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0. Introduction

Using the tools of the traditional tensor calculus, in his paper
[1], Akbar-Zadeh proved that if the h-curvature R}, of the Car-
tan connection CI” associated with a Finsler manifold (M, L),
dimM > 3, satisfies

R?/k = k(g[/.(s;; - gik‘s,r'):

where k is a scalar function on 7 M, positively homogeneous
of degree zero ((0) p-homogeneous), then

(a) k is constant,
(b) if k0, then
(1) the v-curvature of CI" vanishes: Sj.'j,( =0,
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(2) the hv-curvature of CTI' is symmetric with respect to
the last two indices: Py = P} .
In his paper [2], Hojo showed, also by local calculations,
that if the /-curvature R, of the generalized Cartan connec-
tion CI', dimM > 3, satisfies'

Ry, = k2 { g0 + (0 = 2)(g, el — 661},

where & is a (0) p-homogeneous scalar function and 1 # ¢ € R,
then

(a) k is constant,

(b) if k0, then
(1) the v-curvature of CT satisfies S}, = 54= ;. {hyi; },
(2) the hv-curvature of CI' is symmetric with respect to
the last two indices.

The aim of the present paper is to provide intrinsic proofs of
Akbar-Zadeh’s and Hojo’s theorems. As a by-product, some
consequences concerning Si-like and Sy-like spaces are
deduced.

' 9; indicates interchanges of indices j and k, and subtraction:
W {Fiy} = Fiy = Fji.
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Thus the present work is formulated in a coordinate-free
form, without being trapped into the complications of indices.
Naturally, the coordinate expressions of the obtained results
coincide with the starting local formulations.

1. Notation and preliminaries

In this section, we give a brief account of the basic concepts of
the pullback approach to intrinsic Finsler geometry necessary
for this work. For more details, we refer to [3-5]. We shall use
the same notations as in [5].

In what follows, we denote by n : 7 M — M the subbundle
of nonzero vectors tangent to M and by X(n(M)) the F(TM)-
module of differentiable sections of the pullback bundle
n Y (TM). The elements of X(n(M)) will be called m-vector
fields and will be denoted by barred letters X. The tensor fields
on n~!(TM) will be called n-tensor fields. The fundamental 7-
vector field is the n-vector field 77 defined by 7(u) = (u, u) for all
ueTM.

We have the following short exact sequence of vector
bundles

YTM) L T(TM) L 7 (TM) — 0,

0—mn

with the well known definitions of the bundle morphisms p and
y. The vector space V,(TM)={X¢e T,(TM):dn(X)=0}is
called the vertical space to M at u.

Let D be a linear connection (or simply a connection) on
the pullback bundle =~ !(TM). We associate with D the map
K:TTM — 7~ '(TM) : X»Dyj, called the connection map
of D. The vector space H,(TM)={XeT,(TM):
K(X) =0} is called the horizontal space to M at u. The con-
nection D is said to be regular if T,(7M)=V,(TM)®
H,(TM)VueTM.

If M is endowed with a regular connection, then the vector
bundle maps 7,p|y7y, and Ky, are vector bundle
isomorphisms. The map f := (p|HTM)) will be called the
horizontal map of the connection D.

The horizontal ((h)h-) and mixed ((k)hv-) torsion tensors of
D, denoted by Q and T respectively, are defined by

O(X.Y)=T(BXBY), T(X,Y) =T(yX,fY) VXY € X(n(M)),
where T is the torsion tensor field of D defined by
T(X,Y) = DypY — DypX — p[X, Y] VX, Y€ X(TM).

The horizontal (A-), mixed (iv-) and vertical (v-) curvature
tensors of D, denoted by R, P and S respectively, are defined by

R(X,Y)Z = K(FXFT)Z,
S(X,Y)Z = K(/X,77)Z,

P(X,Y)Z =K(pX,7Y)Z,

—

NI NI

~~

where K is the (classical) curvature tensor field associated
with D.

The contracted curvature tensors of D, denoted by ﬁ, P
and S respectively, known also as the (v)A-, (v)hv- and (v)v-tor-
sion tensors, are defined by

If M is endowed with a metric g on n~'(TM), we write

R(X,Y,Z,W) = g(RX.V)Z, W), ..., S(X,Y,Z, W)
= ¢(S(X, V)Z,W).

The following result is of extreme importance.

