Then the following statements are
true.

(i) If all roots of Eq. (4) lie in the open unit disk |/| < 1, then
the equilibrium point X is locally asymptotically stable.
(i) If at least one root of Eq. (4) has absolute value greater
than one, then the equilibrium point X is unstable.
(iii) If all roots of Eq. (4) have absolute value greater than
one, then the equilibrium point X is a source.

Theorem 2 [3]. Assume that py, p, and p, € R. Then

lpol + 1]+ [paf <1, ®)
is a sufficient condition for the asymptotic stability of Eq. (2).

Theorem 3 [2]. Consider the difference Eq. (2). Let X € I be an
equilibrium point of Eq. (2). Suppose also that

(1) F is a nondecreasing function in each of its arguments.
(ii) The function F satisfies the negative feedback property

[F(x,x,x) —x](x = X) <0 forall x € I - {x},

where I is an open interval of real numbers. Then X is global
attractor for all solutions of Eq. (2).

2. The local stability of the solutions

The equilibrium point X of Eq. (1) is the positive solution of
the equation
bx

X=A+B+O)X+—=, 6
X=(A+B+ )x+(d7€)x (6)
where d#e. If [(A+ B+ C)—1](e—d) >0, then the only
positive equilibrium point X of Eq. (1) is given by

b

}:[(A+B+C)71}(efd)' ()
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Let wus now introduce a continuous function
F: (0,00)’—(0,00) which is defined by
bu1
F =4 B C —_ 8
(uo, ur,u2) = Aug + Buy + Ut i —em)’ (8)
provided du; # eu,. Consequently, we get
OF(xxw) _ 4
M) — 4 = py,
OF(xxx) _ [(A+B+O)—1] _
) — p il — ©)

OF(xxox) e[(A+B+0O)—1] _
o C+ (e—d) = P2,

where e # d. Thus, the linearized equation of Eq. (1) about X
takes the form

Znl — PoZn — P1Zn—k — P1Zn-1 = 07 (10)
where p,, p; and p, are given by (9).

Theorem 4. Assume that e # d, A+ B+ C # 1 and

|[A(e — d)| + |Ble —d) —e[(A+ B+ C) — 1]
+|Cle—d)+e[(A+ B+ C)—1]]
<le—d, (11)

then the equilibrium point (7) of Eq. (1) is locally asymptoti-
cally stable.

Proof. From (9) and (11) we deduce that |p,| + |p;| + |p,] < L,
and hence the proof follows with the aid of Theorem 2. [J

3. Periodic solutions

In this section, we study the existence of periodic solutions of
Eq. (1). The following theorem states the necessary and suffi-
cient conditions that the Eq. (1) has periodic solutions of prime
period two.

Theorem 5. If k and | are both even positive integers, then Eq.
(1) has no prime period two solution.

Proof. Assume that there exist distinct positive solutions

...,P,O,P,Q,... (12)

of prime period two of Eq. (1). If k and / are both even positive
integers, then x, = x,_, = x,_;. It follows from Eq. (1) that

b

P=(A+B+C)Q——, 13
(4+B+C0~ " (13)

and

b
Q:(A—O—B—i-C)P—m. (14)
By subtracting (14) from (13), we get
(P-Q)[(A+B+C)+1]=0. (15)

Since A + B+ C+ 1% 0, then P = Q. This is a contradiction.
Thus, the proof is now completed. [

Theorem 6. If k and | are both odd positive integers and
A+ 1# B+ C, then Eq. (1) has no prime period two solution.

Proof. Following the proof of Theorem 5, we deduce that if k&
and / are both odd positive integers, then x,,; = X, = x,_s. It
follows from Eq. (1) that

b

P=4A B+CO)P——+, 16
0+ (BHOP— (= (16)
and
b
= AP+ (B+C)Q ————. 17
0= AP+(B+C)Q~ s (17)
By subtracting (17) from (16), we get
(P-Q)A—(B+C)+1]=0. (18)

Since 4 — (B+ C)+ 1 # 0, then P = Q. This is a contradic-
tion. Thus, the proof is now completed. [

Theorem 7. If k is even and [ is odd positive integers, then Eq.
(1) has prime period two solution if the condition

(1-C)3e—d) < (e+d)(A+ B), (19)

is valid, provided C < 1 and e(1 — C) — d(A + B) > 0.

Proof. If kis even and /is odd positive integers, then x, = x,_x
and x,.; = x,_,. It follows from Eq. (1) that

bQ

P=(A+B)Q+CP7m, (20)
and
Q:(A—O—B)P—i—CQ—(eQbdeP). (21)
Consequently, we get
eP? — dPQ = e(A + B)PQ — d(A + B)Q* + eCP?

— CdPQ — bQ, (22)
and
eQ? —dPQ = e(A + B)PQ — d(A + B)P* + eCQ?

— CdPQ — bP. (23)
By subtracting (23) from (22), we get
P+0= ’ (24)

[e(1—C)—d(A+ B)’
where e(1 — C) — d(4 + B) > 0. By adding (22) and (23), we
obtain

eb* (1 = C)
(e+d)[(1—C)+(4A+B)le(l - C)—d(A+ B’

PQ =
(25)

where C < 1. Assume that P and Q are two positive distinct
real roots of the quadratic equation

£ —(P+Q)t+PQ=0. (26)
Thus, we deduce that
(P+0)* > 4PQ. (27)

Substituting (24) and (25) into (17), we get the condition (19).
Thus, the proof is now completed. [
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Theorem 8. If k is odd and | is even positive integers, then Eq.
(1) has prime period two solution if the condition

(A+C)3e—d) < (e+d)(1 - B), (28)

is valid, provided B < 1 and d(1 — B) —e(4+ C) > 0.

