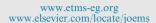


Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society



ORIGINAL ARTICLE

On Akbar-Zadeh's theorem on a Finsler space of constant curvature

A. Soleiman

Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

Received 13 July 2013; revised 8 July 2014; accepted 13 July 2014 Available online 11 February 2015

KEYWORDS

Cartan connection; Akbar-Zadeh's theorem; Symmetric manifold: S₃-Like manifold; S₄-Like manifold

Abstract The aim of the present paper is to give two *intrinsic* generalizations of Akbar-Zadeh's theorem on a Finsler space of constant curvature. Some consequences, of these generalizations, are drown.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 53C60; 53B40; 58B20; 53C12

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

0. Introduction

Using the tools of the traditional tensor calculus, in his paper [1], Akbar-Zadeh proved that if the h-curvature R_{iik}^r of the Cartan connection $C\Gamma$ associated with a Finsler manifold (M, L), $dim M \ge 3$, satisfies

$$R_{ijk}^{r} = k(g_{ij}\delta_{k}^{r} - g_{ik}\delta_{j}^{r}),$$

where k is a scalar function on T M, positively homogeneous of degree zero ((0) p-homogeneous), then

- (a) k is constant,
- (b) if $k \neq 0$, then
 - (1) the *v*-curvature of $C\Gamma$ vanishes: $S_{ijk}^r = 0$,

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

(2) the hv-curvature of $C\Gamma$ is symmetric with respect to

the last two indices: $P_{ijk}^r = P_{ikj}^r$. In his paper [2], Hōjō showed, also by local calculations, that if the h-curvature R_{ijk}^r of the generalized Cartan connection $C\Gamma$, $dimM \ge 3$, satisfies

$$R_{ijk}^{r} = k\mathfrak{A}_{j,k} \Big\{ q g_{ij} \delta_{k}^{r} + (q-2)(g_{ij} \ell_{k} \ell^{r} - \delta_{j}^{r} \ell_{i} \ell_{k} \Big\},\,$$

where k is a (0) p-homogeneous scalar function and $1 \neq q \in \mathbb{R}$,

- (a) k is constant,
- (b) if $k \neq 0$, then

 - (1) the *v*-curvature of $C\Gamma$ satisfies $S_{ijk}^r = \frac{q-2}{2(1-q)} \mathfrak{A}_{j,k} \{ \hbar_{ij} \hbar_k^r \}$, (2) the *hv*-curvature of $C\Gamma$ is symmetric with respect to the last two indices.

The aim of the present paper is to provide *intrinsic* proofs of Akbar-Zadeh's and Hojo's theorems. As a by-product, some consequences concerning S_3 -like and S_4 -like spaces are deduced.

^{*} ArXiv Number: 1201.2012 [math.DG]. E-mail address: soleiman@yahoo.com

¹ \mathfrak{A}_{ij} indicates interchanges of indices j and k, and subtraction: $\mathfrak{A}_{ij}\{F_{ij}\}=F_{ij}-F_{ji}.$

Thus the present work is formulated in a coordinate-free form, without being trapped into the complications of indices. Naturally, the coordinate expressions of the obtained results coincide with the starting local formulations.

1. Notation and preliminaries

In this section, we give a brief account of the basic concepts of the pullback approach to intrinsic Finsler geometry necessary for this work. For more details, we refer to [3-5]. We shall use the same notations as in [5].

In what follows, we denote by $\pi: TM \to M$ the subbundle of nonzero vectors tangent to M and by $\mathfrak{X}(\pi(M))$ the $\mathfrak{F}(TM)$ module of differentiable sections of the pullback bundle $\pi^{-1}(TM)$. The elements of $\mathfrak{X}(\pi(M))$ will be called π -vector fields and will be denoted by barred letters \overline{X} . The tensor fields on $\pi^{-1}(TM)$ will be called π -tensor fields. The fundamental π vector field is the π -vector field $\bar{\eta}$ defined by $\bar{\eta}(u) = (u, u)$ for all $u \in TM$.

We have the following short exact sequence of vector

$$0 \to \pi^{-1}(TM) \xrightarrow{\gamma} T(TM) \xrightarrow{\rho} \pi^{-1}(TM) \to 0,$$

with the well known definitions of the bundle morphisms ρ and γ . The vector space $V_{\mu}(TM) = \{X \in T_{\mu}(TM) : d\pi(X) = 0\}$ is called the vertical space to M at u.

Let D be a linear connection (or simply a connection) on the pullback bundle $\pi^{-1}(TM)$. We associate with D the map $K: TTM \to \pi^{-1}(TM): X \mapsto D_X \bar{\eta}$, called the connection map of D. The vector space $H_u(TM) = \{X \in T_u(TM) :$ K(X) = 0 is called the horizontal space to M at u. The connection D is said to be regular if $T_u(TM) = V_u(TM) \oplus$ $H_u(TM) \forall u \in TM.$

If M is endowed with a regular connection, then the vector bundle maps $\gamma, \rho|_{H(TM)}$ and $K|_{V(TM)}$ are vector bundle isomorphisms. The map $\beta:=(\rho|_{H(TM)})^{-1}$ will be called the horizontal map of the connection D.

