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1. Introduction

Translation surfaces properties have an important role in
shaping the construction and for architectural design. Transla-
tion surfaces are used for shells in engineering. Also, In the

design of structures such as membranes, domes, cables grids,
vaults, foldable structures and so on [1].

Here, and in the sequel, we assume that the indices i; jf g run
over the range 1; 2f g. In the study of the differential geometry of
submanifolds, it is common to examine different types of curva-
ture conditions. More precisely, one is eager to determine all
submanifolds satisfying such a condition. An interesting curva-

ture property to study for a surfaceM : X ¼ X sið Þ in an Euclid-

ean space E3, is the one that requires the existence a functional
relationship uðkiÞ ¼ 0 between the principal curvatures is called
Weingarten surfaces or W-surface. Using the Gaussian and
mean curvatures K;Hð Þwe can redefine W-surfaces, as surfaces

satisfying uðK;HÞ ¼ 0, or, equivalently, the corresponding
Jacobian determinant is identically zero, i.e.,
uðK;HÞ ¼ @ K;Hð Þ
@ sið Þ

���� ���� � 0: ð1:1Þ

Also, if the surfaces satisfy a linear equation with respect to K
and H, that is, aKþ bH ¼ c; a; b; c 2 R; a; b; cð Þ – 0; 0; 0ð Þð Þ,
are called linear Weingarten surfaces or LW-surfaces. When
the constant b ¼ 0, a linear Weingarten surface reduces to a
surface with constant Gaussian curvature. When the constant

a ¼ 0 a linear Weingarten surface reduces to a surface with
constant mean curvature. In such a sense, the linear Weingar-
ten surfaces can be regarded as a natural generalization of sur-
faces with constant Gaussian curvature or with constant mean

curvature [2–4].
In Euclidean 3-space E3 the relations uðK;HÞ ¼ 0;

uðKII;HÞ ¼ 0, and aKII þ bH ¼ c, on ruled surfaces have been

investigated in [3,5]. For surfaces with KII ¼ H; KII ¼
ffiffiffiffi
K
p

;
KII ¼ c; we refer to [3,6–8] for the history and general results
in this problem. Also, for non-developable ruled surface the

linear relations aKII þ bHþ cK ¼ const., a2 þ b2 – 0 along
each ruling, have been studied in [9].

2. Geometric preliminaries

Let C1 : a ¼ a s1ð Þ and C2 : b ¼ b s2ð Þ are two curves parame-

trized by the arc lengths si in E3. Consider the Frenet frame
ftiðsiÞ; niðsiÞ; biðsiÞg associated with the curves Ci. The
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derivatives of the vectors tiðsiÞ and biðsiÞ, when expressed in the
basis fti; ni; big, yield geometrical entities, the natural curva-
tures jiðsiÞ and torsions siðsiÞ, which give us information about

the behavior of the curves a and b in a neighborhood of si,
respectively. Then the Frenet formulas of the curves Ci are
defined by [10]:

d

dsi

tiðsiÞ
niðsiÞ
biðsiÞ

0B@
1CA ¼ 0 jiðsiÞ 0

�jiðsiÞ 0 siðsiÞ
0 �siðsiÞ 0

0B@
1CA tiðsiÞ

niðsiÞ
biðsiÞ

0B@
1CA: ð2:1Þ

We denote a surface M in E3 by

X sið Þ ¼ xk sið Þð Þ; k ¼ 1; 2; 3

Let N be the standard unit normal vector field on a surface M

defined by N ¼ Xs1
�Xs2

kXs1
�Xs2

k, where, Xsi ¼ @X
@si
. Then the 1-st and 2-

nd fundamental forms of the surface M are defined respec-
tively by

I ¼
X
i;j

gijdsi dsj; gij ¼< Xsi ;Xsj > and

II ¼
X
i;j

hij dsi dsj; hij ¼< Xsisj ;N > : ð2:2Þ

If the second fundamental form II is non-degenerate, then it
can be regarded as a (pseudo-) Riemannian metric. Using
classical notation, we define the second Gaussian curvature

KII by [11]

KII¼
1

h2

� h11;22
2
þh12;12� h22;11

2

h11;1
2

h12;1� h11;2
2

h12;2� h22;1
2

h11 h12
h22;2
2

h12 h22

��������
���������

0
h11;2
2

h22;1
2

h11;2
2

h11 h12
h22;1
2

h12 h22

��������
��������

0BB@
1CCA;
ð2:3Þ

where, h ¼ detðhijÞ; hij;l ¼ @hij
@ul
, and hij;lm ¼ @2hij

@ul@um
.

