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Abstract In this paper we develop the total umbilicity of the spacelike submanifold M of a de-Sit-

ter space with the help of some integral formulas, index form of a nonnull geodesic and the Jacobi

equation.
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1. Introduction

Let Lnþp
p ðcÞ be an ðnþ pÞ-dimensional connected semi-Rie-

mannian manifold of constant curvature c whose index is p.

It is called an indefinite space form of index p and simply a
space form when p ¼ 0. If c > 0, we call it as a de-Sitter space
of index p, denote it by Snþp

p ðcÞ. Let Mn be an n-dimensional

Riemannian manifold immersed in Snþp
p ðcÞ. The semi-Rie-

mannian metric of Snþp
p ðcÞ induces the Riemannian metric of

Mn;Mn is called a spacelike submanifold.
The study of spacelike submanifolds in de-Sitter space has
been recently of substantial interest for both physics and math-
ematical point of view. In [1], Ximin achieved the total umbi-
licity of spacelike submanifolds with certain conditions on

curvatures under the assumption that the normal bundle is flat
and the normalized mean curvature vector is parallel. Further,
in [2], it is seen that the index form and Jacobi equation pro-

vide nice relations to obtain interesting results on spacelike
submanifolds using techniques of integral formulas [3]. Moti-
vated from this literature, in this article we apply index form

together with integral formulas on the Laplacian of the
squared norm of the second fundamental form and obtain
our main result in the form of the following theorem.

Theorem. Let Mn be a compact spacelike submanifold of de

Sitter space Snþp
p ðcÞ with parallel mean curvature vector field n in

the normal bundle. Let x : ½a; b� � ð�d; dÞ !M be the fixed end
point geodesic variation such that V0j j2 6 RðV; a0ÞV; a0h i, where
V and a0 are the Jacobi vector field and the tangent vector field
to any nonnull geodesic a respectively, then Mn is totally
umbilical and the second fundamental form of Mn is parallel.
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2. Preliminaries

Let Mn be an n-dimensional Riemannian manifold,
e1; e2; . . . ; en, a local orthonormal frame field on Mn, and let

x1;x2; . . . ;xn be its dual coframe field. Then the structure
equations of Mn are given by

dxi ¼
X
j

xijKxj; xij þ xji ¼ 0 ð2:1Þ

dxij ¼
X
k

xikKxkj �
1

2

X
k;l

RijklxkKxl ð2:2Þ

where xij is the Levi–Civita connection form and Rijkl are the

components of the curvature tensor of Mn.
For any C2-function f defined on Mn, we define its gradient

and Hessian by the following formulas:

df ¼
X
i

fixi ð2:3Þ

X
j

fijxj ¼ dfi þ
X
j

fjxji ð2:4Þ

Further let / ¼
P

ij/ijxi � xj be a symmetric tensor defined on
Mn. The covariant derivative of /ij is defined byX
k

/ijkxk ¼ d/ij þ
X
k

/kjxki þ
X
k

/ikxkj ð2:5Þ

We call the symmetric tensor / ¼
P

i/ijxi � xj, a Codazzi ten-
sor if /ijk ¼ /ikj.

The second covariant derivative of /ij is defined byX
l

/ijklxl ¼ d/ijk þ
X
m

/mjkxmi þ
X
m

/imkxmj

þ
X
m

/ijmxmk ð2:6Þ

By the exterior differentiation of Eq. (2.5) we derive

X
k

fd/ijkKxkg ¼ d2/ij þ
X
k

fd/kjKxkig þ
X
k

fd/ikKxkjg

or

X
k;l

f/ijklxlKxkg ¼
X
k

fd/kjKxkig þ
X
k

fd/ikKxkjg

orX
k;l

f/ijklxlKxkg ¼
X
m

/mjXmi þ
X
m

/imXmj ð2:7Þ

Through an standard calculation by using Eqs. (2.2) and (2.7),

we haveX
k;l

f/ijkl � /ijlkgxlKxk ¼ 2
X
m

/mjXmi þ 2
X
m

/imXmj

from which it follows that

/ijkl � /ijlk ¼
X
m

/mjRmikl þ
X
m

/imRmjkl ð2:8Þ

Above Eq. (2.8) is called the Ricci identity.
Now we derive the expression of the Laplacian D/ of the

