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In this paper, we construct and obtain the necessary condition of Weingarten and linear
Weingarten translation surfaces in E>. Special cases of these types are investigated and plotted.
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1. Introduction

Translation surfaces properties have an important role in
shaping the construction and for architectural design. Transla-
tion surfaces are used for shells in engineering. Also, In the
design of structures such as membranes, domes, cables grids,
vaults, foldable structures and so on [1].

Here, and in the sequel, we assume that the indices {7, ;} run
over the range {1, 2}. In the study of the differential geometry of
submanifolds, it is common to examine different types of curva-
ture conditions. More precisely, one is eager to determine all
submanifolds satisfying such a condition. An interesting curva-
ture property to study for a surface M : X = X(s;) in an Euclid-
ean space E°, is the one that requires the existence a functional
relationship ¢(k;) = 0 between the principal curvatures is called
Weingarten surfaces or W-surface. Using the Gaussian and
mean curvatures (K, H)we can redefine W-surfaces, as surfaces
satisfying ¢(K,H) =0, or, equivalently, the corresponding
Jacobian determinant is identically zero, i.e.,
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oK, H)| _

o(K, H) = ‘ 90s) ‘ =0. (1.1)
Also, if the surfaces satisfy a linear equation with respect to K
and H, that is, aK+ bH = ¢, (a,b,c € R, (a,b,c) # (0,0,0)),
are called linear Weingarten surfaces or LW-surfaces. When
the constant b = 0, a linear Weingarten surface reduces to a
surface with constant Gaussian curvature. When the constant
a =0 a linear Weingarten surface reduces to a surface with
constant mean curvature. In such a sense, the linear Weingar-
ten surfaces can be regarded as a natural generalization of sur-
faces with constant Gaussian curvature or with constant mean
curvature [2-4].

In Euclidean 3-space E° the relations o¢(K,H) =0,
o(Ky, H) =0, and aK;; + bH = ¢, on ruled surfaces have been
investigated in [3.5]. For surfaces with K, = H, K; = VK,
Kj; = ¢; we refer to [3,6-8] for the history and general results
in this problem. Also, for non-developable ruled surface the
linear relations aKy + bH + ¢K = const., @ +b* #0 along
each ruling, have been studied in [9].

2. Geometric preliminaries

Let C):a = a(s;) and C, : B = B(s,) are two curves parame-
trized by the arc lengths s; in E*. Consider the Frenet frame
{t:(s:),m(s;),b:(s;)} associated with the curves C; The
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derivatives of the vectors t;(s;) and b;(s;), when expressed in the
basis {t;,n;,b;}, yield geometrical entities, the natural curva-
tures x;(s;) and torsions t;(s;), which give us information about
the behavior of the curves a and f in a neighborhood of s;,
respectively. Then the Frenet formulas of the curves C; are
defined by [10]:

ti(si) 0 Ki(s;) 0 ti(s:)
% ni(si) = —Kf(Si) 0 Ti(Si) ni(si) . (2~1)
' b,‘(S,') 0 —T,'(Si) 0 b,‘(S,')

We denote a surface M in E° by
X(s;) = (x(s0), k=1,2,3

Let N be the standard unit normal vector field on a surface M

defined by N = Hi" ii‘zu, where, Xy, = g—z‘ Then the 1-st and 2-
o < Xs, si

nd fundamental forms of the surface M are defined respec-
tively by

1= Zg,-jds,- ds;, g; =<X,,X;, > and
ij
=" hy ds; ds;, hy =< X, N > . (2.2)
ij
If the second fundamental form I7 is non-degenerate, then it
can be regarded as a (pseudo-) Riemannian metric. Using

classical notation, we define the second Gaussian curvature
Ky by [11]

oo o b hnia hip ha
—Tr o =TT T g = 0 2 2
2| o
h12277 h hia | hn ha| |,
hxp I
hi» ha =+ hiy Iy

(2.3)

1
Ky :F

where, i = det(hy), hy; = g;’,’ , and hyy, = df,gu,,,

Since Brioschi’s formulas in Euclidean 3-spaces, we are able
to define Hy; of M by replacing the components of the first fun-
damental form g; by the components of the second fundamen-
tal form /; respectively in Brioschi’s formula. Consequently,

the second mean curvature Hy; is given by [12]:

Hy = H%A(ln \/m) (2.4)

where A, is the Laplacian with respect to the second fundamen-
tal form of M, expressed as:

19 A
A= VT ] =) e

3. Intrinsic geometry of translation surfaces in E

When a space curve is translated over another space curve, the
resulting surface can be considered as the most general appear-
ance of a translation surface. Consequently, this surface can be
parameterized as the sum of two space curves. Quite often, the
class of translation surfaces is restricted to those that can be
parameterized as the sum of two plane curves. So it can be
parameterized by a patch [13]:

M :X(s;) =als)) + B(s2), s €1, (3.1)

where s; are the parameters of the arc lengths of the curves a,
respectively.