The horizontal ((h)h-) and mixed ((h)hv-) torsion tensors of D, denoted by Q and T respectively, are defined by

$$Q(\overline{X}, \overline{Y}) = \mathbf{T}(\beta \overline{X}\beta \overline{Y}), T(\overline{X}, \overline{Y}) = \mathbf{T}(\gamma \overline{X}, \beta \overline{Y}) \quad \forall \overline{X}, \overline{Y} \in \mathfrak{X}(\pi(M)),$$

where **T** is the torsion tensor field of *D* defined by

$$\mathbf{T}(X, Y) = D_X \rho Y - D_Y \rho X - \rho [X, Y] \quad \forall X, Y \in \mathfrak{X}(TM).$$

The horizontal (h-), mixed (hv-) and vertical (v-) curvature tensors of D, denoted by R, P and S respectively, are defined by

$$\begin{split} R(\overline{X}, \overline{Y})\overline{Z} &= \mathbf{K}(\beta \overline{X}\beta \overline{Y})\overline{Z}, \quad P(\overline{X}, \overline{Y})\overline{Z} &= \mathbf{K}(\beta \overline{X}, \gamma \overline{Y})\overline{Z}, \\ S(\overline{X}, \overline{Y})\overline{Z} &= \mathbf{K}(\gamma \overline{X}, \gamma \overline{Y})\overline{Z}, \end{split}$$

where K is the (classical) curvature tensor field associated with D.

The contracted curvature tensors of D, denoted by \widehat{R} , \widehat{P} and \widehat{S} respectively, known also as the (v)h-, (v)hv- and (v)v-torsion tensors, are defined by

$$\begin{split} \widehat{R}(\overline{X}, \overline{Y}) &= R(\overline{X}, \overline{Y}) \overline{\eta}, \quad \widehat{P}(\overline{X}, \overline{Y}) = P(\overline{X}, \overline{Y}) \overline{\eta}, \\ \widehat{S}(\overline{X}, \overline{Y}) &= S(\overline{X}, \overline{Y}) \overline{\eta}. \end{split}$$

If M is endowed with a metric g on $\pi^{-1}(TM)$, we write

$$R(\overline{X}, \overline{Y}, \overline{Z}, \overline{W}) := g(R(\overline{X}, \overline{Y})\overline{Z}, \overline{W}), \dots, S(\overline{X}, \overline{Y}, \overline{Z}, \overline{W})$$
$$:= g(S(\overline{X}, \overline{Y})\overline{Z}, \overline{W}). \tag{1.1}$$

The following result is of extreme importance.

Theorem 1.1 [6]. Let (M, L) be a Finsler manifold and g the Finsler metric defined by L. There exists a unique regular connection \$ on $\pi^{-1}(TM)$ such that

- (a) \$ is metric: $\nabla g = 0$,
- (b) The (h)h-torsion of \$ vanishes: Q = 0,
- (c) The (h)hv-torsion T of \$ satisfies: $g(T(\overline{X}, \overline{Y}), \overline{Z}) =$ $g(T(\overline{X}, \overline{Z}), \overline{Y}).$

This connection is called the Cartan connection of the Finsler manifold (M, L).

2. First generalization of Akbar-Zadeh theorem

In this section, we investigate an intrinsic generalization of Akbar-Zadeh theorem. We begin first with the following two lemmas which will be useful for subsequent use.

Lemma 2.1. Let \$ be the Cartan connection of a Finsler manifold (M, L). For a π -tensor field ω of type (1, 1), we have the following commutation formulae:

(a)
$$\left(\stackrel{?}{\nabla}\stackrel{?}{\nabla}\omega\right)(\overline{X},\overline{Y},\overline{Z}) - \left(\stackrel{?}{\nabla}\stackrel{?}{\nabla}\omega\right)(\overline{Y},\overline{X},\overline{Z}) = \omega(S(\overline{X},\overline{Y})\overline{Z}) - S(\overline{X},\overline{Y})\omega(\overline{Z}),$$

$$\begin{array}{l} \text{(b)} \ \left(\overset{2}{\nabla}\overset{1}{\nabla}\omega\right)\!\left(\overline{X},\overline{Y},\overline{Z}\right) - \left(\overset{1}{\nabla}\overset{2}{\nabla}\omega\right)\!\left(\overline{Y},\overline{X},\overline{Z}\right) = \omega(P(\overline{X},\overline{Y})\overline{Z}) - \\ P(\overline{X},\overline{Y})\omega(\overline{Z}) + \left(\overset{2}{\nabla}\omega\right)\!\left(\widehat{P}(\overline{X},\overline{Y}),\overline{Z}\right) + \left(\overset{1}{\nabla}\omega\right)\!\left(T(\overline{Y},\overline{X}),\overline{Z}\right), \\ \text{(c)} \ \left(\overset{1}{\nabla}\overset{1}{\nabla}\omega\right)\!\left(\overline{X},\overline{Y},\overline{Z}\right) - \left(\overset{1}{\nabla}\overset{1}{\nabla}\omega\right)\!\left(\overline{Y},\overline{X},\overline{Z}\right) = \omega(R(\overline{X},\overline{Y})\overline{Z}) - \\ R(\overline{X},\overline{Y})\omega(\overline{Z}) + \left(\overset{2}{\nabla}\omega\right)\!\left(\widehat{R}(\overline{X},\overline{Y}),\overline{Z}\right), \end{array}$$

where $\overset{1}{\nabla}$ and $\overset{2}{\nabla}$ are the h- and v-covariant derivatives associated with \$.