tensor /ij which is defined to be
P

k/ijkk. From this definition

of the Laplacian we write
D/ ¼
X
k

/ijkk ¼
X
k

ð/ijkk � /ikjkÞ þ
X
k

ð/ikjk � /ikkjÞ

þ
X
k

ð/ikkj � /kkijÞ þ
X
k

/kkij

The above equation yields

D/ ¼
X
m;k

/mkRmijk þ
X
m;k

/imRmkjk þ
X
k

ð/ijkk � /ikjkÞ

þ
X
k

ð/ikkj � /kkijÞ þ
X
k

/kk

 !
ij

ð2:9Þ

Since the tensor /ij is Codazzi, we have /ijk ¼ /ikj from which

we conclude

/ijkk ¼ /ikjk ð2:10Þ

Also we know that /ij is symmetric i.e. /ij ¼ /ji from which we
get /ijk ¼ /jik. Taking this into account, we find that

/ikk ¼ /kik

or

/ikk ¼ /kki

that is

/ikkj ¼ /kkij ð2:11Þ

Using Eqs. (2.9)–(2.11) we calculate

D/ij ¼
X
k

/kk

 !
ij

þ
X
m;k

/mkRmijk þ
X
m;k

/imRmkjk

Let /k k2 ¼
P

i;j/
2
ij; r/k k2 ¼

P
i;j;k/

2
ijk and tr/ ¼

P
k/kk.

Then from the above we deduce

1

2
D /k k2 ¼ r/k k2 þ

X
i;j

/ijðtr/Þij þ
X
i;j;m;k

/ij/mkRmijk

þ
X
i;j;m;k

/ij/imRmkjk

Near a given point p 2Mn, we choose a local orthonormal
frame field fe1; e2; . . . ; eng and its dual frame field
fx1;x2; . . . ;xng such that / ¼

P
i;j/ijxi � xj, /ij ¼ kidij at p.

Then the above equation is simplified to

1

2
D /k k2 ¼ r/k k2 þ

X
i

kiðtr/Þii þ
X
i;j

kikjRjiij þ
X
i;j

k2
i Rijij

or

1

2
D /k k2 ¼ r/k k2 þ

X
i

kiðtr/Þii þ
1

2
f
X
i;j

k2
i Rijij þ

X
i;j

k2
j Rjiji

� 2
X
i;j

kikjRijijg

from which we finally get

1

2
D /k k2 ¼ r/k k2 þ

X
i

kiðtr/Þii þ
1

2
Rijijðki � kjÞ2 ð2:12Þ
3. Spacelike submanifolds in de Sitter space and index form

Let Mn be an n-dimensional space-like submanifold in Snþp
p ðcÞ.

We choose a local field of semi-Riemannian orthonormal
frames e1; e2; . . . ; enþp in Snþp

p ðcÞ such that at each point of



Spacelike submanifolds of de-Sitter space 525
Mn; e1; e2; . . . ; en span the tangent space of Mn and form an
orthonormal frame there. We use the following convention
on the range of indices:

1 6 A;B;C; . . . 6 nþ p; 1 6 i; j; k; . . . 6 n; nþ 1

6 a; b; c; . . . 6 nþ p

In terms of dual frame field the semi-Riemannian metric of
Snþp
p ðcÞ is given by d�s2 ¼

P
ix

2
i �

P
ax

2
a ¼

P
AeAx2

A where
ei ¼ 1 and ea ¼ �1. Then the structural equations of Snþp

p ðcÞ
are given by [1]

dxA ¼
X
B

eBxABKxB; xAB þ xBA ¼ 0 ð3:1Þ

dxAB ¼
X
C

eCxACKxCB �
1

2

X
C;D

KABCDxCKxD ð3:2Þ

where KABCD ¼ ceAeBðdACdBD � dADdBCÞ.
Now restricting these forms on Mn, we have

xa ¼ 0; nþ 1 6 a 6 nþ p ð3:3Þ

From Cartan’s lemma, we write

xai ¼
X
j

ha
ijxj; ha

ij ¼ ha
ji ð3:4Þ

From these formulas, we obtain the structure equations of Mn

as follows:

dxi ¼
X
j

xijKxj; xij þ xji ¼ 0 ð3:5Þ

dxij ¼
X
k

xikKxkj �
1

2

X
k;l

RijklxkKxl ð3:6Þ

Rijkl ¼ cðdikdji � dildjkÞ �
X

a

ðha
ikh

a
jl � ha

ilh
a
jkÞ ð3:7Þ

Here we have

h ¼
X

a

haea ¼
X
i;j;a

ha
ijxi � xj � ea

The mean curvature vector field n, the mean curvature H and
the square of the length of the second fundamental form S are

expressed as

n ¼
X

a

Haea; H ¼ nk k; S ¼
X
i;j;a

ðha
ijÞ

2 ð3:8Þ

respectively, where the matrix of ha is given by
La ¼ ðha

ijÞn�n and Ha ¼ 1
n

P
ih

a
ii for a ¼ nþ 1; nþ 2; . . . ; nþ p.