Using (2.1) and (2.2), It is easily checked that the metric of
M is given by

1 cosO
(gl.].):< cos ), det (g,) =sin*0, 0#nm, n=0,1,2,...

cost 1
(3.2)
The unit normal vector of the surface M is given by
N(s;) = (t; x tp) cosec 0, (3.3)

where t; are denotes to the tangents of the curves «,f
respectively.

This leads to the coefficients of the second fundamental
form h; where

K1 [titong]cosec 0 0
(hy) = ( (34)
0 K[t tomy] cosec O
det ( H Ki[titan] cosec® 0, (3.5)
ij, i#]

where «; are denotes to the curvatures of the curves o, f§ respec-
tively and [lezﬂ,} denotes to the triple scalar product to these
vectors.

From Egs. (3.1) and (3.4), one can see that the Gaussian
and mean curvature functions of M are given by

K= H Ki [tltznj] cosec* 0, (3.6)
ij, i7#]
and
1
= EZK[ [t,tan;]cosec® 0, (3.7)
respectively.

4. Translation L/W-surfaces in E>

In this section, we study a translation L/W-surfaces in E°,
which satisfies nontrivial relation between elements of the set
{K, Ky, H, Hy}, where (K, H) and (K;; , Hy;) are the Gauss-
ian and mean curvatures of the first and second fundamental
forms, respectively. Following the Jacobian and the linear
equations with respect to the set {K, K;, H, Hy}, an interest-
ing geometric question is raised. Classify the translation sur-
faces in E° satisfying the conditions:

@(u,v) =0, (4.1)
and
ap+bv=c, (4.2)

where u,ve{K, H, K, Hy},u#v and (a,b,c) # (0,0,0).Thus,
we can write the Jacobian and the linear equations (4.1) and
(4.2) as the following:

(K),,(H),, — (K),,(H);, =0, (43)
(K),, (Kn),, — (K),, (Ku),, =0, (4.4)
(H),, (Kn),, — (H),, (Ku),, =0, (4.5)
(H),, (Hn),, — (H),, (Hu),, =0, (4.6)
(KII 51 (HII) - (KH)l (HII) — 0 (47)
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aK+bH =c, (4.8)
aK+ bK;; = c, (4.9)
aH + bKj; = c, (4.10)
aH+bHy = c, (4.11)
aHy + bKy = c, (4.12)

respectively.

Differentiating K and H with respect to s;, one can get
(K),, = 165 (resmi — 167 7)1, (0) + 167 (207 +1¢3) f(0) — reire; (6 — )3 (0)
(H) :%Z’Cﬂi[tltzbi] +&iftiton|cosec*0, '

Si

(4.13)

where - =4 £,(0) = cos0 cosec*0, f,(0) = secO cosec*0, f;(0) =
sec?0 cosec?0).

Thus, one can see that the Jacobian equation (4.3) is valid
for

[tityb;] # 0, [titon;] #= 0, (4.14)
and
(ki,t) = (ci ;) iy ¢p = const. # 0, (4.15)

which characterizes a circular helix curves. Therefore, we have
the following

Theorem 1. The translation surface M is a W-surface in E° for
a circular helix curves a and B with non-zero constant
curvatures and torsions (see Fig. 1).

Theorem 2. The translation surface M is a W-surface in E® if
the triple scalar products [tt;b;] and [t;ton;] are numerically
equal to the volumes of parallelepipeds whose edges are deter-
mined by these vectors.

Next, to facilitate and simplify the calculations we used
some geometric concepts of involutes and Bertrand curves of
translation surfaces as a special cases. In the case ainvolute of
f, we denote the surface by M | so some of the previous results
of the fundamental quantities take the symbol ~ over them.
Similarly, in the case aand f are Bertrand curves, we take the
symbol =.

4.1. o involute of f

When the tangents to a curve f are normals to another curve o,
the latter is called an involute of the former. Hence the tangent

Figure 1 A translation W-surface for a circular helix curves a

and B.

to the involute is parallel to the principal normal to the given
curve. So, we have [14]:

<t1,t2> = 07 t, = + n. (416)

Thus and using (3.6) and (3.7), one can see that der (h;) =0,
so we have

Corollary 1. The Gaussian curvature function of M is vanished

(IZ = 0) and the second Gaussian curvature function is indef-

inite (12[[ = OO)

Corollary 2. The mean and second mean curvatures functions of

M are given by

O
H][ =H= §K| [n|n2t2]. (417)

From the above results and taking into account of Jacobian Eqgs.
(4.4), (4.5) and (4.7) we have

Corollary 3. The translation surface M is a flat surface and the
curvature x of the curve [ is vanished.