Proof. If k& is odd and / is even positive integers, then
Xpi1 = X and x, = x,_;. It follows from Eq. (1) that

bP

P:(A—O—C)Q—i—BP—M, (29)
and
Q=M+CW+BQ7@;%@? (30)
Consequently, we get

b
PrO=ga g —etar O (31
where d(1 — B) —e(4+ C) >0,
PO - eb* (A + C)

(e+d)[(1—B)+ (4 + O]d(1 — B) —e(A+ O’
(32)

where B < 1. Substituting (31) and (32) into (27), we get the
condition (28). Thus, the proof is now completed. [

4. Boundedness of the solutions

In this section, we investigate the boundedness of the positive
solutions of Eq. (1).

Theorem 9. Let {x,} be a solution of Eq. (1). Then the
following statements are true:

(i) Suppose b < d and for some N = 0, the initial conditions

b
XN—I41y o s XN—kt1s -+ s XN-1, XN € 371 )
are valid, then for b#e and d # be, we have the
inequality
b 2
3 A+B+C +7<X"
a' ) (& — be)
b
<(4+B , 33
(A+B+O+ 5oy (33)

foralln > N.
(ii) Suppose b > d and for some N = 0, the initial conditions
b
XN—it1y oo s XN—ktls- -3 XN=1, XN € 172 )
are valid, then for b+#e and d* # be, we have the
inequality
b2

b
(b—e)

Ul S

(A+B+C)+ <x <
(34)

foralln > N.

Proof. First of all, if for some N > 0, 5< xy <1 and b # e,
we have

bxn_
Xy = Axy + Bxy_j + Cxy_; + N
dxy_ —exy

befk

<A+B+C+ (35)

dxXyn_ — exy_;
But, it is easy to see that dxy_, —exy_; = b —e, then for
b # e, we get

b

Similarly, we can show that
bxy_y

b
Xy 2= (A+B+C)+

- (1)

dxy_x —exy_;

But, one can see that dxy_, —exy_; < ‘ﬂ;b“, then for &* # be,
we get

b2
& —be’

From (36) and (38) we deduce for all n > N that the inequality
(33) is valid. Hence, the proof of part (i) is completed.

Similarly, if 1 < xy < g, then we can prove part (ii) which is
omitted here for convenience. Thus, the proof is now
completed. [

(A+B+0C) +

(38)

XNt Z

d

5. Global stability

In this section we study the global asymptotic stability of the
positive solutions of Eq. (1).

Theorem 10. [f0 < A+ B+ C < 1 and e # d, then the equilib-
rium point X given by (7) of Eq. (1) is global attractor.

Proof. We consider the following function

by

F(x =4 B Cz4——

(39)
dy # ez, provided that B(dy—ez)’>ez and
C(dy — ez)* + bey > 0. It is easy to verify the condition (i) of
Theorem 3. Let us now verify the condition (ii) of Theorem 3
as follows:

where

[F(x, x, %) = x](x - %) = {(A +B+C>x—£f"}

) {’“‘[<A+B+c1371]<efd>}
{ﬂe—@KA+B+Cy—H—bF

e—d
1
N T e —
[(A+B+C)—1]
(40)
Since 0 < 4+ B+ C < 1 and e # d, then we deduce from (40)
that

[F(x,x,x) — x](x — X) < 0. (41)
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According to Theorem 3, X is global attractor. Thus, the proof
is now completed. [J

On combining the two Theorems 4 and 10, we have the
result.

Theorem 11. The equilibrium point X given by (7) of Eq. (1) is
globally asymptotically stable.

6. Numerical examples

In order to illustrate the results of the previous section and to
support our theoretical discussions, we consider some numer-
ical examples in this section. These examples represent differ-
ent types of qualitative behavior of solutions of Eq. (1).

Example 1. Fig. 1, shows that Eq. (1) has no prime period two
solutions if k=2, /=4, x 4=1, x3=2, x , =3,x_| =4,
xo =5, A =300, B= 200, C =100, b = 50, d = 30, e = 20.

plot of y(n+1)=(A"y(n)+B*y(n-2)+C"y(n-4))+((b*y(n-2))/(d"y(n-2)-€"y(n-4)))
20 T T T

solution of y(n+1)
S

8 ]
6 ]
4 L 4
2 4
0 ; ; ;
0 50 100 150 200
n-iteration
Fig. 3 x,. = 0.4x, + 0.3x,_5 + 0.2x,_4 + —2=2

Xn2+2X,4"

Example 2. Fig. 2, shows that Eq. (1) has no prime period two
solutions if k=1, /=3, x3=1, x, =2, x_.1 =3, xo =4,
A=100,B=50,C=25b=5,d=3,e=2.

Example 3. Fig. 3, shows that Eq. (1) is globally asymptoti-
cally stable if x 4 =1, x3=2, x,=3, x.1=4, xo=5,
A=04,B=03,C=02,b=5d=1,e=2.

7. Conclusions

We have discussed some properties of the nonlinear rational
difference Eq. (1), namely the periodicity, the boundedness
and the global stability of the positive solutions of this equa-
tion. We gave some figures to illustrate the behavior of these
solutions. Our results in this article can be considered as a
more generalization than the results obtained in Refs. [24—
27]. Note that Example 1 verifies Theorem 5 which shows that
if k£ and [/ are both even positive integers, then Eq. (1) has no
prime period two solution. But Example 2 verifies Theorem 6
which shows that if k£ and / are both odd positive integers, then
Eq. (1) has no prime period two solution, while Example 3 ver-
ifies Theorem 11 which shows that Eq. (1) is globally asymp-
totically stable.
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