Since Brioschi’s formulas in Euclidean 3-spaces, we are able

to defineHII ofM by replacing the components of the first fun-
damental form gij by the components of the second fundamen-

tal form hij respectively in Brioschi’s formula. Consequently,

the second mean curvature HII is given by [12]:

HII ¼ H� 1

2
D ln

ffiffiffiffiffiffiffi
Kj j

p� �
; ð2:4Þ

where D, is the Laplacian with respect to the second fundamen-
tal form of M, expressed as:

D ¼ � 1ffiffiffiffiffiffiffiffiffi
j h j

p @

@ui

ffiffiffiffiffiffiffiffiffi
j h j

p
hij

@

@u j

� �
; hij
� 	

¼ hij
� 	�1

: ð2:5Þ
3. Intrinsic geometry of translation surfaces in E3

When a space curve is translated over another space curve, the
resulting surface can be considered as the most general appear-

ance of a translation surface. Consequently, this surface can be
parameterized as the sum of two space curves. Quite often, the
class of translation surfaces is restricted to those that can be
parameterized as the sum of two plane curves. So it can be

parameterized by a patch [13]:

M : X sið Þ ¼ a s1ð Þ þ b s2ð Þ; si 2 I; ð3:1Þ

where si are the parameters of the arc lengths of the curves a; b
respectively.
Using (2.1) and (2.2), It is easily checked that the metric of
M is given by

ðgijÞ¼
1 cosh

cosh 1


 �
; det gij

� 	
¼ sin2h; h– np; n¼ 0;1;2; . . .

ð3:2Þ

The unit normal vector of the surface M is given by

N sið Þ ¼ t1 � t2ð Þ cosec h; ð3:3Þ

where ti are denotes to the tangents of the curves a; b
respectively.

This leads to the coefficients of the second fundamental
form hij where

ðhijÞ ¼
j1 t1t2n1½ �cosec h 0

0 j2 t1t2n2½ �cosec h


 �
; ð3:4Þ

det hij
� 	

¼
Y
i;j; i–j

ji t1t2nj
� 


cosec2 h; ð3:5Þ

where ji are denotes to the curvatures of the curves a; b respec-

tively and t1t2nj
� 


denotes to the triple scalar product to these

vectors.
From Eqs. (3.1) and (3.4), one can see that the Gaussian

and mean curvature functions of M are given by

K ¼
Y
i;j; i–j

ji t1t2nj
� 


cosec4 h; ð3:6Þ

and

H ¼ 1

2

X
i

ji t1t2ni½ �cosec3 h; ð3:7Þ

respectively.

4. Translation L/W-surfaces in E3

In this section, we study a translation L/W-surfaces in E3,

which satisfies nontrivial relation between elements of the set
fK; KII; H; HIIg, where (K;H) and (KII , HII) are the Gauss-
ian and mean curvatures of the first and second fundamental
forms, respectively. Following the Jacobian and the linear

equations with respect to the set {K, KII, H, HIIg, an interest-
ing geometric question is raised. Classify the translation sur-

faces in E3 satisfying the conditions:

uðl; mÞ ¼ 0; ð4:1Þ

and

alþ bm ¼ c; ð4:2Þ

where l;m2fK; H; KII; HIIg;l – m and a;b;cð Þ– 0;0;0ð Þ.Thus,
we can write the Jacobian and the linear equations (4.1) and

(4.2) as the following:

ðKÞs1ðHÞs2 � ðKÞs2ðHÞs1 ¼ 0; ð4:3Þ
ðKÞs1 KIIð Þs2 � ðKÞs2 KIIð Þs1 ¼ 0; ð4:4Þ
ðHÞs1 KIIð Þs2 � ðHÞs2 KIIð Þs1 ¼ 0; ð4:5Þ
ðHÞs1 HIIð Þs2 � ðHÞs2 HIIð Þs1 ¼ 0; ð4:6Þ
KIIð Þs1 HIIð Þs2 � KIIð Þs2 HIIð Þs1 ¼ 0; ð4:7Þ

and
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aKþ bH ¼ c; ð4:8Þ
aKþ bKII ¼ c; ð4:9Þ
aHþ bKII ¼ c; ð4:10Þ
aHþ bHII ¼ c; ð4:11Þ
aHII þ bKII ¼ c; ð4:12Þ

respectively.
Differentiating K and H with respect to si, one can get

ðKÞsi ¼ jj jisi�j2
i þ _ji

� 	
f1 hð Þþjj 2j2

i þ _ji

� 	
f2 hð Þ�jijj ji� sið Þf3 hð Þ

ðHÞsi ¼
1
2

X
i

jisi t1t2bi½ �þ _ji t1t2ni½ �cosec3h;

9=;;
ð4:13Þ

where � ¼ d
dsi
; f1 hð Þ ¼ cosh cosec2h; f2 hð Þ ¼ sech cosec2h; f3 hð Þ ¼

sec2h cosec2h.
Thus, one can see that the Jacobian equation (4.3) is valid

for

t1t2bi½ � – 0; t1t2ni½ � – 0; ð4:14Þ
and

ji; sið Þ ¼ ci; cj
� 	

; ci; cj ¼ const: – 0; ð4:15Þ

which characterizes a circular helix curves. Therefore, we have
the following

Theorem 1. The translation surface M is a W-surface in E3 for

a circular helix curves a and b with non-zero constant
curvatures and torsions (see Fig. 1).

Theorem 2. The translation surface M is a W-surface in E3 if

the triple scalar products t1t2bi½ � and t1t2ni½ � are numerically
equal to the volumes of parallelepipeds whose edges are deter-
mined by these vectors.

Next, to facilitate and simplify the calculations we used
some geometric concepts of involutes and Bertrand curves of

translation surfaces as a special cases. In the case ainvolute of

b, we denote the surface by fM , so some of the previous results
of the fundamental quantities take the symbol � over them.
Similarly, in the case aand b are Bertrand curves, we take the

symbol �.
4.1. a involute of b

When the tangents to a curve b are normals to another curve a,
the latter is called an involute of the former. Hence the tangent
Figure 1 A translation W-surface for a circular helix curves a

and b.
to the involute is parallel to the principal normal to the given
curve. So, we have [14]:

t1; t2h i ¼ 0; t1 ¼ 	 n2: ð4:16Þ

Thus and using (3.6) and (3.7), one can see that det hij
� 	

¼ 0,

so we have

Corollary 1. The Gaussian curvature function of M is vanishedeK ¼ 0
� �

and the second Gaussian curvature function is indef-

inite eKII ¼ 1
� �

.

Corollary 2. The mean and second mean curvatures functions offM are given by

eHII ¼ eH ¼ 1

2
j1 n1n2t2½ �: ð4:17Þ

From the above results and taking into account of Jacobian Eqs.

(4.4), (4.5) and (4.7) we have

Corollary 3. The translation surface fM is a flat surface and the
curvature j2 of the curve b is vanished.

Corollary 4. There are no W-translation surfaces in E3. Using

Jacobian Eqs. (4.3) and (4.6), we find that they are vanished
identically. So we get

Corollary 5. The translation surface fM is a W-surface in E3.
According to the linear Eqs. (4.9), (4.10) and (4.12) we have

Corollary 6. There are no LW-translation surfaces in E3. Based
on the linear Eqs. (4.8) and (4.11), one can see that

eH ¼ constant – 0) j1 n1n2t2½ � ¼ constant – 0; ð4:18Þ

thus, for the translation surface fM of constant mean curvature
(cmc), we have

j1 ¼ constant – 0; n1n2t2½ � ¼ constant – 0; ð4:19Þ
which gives the following

Theorem 3. The translation surface fM of (cmc) is a LW-sur-

face in E3 for a circle curve a with non-zero constant curvature.