Theorem 1.1 [6]. Let (M, L) be a Finsler manifold and g the
Finsler metric defined by L. There exists a unique regular
connection $ on i~ (TM) such that

(a) $ is metric : Vg =0,
(b) The (h)h-torsion of $ vanishes: Q =0,
(c) The (h)hv-torsion T of $ satisfies: g

g(T(X,2), 7).

This connection is called the Cartan connection of the Finsler
manifold (M, L).

2. First generalization of Akbar-Zadeh theorem

In this section, we investigate an intrinsic generalization of
Akbar-Zadeh theorem. We begin first with the following two
lemmas which will be useful for subsequent use.

Lemma 2.1. Let $ be the Cartan connection of a Finsler manifold
(M, L). For a n-tensor field » of type (1, 1), we have the following
commutation formulae:

S, Y)o(Z),
(b) (% %w) X.Y.Z) - (6 Vo |(7,X,Z) = o(P(X,7)Z)-
P(X,T)o(Z) + (éw) (P(X.Y).2)+ (%w (T(Y,%),7)
© (% Vo |X.7.2) - (6 Vo |(7,X.Z) = o(R(X,7)Z)-

where N and NV are the h- and v-covariant derivatives associated
with $.

Lemma 2.2. Let (M, L) be a Finsler manifold, g the Finsler met-
ric defined by L,¢ := L’]iﬁg and h := g— Lol the angular
metric tensor. Then we have:

1 2
() YL=0, YL=¢.
by Vi=0, Vi=L"%h
© gl =L, izhi=0.

Proof. The assertions follow the facts that Vg=0 and
g, =1L O

Now, we have

Theorem 2.3. Let (M, L) be a Finsler manifold of dimension n
and g the Finsler metric defined by L. If the (v)h-torsion tensor
R of the Cartan connection is of the form

R(X,Y) = kL(E(X)Y — ((T)X), (2.1)
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where k is a positive homogeneous function of degree 0 on TM,
then:

(a) Cz57RX,Y)Z=0."
(b) k is constant if dimM > 3.

Proof.

(a) We have [7]:
C37zR(X.Y)Z = S33;T(R(X,Y), Z). (2.2)

From (2.1), noting that the (h)hv-torsion T is symmetric, we

Hence, the result follows from (2.2) and (2.3).
(b) We have [7]:

67{?2{(v[xxR)(Y Z W) + P(R(X, Y) W} =0. (2~4)

From (2.1), noting that the (v)hy-torsion Pis symmetric [7], we
get

Sr3zP(R(X.1),2) =kL{UX) P(V.2) - (V) P(X.Z) }

+kL{(T)P(Z.X) - UZ)P(V.X) |
+kL{Z( VP(X,Y)— (X ﬁ(z,*)} -0
From this and (2.4) it follows that
Cy72(VaR)(Y,Z) =0. (2.5)

Again from (2.1), noting that Vz¢ = 0 (Lemma 2.2(b)), (2.5)

reads

L(Vzk){UY)Z — UZ)Y} + L(V k) {{(Z
+ L(V k) {¢((X)Y — £{(Y)X} = 0.

)X - ((X)Z)

Setting Z = 7 into the above equation, noting that £(ij) = L
(Lemma 2.2(c)), we obtain

L(v/f)_(k) {6(7)’7 - LY} + L(V/ﬁk){Ly - 6(7)77}

+ L(Vgk){¢(X)Y — ¢(Y)X} = 0.
Taking the trace of both sides with respect to Y, it follows that
Vxk = L™ (V k) l(X). (2.6)

On the other hand, we have [7]

(V,T(R)(?vzv ) + (vﬁ?P)( s Ay ) - (vﬂfp)(77 )_(7 W)
— P(Z,P(Y,X))W+ R(T(X,Y),ZYW — S(R(Y,Z), X)W
+P(Y,P(Z,X))W - R(T(X,Z), Y)W =0 (2.7)

2 Gy 77 denotes the cyclic sum over X,Y and Z.

Setting W =1ij into the above relation, noting that

Koy = idxmy), Ko f=0and § =0, it follows that

(VaR)(Y.Z) - RY.Z)X + (V7 P)(Z.X) -
—~ ﬁ(z P(Y, X))+

R(T(X,Z),Y) =
Applying the cyclic sum S35 on the above equation, taking
(a) into account, we get
Syy2(VxR)(Y,Z) =0. (2.8)

(VizP)(Y.X)
R(T(X,Y),Z) + P(Y,P(Z,X))
0.