Corollary 4. There are no W-translation surfaces in E°. Using
Jacobian Eqs. (4.3) and (4.6), we find that they are vanished
identically. So we get

Corollary 5. The translation surface M isa W-surface in E>.
According to the linear Eqs. (4.9), (4.10) and (4.12) we have

Corollary 6. There are no LW-translation surfaces in E>. Based
on the linear Eqs. (4.8) and (4.11), one can see that

H = constant # 0 = k;[nymt,] = constant # 0, (4.18)

thus, for the translation surface M of constant mean curvature
(cmce), we have

Ky = constant # 0, [nmty] = constant # 0, (4.19)

which gives the following

Theorem 3. The translation surface M of (cmc) is a LW-sur-
. . 3 , . .
face in E’ for a circle curve a with non-zero constant curvature.

Theorem 4. The translation surface M of (emc) is a LW-sur-
face in E3 if the triple scalar product [nynyt,] is numerically equal
to the volume of parallelepiped whose edges are determined by
these vectors.

4.2. o and [} are Bertrand curves

Saint-Venant proposed and Bertrand solved the problem of
finding the curves whose principal normals are also the princi-
pal normals of another curve. A pair of curves o and f having
their principal normals in common, are said to be conjugate or
associate Bertrand curves. Also the tangents to the two curves
are inclined at a constant angle. So, we have [14]:

n =m, (t,t)=constant #0, (t; ,m)=0, i#]
Thus and using (2.3), (2.4), (3.6) and (3.7) we have

(4.20)
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Corollary 7. The Gaussian and second Gaussian curvature

Sfunctions of M are given by

K = K11:c0sec? 0, Iz(” =0. (4.21)

Corollary 8. The mean and second mean curvatures functions of

) , (4.22)

) = i Z % (3i; — 2iii¢;) [titomy] cosec 0.

M are given by

K

~ = ~ 1
1‘[2117 H]1:H2A<ll'l

where,

A (111

Differentiating IN(, H and IE[I with respect to s;, we get

(1}) = KyKjcosec?0), (FI) = (H),,

(i[,,) = (1?1) + 55 (9% + 217 K; — 10115k, ) cosec 0

K

4 (3K/2 - 2K;i€_f> [titsb]cosec 0, i # .

8K/3
(4.23)

From the results obtained previously, we find that the Jacobian
equation (4.3), is splited to following conditions

[tit:b;] = 0, [t;ton;] = 0, (4.24)
K?kjf,‘ = 07 K[kik/' = O, l#]7 (425)
which implies

(Klyfl) = (07 0)7 (K27T2) = (Cv 0)7 (426)

Therefore, we have the following

Corollary 9. The translation surface M is a W-surface in E for
a straight line a and for a circle curve B with non-zero constant
curvature (see Fig. 2).

Corollary 10. The translation surface Misa W-surface in E* if
the vectors (t,ta,b;) and (t,,t,n;) are coplanar.

Similarly, from the Jacobian equation (4.6), we get the same
Corollary 9 in addition to
(K,‘, ‘L',‘) = (C,', 0)
Therefore, we have the following

(4.27)

Corollary 11. The translation surface M is a W-surface in E°
for a circle curves a and B with non-zero constant curvature. (see
Fig. 3).In view of Jacobian Eqs. (4.4), (4.5) and (4.7), one can
find that they are vanished identically. so we get

Theorem 5. The translation surface Misa W-surface in E>. At
the end, we want to shed light on the linear relations (4.2) in the
case of aand [ are Bertrand curves. We got convergent and
almost similar results as in the Jacobian relations (4.1). It may
be remarked that the linear relations (4.8),(4.10), (4.11) and
(4.12), give the same Theorem 4 and Corollary 10 together,

Figure 2 A translation W-surface for a straight line « and for a
circle curve f.

Figure 3 A translation W-surface for a circle curves a and f.

but the linear relation (4.9) gives the same Corollary 11 only.
Thus, we give the following theorem

Theorem 6. The translation surface Misa LW-surface in E°.

Remark. It has been observed from the previous results that in
the general case, the translation W-surfaces resulting are gen-
erated by space curves. But in the special cases, the output
translation L/W-surfaces are generated by planar curves after
solving the differential equations resulting from Weingarten’s
condition.
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