Moreover the normal curvature tensor fRabklg and the normal-
ized scalar curvature R are expressed as

Rabkl ¼
X
m

ðha
kmh

b
ml � ha

lmh
b
mkÞ

and

R ¼ cþ 1

nðn� 1Þ ðS� n2H2Þ

If Rabkl ¼ 0 at any point x of Mn, we say that the normal con-
nection is flat at x. It is well known that Rabkl ¼ 0 at x if and
only if h0as are simultaneously diagonalizable at x [4]. Now sup-

pose that the mean curvature vector n is parallel in the normal
bundle i.e. the length of n is constant which gives H ¼ con-
stant. Further assume that H is a positive constant on Mn
and choose enþ1 ¼ n
H
. Then it follows that Hnþ1 ¼ H and

Ha ¼ 0, for a > nþ 1. The following definitions are essential
for proving the main result of this article:

Definition [2]. A variation of a curve segment a : ½a; b� !M is
a two parameter mapping
x : ½a; b� � ð�d; dÞ !M

such that aðuÞ ¼ xðu; 0Þ for all a 6 u 6 b. The vector field V on

a given by VðuÞ ¼ xvðu; 0Þ is called the variation vector field of
x. Similarly the vector field AðuÞ ¼ xvvðu; 0Þ gives the accelera-
tion and we call it the transverse acceleration vector field of x.

As a particular case of variational vector field we have
Jacobi vector field defined as follows:

Definition [2]. If c is a geodesic, a vector field Y on c that

satisfies the Jacobi differential equation Y00 ¼ RYc0 ðc0Þ is called
a Jacobi vector field.

Also we know that if L is the arc length function of x then
the first variation of arc length function is given by [2].

L0xð0Þ ¼ e
Z b

a

g
a0

a0j j ;V
0

� �
du

where e is the sign of a.
The second variation of arc length of LxðvÞ is possible in

case a is a geodesic and is given by [2]

L00xð0Þ ¼
e
c

Z b

a

f V0;V0h i � RðV; a0ÞV; ah igduþ e
c
½ a0;Ah i�ba

where a0k k ¼ c > 0 and A is the transverse acceleration vector

field of the variationx.
We recall that the Riemannian curvature tensor is defined

as:

Definition [2]. Let M be a semi-Riemannian manifold with

Levi–Civita connection r. The function R : TM� TM
�TM! TM given by
RðX;YÞZ ¼ r½X;Y�Z� ½rX;rY�Z

is a ð1; 3Þ-tensor field on M called Riemannian curvature
tensor.

It is clear that for a fixed endpoint variation the last term of

the above expression is zero and hence we have
L00xð0Þ ¼
e
c

Z b

a

f V0;V0h i � RðV; a0ÞV; ah igdu

Definition [2]. The index form Ia of a nonnull geodesic

a 2 Xðp; qÞ, is the unique symmetric bilinear form

Ia : TaðXÞ � TaðXÞ ! R

such that if V 2 TaðXÞ, then
IaðV;VÞ ¼ L00xð0Þ

where Xðp; qÞ is the collection of all piecewise smooth curve
segments a : ½a; b� !M from p to q.
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Moreover in the proof of our main result we make use of
Green’s theorem which states that

Theorem [4]. For any function f on an orientable closed

Riemannian manifold M, we have

Z
M

DfdV ¼ 0

We are now in a position to prove the main result of this article
as follows:
4. Proof of the main theorem
Theorem 1. Let Mn be a compact spacelike submanifold of de
Sitter space Snþp

p ðcÞ with parallel mean curvature vector field nin
the flat normal bundle. Let x : ½a; b� � ð�d; dÞ !M be the fixed
end point geodesic variation such that V0j j2 6 RðV; a0ÞV; a0h i,
where V and a0 are the variation vector field and the tangent

vector field to any nonnull geodesic arespectively, then Mn is
totally umbilical and the second fundamental form of Mn is
parallel.