Theorem 4. The translation surface fM of (cmc) is a LW-sur-
face in E3 if the triple scalar product n1n2t2½ � is numerically equal
to the volume of parallelepiped whose edges are determined by

these vectors.
4.2. a and b are Bertrand curves

Saint-Venant proposed and Bertrand solved the problem of
finding the curves whose principal normals are also the princi-

pal normals of another curve. A pair of curves a and b having
their principal normals in common, are said to be conjugate or
associate Bertrand curves. Also the tangents to the two curves

are inclined at a constant angle. So, we have [14]:

n1 ¼ n2; t1; t2h i ¼ constant – 0; ti ; nj
� �

¼ 0; i – j: ð4:20Þ
Thus and using (2.3), (2.4), (3.6) and (3.7) we have



Figure 2 A translation W-surface for a straight line a and for a

circle curve b.

Figure 3 A translation W-surface for a circle curves a and b.
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Corollary 7. The Gaussian and second Gaussian curvature

functions of M
�

are given by

K
�
¼ j1j2cosec

2 h; K
�
II ¼ 0: ð4:21Þ

Corollary 8. The mean and second mean curvatures functions of

M
�

are given by

H
�
¼ H; H

�
II ¼ H

�
� 1

2
D ln

ffiffiffiffiffiffiffi
K
���� ���r !

; ð4:22Þ

where,

D ln

ffiffiffiffiffiffiffi
K
���� ���r !
¼ 1

4

X
i;j; i–j

1

j3
i

3 _j2
i � 2ji€ji

� 	
t1t2nj
� 


cosec h:

Differentiating K
�
; H
�
and H

�

II
, with respect to si, we get

K
�


 �
si

¼ _jijjcosec
2h; H

�

 �

si

¼ ðHÞsi ;

H
�

II


 �
si

¼ H
�


 �
si

þ 1
8j4

i

9 _j3
i þ 2j2

i j
...
i � 10ji _ji€ji

� 	
cosec h

þ si
8j3

j

3 _j2
j � 2jj€jj

� �
t1t2bi½ �cosec h; i – j:

9>>>>>>>=>>>>>>>;
ð4:23Þ

From the results obtained previously, we find that the Jacobian
equation (4.3), is splited to following conditions

t1t2bi½ � ¼ 0; t1t2ni½ � ¼ 0; ð4:24Þ

j2
i _jjsi ¼ 0; ji _ji _jj ¼ 0; i – j; ð4:25Þ

which implies

j1; s1ð Þ ¼ 0; 0ð Þ; j2; s2ð Þ ¼ c; 0ð Þ; ð4:26Þ

Therefore, we have the following

Corollary 9. The translation surface M
�

is a W-surface in E3 for
a straight line a and for a circle curve b with non-zero constant

curvature (see Fig. 2).

Corollary 10. The translation surface M
�

is a W-surface in E3 if
the vectors t1; t2; bið Þ and t1; t2; nið Þ are coplanar.

Similarly, from the Jacobian equation (4.6), we get the same
Corollary 9 in addition to

ji; sið Þ ¼ ci; 0ð Þ: ð4:27Þ
Therefore, we have the following

Corollary 11. The translation surface M
�

is a W-surface in E3

for a circle curves a and b with non-zero constant curvature. (see

Fig. 3).In view of Jacobian Eqs. (4.4), (4.5) and (4.7), one can
find that they are vanished identically. so we get

Theorem 5. The translation surface M
�

is a W-surface in E3. At

the end, we want to shed light on the linear relations (4.2) in the
case of aand b are Bertrand curves. We got convergent and
almost similar results as in the Jacobian relations (4.1). It may

be remarked that the linear relations (4.8),(4.10), (4.11) and
(4.12), give the same Theorem 4 and Corollary 10 together,
but the linear relation (4.9) gives the same Corollary 11 only.
Thus, we give the following theorem

Theorem 6. The translation surface M
�

is a LW-surface in E3.

Remark. It has been observed from the previous results that in
the general case, the translation W-surfaces resulting are gen-
erated by space curves. But in the special cases, the output
translation L/W-surfaces are generated by planar curves after

solving the differential equations resulting from Weingarten’s
condition.
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