Substituting (2.1) into (2.8), using (V,50)(Y) = L™'h(X,Y)
(Lemma 2.2(b)), we have

LV {0 T £(T)X)} + LV k) { ({2 X~ (F)Z)}
+L(V, k{( (VZ—UZ)T)} +keZ){ (LX) T —L(T)X)}
KD (2T~ RZ) )+ k(D) {( ) —(2)7))
KL{(h(X,Z) Y~ (Y. Z)%)} +kL{(h(Z. V)X~ h(X,7)Z)}
KLY, B)Z - W(Z.X)T)} =0,

Setting Z = 7§ into the above relation, noting that £(ij) = L
Ji(17,.) = 0 (Lemma 2.2(c)) and V,;k = 0, we conclude that

LV 5k (V) = V 5k (X} =0, (29)
where ¢ is a vector n-form defined by
g(p(X),Y) =h(X, 7).

Taking the trace of both sides of (2.9) with respect to Y,
noting that Tr(¢) = n — 1 [8], it follows that

(2.10)

(n—2)V zk = 0.
Consequently,

Vzk =0 forall X € X(n(M)), if n > 3. (2.11)

Now, applying the v-covariant derivative with respect to Y
on both sides of (2.6), yields

()Y gk + L(% %k) (X, 7) = L0(X, 7)(V k)

21 12
Since, VVk=V Vk =0 (Lemma 2.1 and (2.11)), the above
relation reduces to

(V) ek = L™'0(X, T)(V k),

whenever n > 3. Setting Y = jj into the above equation, noting
that £(77) = L and A(.,77) = 0, it follows that Vgk = 0. Conse-
quently, again by (2.6),

Vigk=0 for all XeX(n(M), ifn>3. (2.12)

Now, Egs. (2.11) and (2.12) imply that k is a constant if
n = 3.

This completes the proof. [
Theorem 2.4. Let (M, L) be a Finsler manifold with dimension

n =3 and let q#1 be an arbitrary real number. If the h-
curvature tensor R satisfies
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+(g=2{Le(X, 2)t(V)q
i X}} (2.13)

where k is an h(0)- homogeneous function, then

(a) k is a constant.
(b) Ifk?éO,_wE h_ave B
(1) P(X,Y)Z = P(V,X)
(2) SX,V)Z = 5754

(M L) is symmetric),

Z (ie.,
h)_(Z Y)-nY,Z)p(X)}.

Proof.

(a) Setting Z =
DEL{(X)Y — £(Y)X}.

7 into (2.13), we get

R(X,Y)=2(q~ (2.14)

From this and Theorem 2.3, the result follows.
(b) (1) Applying the v-covariant derivative with respect to
W on both sides of (2.13), we get

(V7 R)(X, Y, Z) = 0.
From this and (2.4) it follows that

S372P(R(X,Y),Z)W = 0. (2.15)

In view of (2.14), noting that k0, (2.15) implies that

2(q - DWL{PUX)Y — ()X, Z)W} +2(q— 1)

L{PU(MZ—-UZ2)Y, X)W} +2(q—1)

L{PU(Z)X — U(X)Z, Y)W} = 0.
Setting Z = 7 into the above equation, taking into account the
fact that £(7) = L and P(.,77). = P(7,.). = 0 [7], we get

2(q-1)L{P(X, Y)W - P(Y, X)W} = 0.
Hence, the result follows.

(b) (2) Taking the cyclic sum Sg7z of (2.7) and using (b)
(1), we obtain
w}=o0.

On the other hand, by taking the v-covariant derivative of both
sides of (2.13), using (V,zL) = {(X), (V,50)(Y) = L”'h(X, Y)
and V 3¢ =0, we get

Sr32{ (VxR(T. Z, ) - S(R(Y,Z), %) (2.16)

(V~-)_(R) (?7 77 ) -

U LZ
+ X (T) @ - WZ, )W)
~W(Z)T) )

Taking the cyclic sum S357 of both sides of the above equa-
tion and then setting Z = #, it follows that

Sy (VaR)(Y, 1, W) = 2k(q — 2){h(Y, W)$(X)
~h(X, W)p(Y)}.