Proof. Taking / ¼ h, where h is the second fundamental form

as defined previously, we obtain from Eq. (2.12)

1

2
D hk k2 ¼ rhk k2 þ

X
i

kiðtrhÞii þ
1

2
Rijijðki � kjÞ2

Since h is simultaneously diagonalizable, we have hij ¼ kidij

which from the above equation yields

1

2
D hk k2 ¼ rhk k2 þ

X
i

hiiðnHÞii þ
1

2
Rijijðhii � hjjÞ2

But from the assumption n is parallel in the normal bundle i.e.
nj j ¼ H ¼ constant. Using this result we get ðnHÞii ¼ 0. Putting

this value in the above equation we find

1

2
D hk k2 ¼ rhk k2 þ 1

2
RðX;YÞX;Yh iðhðX;XÞ � hðY;YÞÞ2

for any tangent vector fields X and Y of Mn.

Taking in particular X ¼ V and Y ¼ a0, in the above
equation where V and a0 are as the supposition, we get

1

2
D hk k2 ¼ rhk k2 þ 1

2
RðV; a0ÞV; a0h iðhðV;VÞ � hða0; a0ÞÞ2

ð4:1Þ

Now since Mn is compact, integrating the above equation and
using Green’s theorem, we deriveZ
M

rhk k2þ1

2

Z
M

f RðV;a0ÞV;a0h iðhðV;VÞ�hða0;a0ÞÞ2g¼ 0

ð4:2Þ
AsMn is a spacelike submanifold, its index is 0; therefore, from
[lemma-13, page-273, 2], it follows that the Index form Ia sat-
isfies the inequality

Ia P 0

or

1

c

Z b

a

f V0;V0h i � RðV; a0ÞV; a0h igdu P 0
Further a0j j ¼ c > 0, implies that

f V0;V0h i � RðV; a0ÞV; a0h igP 0

This gives

V0j j2 P RðV; a0ÞV; a0h ig ð4:3Þ
The above inequality along with Eq. (4.2), shows thatZ
M

rhk k2 þ 1

2

Z
M

f V0j j2ðhðV;VÞ � hða0; a0ÞÞ2gP 0 ð4:4Þ

By assumption we have V0j j2 6 RðV; a0ÞV; a0h iwhich givesZ
M

rhk k2 þ 1

2

Z
M

f V0j j2ðhðV;VÞ � hða0; a0ÞÞ2g 6 0 ð4:5Þ

Combining Eqs. (4.4) and (4.5), we conclude thatZ
M

f rhk k2 þ 1

2
V0j j2ðhðV;VÞ � hða0; a0ÞÞ2g ¼ 0

or

rhk k ¼ 0 and f V0j j2ðhðV;VÞ � hða0; a0ÞÞ2g ¼ 0

This shows that rh ¼ 0 and either V0 ¼ 0 or

ðhðV;VÞ � hða0; a0ÞÞ2 ¼ 0. Now we discuss two possibilities

(i) if rh ¼ 0 and V 0 ¼ 0

(ii) if rh ¼ 0 and ðhðV ; V Þ � hða0; a0ÞÞ2 ¼ 0

First possibility implies that the variational vector field is con-
stant from starting point to the end point of the fixed endpoint

geodesic variation but this is impossible for the fixed endpoint
geodesic variation as V ðaÞ ¼ V ðbÞ ¼ 0 for this kind of motion
and the variational vector field must be non-zero in between

the endpoints. Hence we have rh ¼ 0 and ðhðV ; V Þ
�hða0; a0ÞÞ2 ¼ 0. These equations show that

rh ¼ 0 and hðV;VÞ ¼ hða0; a0Þ ð4:6Þ

We know that there exists geodesic curves a through each
point p and along all the directions at p of a smooth manifold.
By our choice we can choose a0 to be some ei of the basis

fei : i ¼ 1; 2; . . . ; ng of Mn and V to be the Jacobi vector field
so that V; a0h i ¼ 0 i.e. V may be taken as one of the basis vec-
tors ej. Then from Eq. (4.6), we find that

hðei; eiÞ ¼ hðej; ejÞ for all i; j ¼ 1; 2; . . . ; n

Hence Mn is totally umbilical. This completes the proof of the
theorem. h
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