Lemma 2.2. Let (M, L) be a Finsler manifold, g the Finsler metric defined by $L, \ell := L^{-1}i_{\bar{\eta}}g$ and $\hbar := g - \ell \circ \ell$ the angular metric tensor. Then we have:

- (a) $\stackrel{1}{\nabla} L = 0$, $\stackrel{2}{\nabla} L = \ell$. (b) $\nabla \ell = 0$, $\nabla \ell = L^{-1}\hbar$.
- (c) $i_{\bar{\eta}}\ell = L$, $i_{\bar{\eta}}\hbar = 0$.

Proof. The assertions follow the facts that $\nabla g = 0$ and $g(\bar{\eta}, \bar{\eta}) = L^2$. \square

Now, we have

Theorem 2.3. Let (M, L) be a Finsler manifold of dimension nand g the Finsler metric defined by L. If the (v)h-torsion tensor \hat{R} of the Cartan connection is of the form

$$\widehat{R}(\overline{X}, \overline{Y}) = kL(\ell(\overline{X})\overline{Y} - \ell(\overline{Y})\overline{X}), \tag{2.1}$$

520 A. Soleiman

where k is a positive homogeneous function of degree 0 on TM, then:

- (a) $\mathfrak{S}_{\overline{Y}\,\overline{Y}\,\overline{Z}}R(\overline{X},\overline{Y})\overline{Z}=0.$ ²
- (b) k is constant if $dim M \ge 3$.

Proof.

(a) We have [7]:

$$\mathfrak{S}_{\overline{Y},\overline{Y},\overline{Z}}R(\overline{X},\overline{Y})\overline{Z} = \mathfrak{S}_{\overline{Y},\overline{Y},\overline{Z}}T(\widehat{R}(\overline{X},\overline{Y}),\overline{Z}). \tag{2.2}$$

From (2.1), noting that the (h)hv-torsion T is symmetric, we obtain

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}T(\widehat{R}(\overline{X},\overline{Y}),\overline{Z}) = kLT(\ell(\overline{X})\overline{Y} - \ell(\overline{Y})\overline{X},\overline{Z}) + kLT(\ell(\overline{Y})\overline{Z} \\ - \ell(\overline{Z})\overline{Y},\overline{X}) + kLT(\ell(\overline{Z})\overline{X} - \ell(\overline{X})\overline{Z},\overline{Y}) \\ = kL\{\ell(\overline{X})T(\overline{Y},\overline{Z}) - \ell(\overline{Y})T(\overline{X},\overline{Z})\} \\ + kL\{\ell(\overline{Y})T(\overline{Z},\overline{X}) - \ell(\overline{Z})T(\overline{Y},\overline{X})\} \\ + kL\{\ell(\overline{Z})T(\overline{X},\overline{Y}) - \ell(\overline{X})T(\overline{Z},\overline{Y})\} = 0. \quad (2.3)$$

Hence, the result follows from (2.2) and (2.3).

(b) We have [7]:

$$\mathfrak{S}_{\overline{X}\,\overline{Y}\,\overline{Z}}\{(\nabla_{R\overline{X}}R)(\overline{Y},\overline{Z},\overline{W}) + P(\widehat{R}(\overline{X},\overline{Y}),\overline{Z})\overline{W}\} = 0. \tag{2.4}$$

From (2.1), noting that the (v)hv-torsion \widehat{P} is symmetric [7], we get

$$\begin{split} \mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}} \widehat{P}(\widehat{R}(\overline{X},\overline{Y}),\overline{Z}) &= kL \Big\{ \ell(\overline{X}) \widehat{P}(\overline{Y},\overline{Z}) - \ell(\overline{Y}) \widehat{P}(\overline{X},\overline{Z}) \Big\} \\ &+ kL \Big\{ \ell(\overline{Y}) \widehat{P}(\overline{Z},\overline{X}) - \ell(\overline{Z}) \widehat{P}(\overline{Y},\overline{X}) \Big\} \\ &+ kL \Big\{ \ell(\overline{Z}) \widehat{P}(\overline{X},\overline{Y}) - \ell(\overline{X}) \widehat{P}(\overline{Z},\overline{Y}) \Big\} = 0. \end{split}$$

From this and (2.4) it follows that

$$\mathfrak{S}_{\overline{Y}\overline{Y}\overline{Z}}(\nabla_{g\overline{Y}}\widehat{R})(\overline{Y},\overline{Z}) = 0. \tag{2.5}$$