In view of (2.14), noting that S(.,
ric [7], we obtain

(2.17)

7). = 0 and S is antisymmet-

Sy7,S(R(Y. 1), X)W = 4kL*(q — 1)S(X, Y)W. (2.18)

Therefore, by setting Z = i into (2.16), taking (2.17) and (2.18)
into account, the result follows. [

Corollary 2.5. Akbar-Zadeh’s theorem [1] is a special case of
Theorem 2.4, for which g = 2.

Corollary 2.6. If the h-curvature tensor R of (M,L), where
dimM = 3, satisfies

ROCTZ = ki { (e, 2) L - 4200 ).

then k is a constant and, moreover, if k#0, we have:

(a) (M, L) is symmetric.
(b) S(X,Y)Z = #+{n(X,Z)$(Y)

- h(Y,Z)p(X)}.

3. Second generalization of Akbar-Zadeh’s theorem

In this section, we give a second, intrinsically formulated gen-
eralization of Akbar-Zadeh’s theorem.

Theorem 3.1. If the h-curvature tensor R of (M, L),dimM > 3,
satisfies
RX,V)Z=k{g(X,2)Y —g(Y,Z)X + o(X,Y)Z}, (3.1)
where w is an indicatory antisymmetric h(0) m-tensor field of
type (1,3) and k is an h(0)-function on TM, then

(a) k is a constant.

(b) If k0, we have:
(WP(X,Y)Z - P(X,V)Z =

- - 1 || [ — S
OSEDZ =1 { 5 Vo). X 7.2+ o(x, 712
Proof.

(a) Follows from Theorem 2.3 by setting Z = # into (3.1).
(b) (1) By (3.1), we have
R(X,Y) = kL{¢(X)Y — ((Y)X}, (3.2)
and by (2.4), we have
Sr3, {(V xR (.5, W) + P(R(X, V), i)W} = 0. (3.3)

Now, substituting (3.1) and (3.2) into (3.3), we obtain
k{(Viyo) (X, Y, W) — L{P(X, ) Z - P(Y, X)Z}} =0

from this, since k70, the result follows.
(b)  (2) Taking the cyclic sum &5 57 of (2.7), we obtain
Sr32{ (VaR(T.Z. W) + (V5P)(Z. X, )
~(VzP) (T, X, W) - S A(?,Z)j)W} =0. (3.4)
In view of (1) above, it follows that
(VP)(X, Y, Z) — (V7P)(Y,

1 1 — -
= ’2(VVco W,i1,X,Y,Z).
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From this we get
Syyl (VaP)X, Y, Z) — (Vi P)(Y, X, Z)}

LV VeMnLTYZ). (35
On the other hand, noting that w is homogeneous of degree
zero, we obtain

6?.7,)7(vy)_(R)(7a 1, ) = va’R) (77 1, W) + (V,T’R)

i

< (X, Y, W)
=2k (X, Y)W. (3.6)
G 7, S(R(X.Y),0)W = 2kL’S(X, Y)W. (3.7)

Setting Z = i into (3.4), taking into account (3.5)-(3.7), the
result follows. [

Corollary 3.2. Akbar-Zadeh’s theorem [1] is obtained from the
above Theorem by letting @ = 0.

Corollary 3.3. A Finsler manifold (M,L) is Ss-like if o in
Theorem 3.1 is given by

(X, VZ=s{h(X,Z)p(Y) - h(Y,Z)p(X)}, (3.8)

where ¢ is given by (2.10) and s is a scalar function depending
only on the position.

Proof. From Theorem 3.1(b) and (3.8), the v-curvature tensor
S takes the form:

v I{SJFW}{?;()_(Z)(/)(_)71(7,7)¢()_()}'

As the v-curvature tensor S is written in the above form, then
the term

1 1
(V V)@, 1)
2kI?

depends on the position only [9], and so (M, L) is Ss-like. O

Corollary 3.4. If the scalar function s in (3.8) is constant, we
have:

Corollary 3.5. If the tensor field w in Theorem 3.1 is given by

o(X,Y)Z = Uz3{H(X,Z)$(Y) + 1(X, Z)H,(Y)},

where H is a symmetric indicatory h(0) 2-scalar n-form and
H(X,Y) = g(H,(X),Y), then (M, L) is Sq-like, that is,

SOF, 17 = 5 %5 (X Z)6(V) + H(¥, e (7)),

Proof. The proof is clear and we omit it. [
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