Again from (2.1), noting that $\nabla_{\beta \overline{X}} \ell = 0$ (Lemma 2.2(b)), (2.5) reads

$$\begin{split} &L(\nabla_{\beta\overline{X}}k)\big\{\ell(\overline{Y})\overline{Z}-\ell(\overline{Z})\overline{Y}\big\} + L(\nabla_{\beta\overline{Y}}k)\big\{\ell(\overline{Z})\overline{X}-\ell(\overline{X})\overline{Z}\big\} \\ &+ L(\nabla_{\delta\overline{Z}}k)\big\{\ell(\overline{X})\overline{Y}-\ell(\overline{Y})\overline{X}\big\} = 0. \end{split}$$

Setting $\overline{Z} = \overline{\eta}$ into the above equation, noting that $\ell(\overline{\eta}) = L$ (Lemma 2.2(c)), we obtain

$$\begin{split} L(\nabla_{\beta\overline{X}}k)\big\{\ell(\overline{Y})\overline{\eta}-L\overline{Y}\big\} + L(\nabla_{\beta\overline{Y}}k)\big\{L\overline{X}-\ell(\overline{X})\overline{\eta}\big\} \\ + L(\nabla_{\beta\overline{\beta}}k)\big\{\ell(\overline{X})\overline{Y}-\ell(\overline{Y})\overline{X}\big\} &= 0. \end{split}$$

Taking the trace of both sides with respect to \overline{Y} , it follows that

$$\nabla_{\beta \overline{X}} k = L^{-1}(\nabla_{\beta \overline{\eta}} k) \ell(\overline{X}). \tag{2.6}$$

On the other hand, we have [7]

$$\begin{split} &(\nabla_{\gamma \overline{X}} R)(\overline{Y}, \overline{Z}, \overline{W}) + (\nabla_{\beta \overline{Y}} P)(\overline{Z}, \overline{X}, \overline{W}) - (\nabla_{\beta \overline{Z}} P)(\overline{Y}, \overline{X}, \overline{W}) \\ &- P(\overline{Z}, \widehat{P}(\overline{Y}, \overline{X})) \overline{W} + R(T(\overline{X}, \overline{Y}), \overline{Z}) \overline{W} - S(\widehat{R}(\overline{Y}, \overline{Z}), \overline{X}) \overline{W} \\ &+ P(\overline{Y}, \widehat{P}(\overline{Z}, \overline{X})) \overline{W} - R(T(\overline{X}, \overline{Z}), \overline{Y}) \overline{W} = 0. \end{split} \tag{2.7}$$

Setting $\overline{W}=\bar{\eta}$ into the above relation, noting that $K\circ \gamma=id_{\mathfrak{X}(\pi(M))}, K\circ \beta=0$ and $\widehat{S}=0$, it follows that

$$\begin{split} &(\nabla_{\gamma\overline{X}}\widehat{R})(\overline{Y},\overline{Z}) - R(\overline{Y},\overline{Z})\overline{X} + (\nabla_{\beta\overline{Y}}\widehat{P})(\overline{Z},\overline{X}) - (\nabla_{\beta\overline{Z}}\widehat{P})(\overline{Y},\overline{X}) \\ &- \widehat{P}(\overline{Z},\widehat{P}(\overline{Y},\overline{X})) + \widehat{R}(T(\overline{X},\overline{Y}),\overline{Z}) + \widehat{P}(\overline{Y},\widehat{P}(\overline{Z},\overline{X})) \\ &- \widehat{R}(T(\overline{X},\overline{Z}),\overline{Y}) = 0. \end{split}$$

Applying the cyclic sum $\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}$ on the above equation, taking (a) into account, we get

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}(\nabla_{\nu,\overline{X}}\widehat{R})(\overline{Y},\overline{Z}) = 0.$$
 (2.8)

Substituting (2.1) into (2.8), using $(\nabla_{\gamma \overline{X}} \ell)(\overline{Y}) = L^{-1} \hbar(\overline{X}, \overline{Y})$ (Lemma 2.2(b)), we have

$$\begin{split} &L(\nabla_{\gamma\overline{Z}}k)\left\{(\ell(\overline{X})\overline{Y}-\ell(\overline{Y})\overline{X})\right\} + L(\nabla_{\gamma\overline{Y}}k)\left\{(\ell(\overline{Z})\overline{X}-\ell(\overline{X})\overline{Z})\right\} \\ &+ L(\nabla_{\gamma\overline{X}}k)\left\{(\ell(\overline{Y})\overline{Z}-\ell(\overline{Z})\overline{Y})\right\} + k\ell(\overline{Z})\left\{(\ell(\overline{X})\overline{Y}-\ell(\overline{Y})\overline{X})\right\} \\ &+ k\ell(\overline{Y})\left\{(\ell(\overline{Z})\overline{X}-\ell(\overline{X})\overline{Z})\right\} + k\ell(\overline{X})\left\{(\ell(\overline{Y})\overline{Z}-\ell(\overline{Z})\overline{Y})\right\} \\ &+ kL\left\{(\overline{h}(\overline{X},\overline{Z})\overline{Y}-\overline{h}(\overline{Y},\overline{Z})\overline{X})\right\} + kL\left\{(\overline{h}(\overline{Z},\overline{Y})\overline{X}-\overline{h}(\overline{X},\overline{Y})\overline{Z})\right\} \\ &+ kL\left\{(\overline{h}(\overline{Y},\overline{X})\overline{Z}-\overline{h}(\overline{Z},\overline{X})\overline{Y})\right\} = 0. \end{split}$$

Setting $\overline{Z} = \overline{\eta}$ into the above relation, noting that $\ell(\overline{\eta}) = L$, $\hbar(\overline{\eta}, .) = 0$ (Lemma 2.2(c)) and $\nabla_{\gamma\overline{\eta}}k = 0$, we conclude that

$$L^{2}\left\{\nabla_{\gamma \overline{X}}k\,\phi(\overline{Y}) - \nabla_{\gamma \overline{Y}}k\,\phi(\overline{X})\right\} = 0, \tag{2.9}$$

where ϕ is a vector π -form defined by

$$g(\phi(\overline{X}), \overline{Y}) := \hbar(\overline{X}, \overline{Y}).$$
 (2.10)

Taking the trace of both sides of (2.9) with respect to \overline{Y} , noting that $Tr(\phi) = n - 1$ [8], it follows that

$$(n-2)\nabla_{v\overline{X}}k=0.$$

Consequently,

$$\nabla_{\pi \overline{Y}} k = 0$$
 for all $\overline{X} \in \mathfrak{X}(\pi(M))$, if $n \geqslant 3$. (2.11)

Now, applying the *v*-covariant derivative with respect to \overline{Y} on both sides of (2.6), yields

$$\begin{split} \ell(\overline{Y}) \nabla_{\beta \overline{X}} k + L \bigg(\overset{2}{\nabla} \overset{1}{\nabla} k \bigg) (\overline{X}, \overline{Y}) &= L^{-1} \hbar(\overline{X}, \overline{Y}) (\nabla_{\beta \overline{\eta}} k) \\ &+ \ell(\overline{X}) (\overset{2}{\nabla} \overset{1}{\nabla} k) (\bar{\eta}, \overline{Y}). \end{split}$$

Since, $\overset{2}{\nabla}\overset{1}{\nabla}k = \overset{1}{\nabla}\overset{2}{\nabla}k = 0$ (Lemma 2.1 and (2.11)), the above relation reduces to

$$\ell(\overline{Y})\nabla_{\beta\overline{X}}k = L^{-1}\hbar(\overline{X},\overline{Y})(\nabla_{\beta\overline{\eta}}k),$$

whenever $n \geqslant 3$. Setting $\overline{Y} = \overline{\eta}$ into the above equation, noting that $\ell(\overline{\eta}) = L$ and $\hbar(.,\overline{\eta}) = 0$, it follows that $\nabla_{\beta\overline{\eta}}k = 0$. Consequently, again by (2.6),

$$\nabla_{\beta \overline{\chi}} k = 0$$
 for all $\overline{X} \in \mathfrak{X}(\pi(M))$, if $n \geqslant 3$. (2.12)

Now, Eqs. (2.11) and (2.12) imply that k is a constant if $n \ge 3$.

This completes the proof. \Box

Theorem 2.4. Let (M, L) be a Finsler manifold with dimension $n \ge 3$ and let $q \ne 1$ be an arbitrary real number. If the h-curvature tensor R satisfies

² $\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}$ denotes the cyclic sum over \overline{X} , \overline{Y} and \overline{Z} .

$$R(\overline{X}, \overline{Y})\overline{Z} = k \mathfrak{A}_{\overline{X}, \overline{Y}} \{ q g(\overline{X}, \overline{Z}) \overline{Y} + (q - 2) \{ L^{-1} g(\overline{X}, \overline{Z}) \ell(\overline{Y}) \overline{\eta} - \ell(\overline{Y}) \ell(\overline{Z}) \overline{X} \} \},$$
(2.13)

where k is an h(0)- homogeneous function, then

- (a) k is a constant.
- (b) If $k\neq 0$, we have:

(1)
$$P(\overline{X}, \overline{Y})\overline{Z} = P(\overline{Y}, \overline{X})\overline{Z}$$
 (i.e., (M, L) is symmetric), (2) $S(\overline{X}, \overline{Y})\overline{Z} = \frac{2-q}{2(q-1)L^2} \{\hbar(\overline{X}, \overline{Z})\phi(\overline{Y}) - \hbar(\overline{Y}, \overline{Z})\phi(\overline{X})\}.$

Proof.

(a) Setting $\overline{Z} = \overline{\eta}$ into (2.13), we get

$$\widehat{R}(\overline{X}, \overline{Y}) = 2(q-1)kL\{\ell(\overline{X})\overline{Y} - \ell(\overline{Y})\overline{X}\}. \tag{2.14}$$

From this and Theorem 2.3, the result follows.

(b) (1) Applying the v-covariant derivative with respect to \overline{W} on both sides of (2.13), we get

$$(\nabla_{R\overline{W}}R)(\overline{X}, \overline{Y}, \overline{Z}) = 0.$$

From this and (2.4) it follows that

$$\mathfrak{S}_{\overline{Y},\overline{Y},\overline{Z}}P(\widehat{R}(\overline{X},\overline{Y}),\overline{Z})\overline{W}=0. \tag{2.15}$$

In view of (2.14), noting that $k\neq 0$, (2.15) implies that

$$\begin{split} &2(q-1)L\big\{P(\ell(\overline{X})\overline{Y}-\ell(\overline{Y})\overline{X},\overline{Z})\overline{W}\big\}+2(q-1)\\ &L\big\{P(\ell(\overline{Y})\overline{Z}-\ell(\overline{Z})\overline{Y},\overline{X})\overline{W}\big\}+2(q-1)\\ &L\big\{P(\ell(\overline{Z})\overline{X}-\ell(\overline{X})\overline{Z},\overline{Y})\overline{W}\big\}=0. \end{split}$$

Setting $\overline{Z} = \overline{\eta}$ into the above equation, taking into account the fact that $\ell(\overline{\eta}) = L$ and $P(\cdot, \overline{\eta}) = P(\overline{\eta}, \cdot) = 0$ [7], we get

$$2(q-1)L\{P(\overline{X},\overline{Y})\overline{W}-P(\overline{Y},\overline{X})\overline{W}\}=0.$$

Hence, the result follows.

(b) (2) Taking the cyclic sum $\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}$ of (2.7) and using (b) (1), we obtain

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}\Big\{(\nabla_{\gamma\overline{X}}R)(\overline{Y},\overline{Z},\overline{W}) - S(\widehat{R}(\overline{Y},\overline{Z}),\overline{X})\overline{W}\Big\} = 0. \tag{2.16}$$

On the other hand, by taking the ν -covariant derivative of both sides of (2.13), using $(\nabla_{\gamma \overline{X}} L) = \ell(\overline{X})$, $(\nabla_{\gamma \overline{X}} \ell)(\overline{Y}) = L^{-1} \hbar(\overline{X}, \overline{Y})$ and $\nabla_{\gamma \overline{X}} g = 0$, we get

$$\begin{split} (\nabla_{\gamma \overline{X}} R)(\overline{Y}, \overline{Z}, \overline{W}) &= k(q-2) \mathfrak{A}_{\overline{X}, \overline{Y}} \{ g(\overline{X}, \overline{W}) \hbar(\overline{Z}, \overline{Y}) \frac{\overline{\eta}}{L^2} \\ &+ g(\overline{X}, \overline{W}) \ell(\overline{Y}) \frac{\phi(\overline{Z})}{L} - \hbar(\overline{Z}, \overline{Y}) \ell(\overline{W}) \frac{\overline{X}}{L} \\ &- \hbar(\overline{Z}, \overline{W}) \ell(\overline{Y}) \frac{\overline{X}}{L} \}. \end{split}$$

Taking the cyclic sum $\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}$ of both sides of the above equation and then setting $\overline{Z}=\bar{\eta}$, it follows that

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{\eta}}(\nabla_{\gamma\overline{X}}R)(\overline{Y},\overline{\eta},\overline{W}) = 2k(q-2)\{\hbar(\overline{Y},\overline{W})\phi(\overline{X}) - \hbar(\overline{X},\overline{W})\phi(\overline{Y})\}. \tag{2.17}$$

In view of (2.14), noting that $S(.,\bar{\eta}) = 0$ and S is antisymmetric [7], we obtain

$$\mathfrak{S}_{\overline{X}\,\overline{Y}\,\overline{\eta}}S(\widehat{R}(\overline{Y},\overline{\eta}),\overline{X})\overline{W} = 4kL^2(q-1)S(\overline{X},\overline{Y})\overline{W}. \tag{2.18}$$

Therefore, by setting $\overline{Z} = \overline{\eta}$ into (2.16), taking (2.17) and (2.18) into account, the result follows. \square

Corollary 2.5. Akbar-Zadeh's theorem [1] is a special case of Theorem 2.4, for which q = 2.

Corollary 2.6. If the h-curvature tensor R of (M, L), where $\dim M \ge 3$, satisfies

$$R(\overline{X},\overline{Y})\overline{Z} = k\mathfrak{A}_{\overline{X},\overline{Y}}\bigg\{\{g(\overline{X},\overline{Z})\frac{\overline{\eta}}{L} - \ell(\overline{Z})\overline{X}\}\ell(\overline{Y})\bigg\},$$

then k is a constant and, moreover, if $k\neq 0$, we have:

- (a) (M, L) is symmetric.
- (b) $S(\overline{X}, \overline{Y})\overline{Z} = \frac{-1}{L^2} \{ \hbar(\overline{X}, \overline{Z})\phi(\overline{Y}) \hbar(\overline{Y}, \overline{Z})\phi(\overline{X}) \}.$

3. Second generalization of Akbar-Zadeh's theorem

In this section, we give a second, intrinsically formulated generalization of Akbar-Zadeh's theorem.

Theorem 3.1. If the h-curvature tensor R of (M, L), $dimM \ge 3$, satisfies

$$R(\overline{X}, \overline{Y})\overline{Z} = k\{g(\overline{X}, \overline{Z})\overline{Y} - g(\overline{Y}, \overline{Z})\overline{X} + \omega(\overline{X}, \overline{Y})\overline{Z}\}, \tag{3.1}$$

where ω is an indicatory antisymmetric h(0) π -tensor field of type (1,3) and k is an h(0)-function on TM, then

- (a) k is a constant.
- (b) If $k\neq 0$, we have:

$$(1)P(\overline{X},\overline{Y})\overline{Z} - P(\overline{X},\overline{Y})\overline{Z} = L^{-2}(\nabla_{\beta\bar{\eta}}\omega)(\overline{X},\overline{Y},\overline{Z}).$$

$$(2)S(\overline{X},\overline{Y})\overline{Z} = \frac{1}{L^2} \left\{ \frac{1}{2kL^2} (\stackrel{1}{\nabla} \stackrel{1}{\nabla} \omega)(\overline{\eta},\overline{\eta},\overline{X},\overline{Y},\overline{Z}) + \omega(\overline{X},\overline{Y})\overline{Z} \right\}.$$

Proof.

- (a) Follows from Theorem 2.3 by setting $\overline{Z} = \overline{\eta}$ into (3.1).
- (b) (1) By (3.1), we have

$$\widehat{R}(\overline{X}, \overline{Y}) = kL\{\ell(\overline{X})\overline{Y} - \ell(\overline{Y})\overline{X}\},\tag{3.2}$$

and by (2.4), we have

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{\eta}}\{(\nabla_{\theta\overline{X}}R)(\overline{Y},\overline{\eta},\overline{W}) + P(\widehat{R}(\overline{X},\overline{Y}),\overline{\eta})\overline{W}\} = 0. \tag{3.3}$$

Now, substituting (3.1) and (3.2) into (3.3), we obtain

$$k\{(\nabla_{\beta\bar{\eta}}\omega)(\overline{X},\overline{Y},\overline{W})-L^2\{P(\overline{X},\overline{Y})\overline{Z}-P(\overline{Y},\overline{X})\overline{Z}\}\}=0$$

from this, since $k\neq 0$, the result follows.

(b) (2) Taking the cyclic sum $\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}$ of (2.7), we obtain

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{Z}}\Big\{(\nabla_{\gamma\overline{X}}R)(\overline{Y},\overline{Z},\overline{W}) + (\nabla_{\beta\overline{Y}}P)(\overline{Z},\overline{X},\overline{W}) \\ -(\nabla_{\beta\overline{Z}}P)(\overline{Y},\overline{X},\overline{W}) - S(\widehat{R}(\overline{Y},\overline{Z}),\overline{X})\overline{W}\Big\} = 0.$$
 (3.4)

In view of (1) above, it follows that

$$\begin{split} (\nabla_{\beta\overline{W}}P)(\overline{X},\overline{Y},\overline{Z}) &- (\nabla_{\beta\overline{W}}P)(\overline{Y},\overline{X},\overline{Z}) \\ &= L^{-2} \begin{pmatrix} 1 & 1 \\ \nabla & \nabla & \omega \end{pmatrix} (\overline{W},\overline{\eta},\overline{X},\overline{Y},\overline{Z}). \end{split}$$

522 A. Soleiman

From this we get

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{\eta}}\left\{ (\nabla_{\beta\overline{\eta}}P)(\overline{X},\overline{Y},\overline{Z}) - (\nabla_{\beta\overline{\eta}}P)(\overline{Y},\overline{X},\overline{Z}) \right\}$$

$$= L^{-2}(\stackrel{1}{\nabla}\stackrel{1}{\nabla}\omega)(\overline{\eta},\overline{\eta},\overline{X},\overline{Y},\overline{Z}). \tag{3.5}$$

On the other hand, noting that ω is homogeneous of degree zero, we obtain

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{\eta}}(\nabla_{\gamma\overline{X}}R)(\overline{Y},\overline{\eta},\overline{W}) = (\nabla_{\gamma\overline{X}}R)(\overline{Y},\overline{\eta},\overline{W}) + (\nabla_{\gamma\overline{Y}}R) \times (\overline{\eta},\overline{X},\overline{W}) + (\nabla_{\gamma\overline{\eta}}R) \times (\overline{X},\overline{Y},\overline{W}) \times (\overline{X},\overline{Y},\overline{W})$$

$$= 2k\omega(\overline{X},\overline{Y})\overline{W}. \tag{3.6}$$

$$\mathfrak{S}_{\overline{X},\overline{Y},\overline{\eta}}S(\widehat{R}(\overline{X},\overline{Y}),\overline{\eta})\overline{W} = 2kL^2S(\overline{X},\overline{Y})\overline{W}. \tag{3.7}$$

Setting $\overline{Z} = \overline{\eta}$ into (3.4), taking into account (3.5)–(3.7), the result follows. \square

Corollary 3.2. Akbar-Zadeh's theorem [1] is obtained from the above Theorem by letting $\omega = 0$.

Corollary 3.3. A Finsler manifold (M, L) is S_3 -like if ω in Theorem 3.1 is given by

$$\omega(\overline{X}, \overline{Y})\overline{Z} = s\{\hbar(\overline{X}, \overline{Z})\phi(\overline{Y}) - \hbar(\overline{Y}, \overline{Z})\phi(\overline{X})\}, \tag{3.8}$$

where ϕ is given by (2.10) and s is a scalar function depending only on the position.

Proof. From Theorem 3.1(b) and (3.8), the ν -curvature tensor S takes the form:

$$S(\overline{X}, \overline{Y})\overline{Z} = \frac{1}{L^2} \left\{ s + \frac{(\stackrel{1}{\nabla} \stackrel{1}{\nabla} s)(\bar{\eta}, \bar{\eta})}{2kL^2} \right\} \left\{ \bar{\eta}(\overline{X}, \overline{Z})\phi(\overline{Y}) - \bar{\eta}(\overline{Y}, \overline{Z})\phi(\overline{X}) \right\}.$$

As the ν -curvature tensor S is written in the above form, then the term

$$\left\{ s + \frac{(\stackrel{1}{\nabla} \stackrel{1}{\nabla} s)(\bar{\eta}, \bar{\eta})}{2kL^2} \right\}$$

depends on the position only [9], and so (M, L) is S_3 -like. \square

Corollary 3.4. If the scalar function s in (3.8) is constant, we have:

(a)
$$P(\overline{X}, \overline{Y})\overline{Z} = P(\overline{Y}, \overline{X})\overline{Z}$$
.
(b) $S(\overline{X}, \overline{Y})\overline{Z} = \frac{s}{t^2} \{\hbar(\overline{X}, \overline{Z})\phi(\overline{Y}) - \hbar(\overline{Y}, \overline{Z})\phi(\overline{X})\}$.

Corollary 3.5. If the tensor field ω in Theorem 3.1 is given by

$$\omega(\overline{X}, \overline{Y})\overline{Z} = \mathfrak{A}_{\overline{X}\,\overline{Y}} \{ H(\overline{X}, \overline{Z})\phi(\overline{Y}) + \hbar(\overline{X}, \overline{Z})H_o(\overline{Y}) \},$$

where H is a symmetric indicatory h(0) 2-scalar π -form and $H(\overline{X}, \overline{Y}) =: g(H_o(\overline{X}), \overline{Y})$, then (M, L) is S_4 -like, that is,

$$S(\overline{X},\overline{Y})\overline{Z} = \frac{1}{L^2} \mathfrak{A}_{\overline{X},\overline{Y}} \big\{ \mu(\overline{X},\overline{Z}) \phi(\overline{Y}) + \hbar(\overline{X},\overline{Z}) \mu_o(\overline{Y}) \big\},$$

where
$$\mu(\overline{X}, \overline{Y}) = \left\{ H(\overline{X}, \overline{Y}) + \frac{\begin{pmatrix} \frac{1}{\nabla} \frac{1}{\nabla} H \end{pmatrix}_{(\overline{\eta}, \overline{\eta}, \overline{X}, \overline{Y})}}{2kL^2} \right\}.$$

Proof. The proof is clear and we omit it. \Box

Acknowledgments

The author express his sincere thanks to the reviewers for their comments and suggestions and special thanks to Professor Nabil L. Youssef for his guidance and valuable discussions.

References

- [1] H. Akbar-Zadeh, Les espaces de Finsler et certaines de leurs généralisation, Ann. Sci. Ecole Norm. Sup. 80 (3) (1963) 1–79.
- [2] S. Hōjō, On generalizations of Akbar-Zadeh's theorem in Finsler geometry, Tensor, N.S. 7 (1982) 285–290.
- [3] H. Akbar-Zadeh, Initiation to Global Finsler Geometry, Elsevier, 2006.
- [4] P. Dazord, Propriétés globales des géodésiques des espaces de Finsler, Thèse d'Etat, (575) Publ. Dept. Math. Lyon, 1969.
- [5] A. Soleiman, Infinitesimal Transformations and Changes in Finsler Geometry and Special Finsler Spaces, Ph. D. Thesis, Cairo University, 2010.
- [6] Nabil L. Youssef, S.H. Abed, A. Soleiman, A global approach to the theory of connections in Finsler geometry, Tensor, N.S. 71 (3) (2009) 187–208, 0801.3220 [math.DG].
- [7] Nabil L. Youssef, S.H. Abed, A. Soleiman, Geometric objects associated with the fundamental connections in Finsler geometry, J. Egypt. Math. Soc. 18 (1) (2010) 67–90, 0805.2489 [math.DG].
- [8] Nabil L. Youssef, S.H. Abed, A. Soleiman, A global approach to the theory of special Finsler manifolds, J. Math. Kyoto Univ. 48 (4) (2008) 857–893, 0704.0053 [math. DG].
- [9] A.A. Tamim, Special Finsler manifolds, J. Egypt. Math. Soc. 10 (2) (2002) 149–177.