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1. Introduction

In [1] and its preprint [2], the following interesting integral
inequality was obtained.

Theorem 1.1 [1, Propositionl.3] and [2, Proposition2]. Let
n €N and the n-th order derivative of [ be continuous on
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[, b] CR. If f(a) = 0 for 0<i<n—1 and f(x) = n! on
[a,b], then

b

/,, b,f"”(x)dx > [ f(x)dxrl. (1.1)

At the end of [1,2], the following open problem was posed.

a

Open Problem 1.1 [I, Theoreml.5 (OpenProblem)] and [2,
OpenProblem]. Under what conditions does the inequality

/ff'(x)dx > [ bf(x)dx} (12)

hold for some ¢ > 1?

Thereafter, many mathematicians devoted to finding an-
swers to Open Problem 1.1 and to generalizing the integral
inequality (1.1). See [3-11] and plenty of references therein.
For a collection of over forty articles, please refer to the list
of references in the recently published paper [12].

Motivated by Open Problem 1.1, we now naturally pose the
following questions.
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Open Problem 1.2. Let f{x,y) be a positive and continuous
function defined on a rectangle [a, b] x [c, d] C R?. Under what
conditions does the inequality

1

/ﬂb /cdf’(x,y)dx dy > {/ub [df(x,y)dxdy} : (1.3)

hold for some 7 € R?

The aim of this paper is to provide several affirmative an-
swers to Open Problem 1.2. In other words, some new inequal-
ities for double integrals on a rectangle [a,b] X [¢,d], from
which some integral inequalities of Qi type may be derived, will
be established in this paper.

2. A definition and a lemma

For providing affirmative answers to Open Problem 1.2, we
need a definition and a lemma which are not common
knowledge.

Definition 2.1 (/73,/4]). Let ICR; = (0,00) be an interval
and r € R. A function f: I — R, is said to be r-mean convex
on [ if

A+ Q=21 <G+ =2rm)Y, 0
(2.1)

or

SV PR, r=0 (22)

for all x,y € I'and 4 € [0, 1]. If the above inequalities reverse,
then we say that the function f'is r-mean concave on /.

Remark 2.1. The 0-mean convex (0-mean concave, respec-
tively) functions are the well known geometrically convex (geo-
metrically concave, respectively) functions.

Lemma 2.1 (/13,14]). Let IC R, be an interval and r € R. A
Sfunction f: I — R, is r-mean convex (or r-mean concave, respec-
tively) on I if and only if

n 1/r n 1/r
f<[zzkx;;} );{zmm} o 23)
k=1 k=1

or

<H “><ka x¢), r=0 (2.4)

k=1
holds for all x = (x1,xa,..
22:1),]{ - ]

.eyxy) €1" and 2 = 0 satisfying

3. New inequalities of Qi type for double integrals

Now we are in a position to establish some new inequalities of
Qi type for double integrals on the rectangle [a,b] X [c, d].

Theorem 3.1. For IC Ry =[0,00) being an interval, let
Sf:[a,b] X [¢,d] — I be continuous and not identically zero, and
let g : I — Ry be convex (or concave, respectively). If

B.-Y. Xi, F. Qi

(b —a)(d - Ju)Zg((b — a)(d — ¢))g(w) (3.1
foru eI and

¢ g((b—a)(d—c))
[ [ enac oz Gomam. o
then we have

b rd >g<ff f:’f(x,y)dx dy)
[ senaraz D (3.3)

Proof. Let

(xk,yk):(a+§(b—a),c+§(d—c)), 1<k<n. (3.4)

By the convexity of g, by inequalities (3.1)
Lemma 2.1, we have

o[ /md\d})_g(@,a

<g((b—a)(d- ) nligglcg<

and (3.2), and by

—c }Lr?c”_ IZZ/ Xi, )

mg

<&((b-ad-a)iy zZng
St |

< (/ﬂh / Slx,p)dx dy)/u /( g(f(x,»))dx dy.

Thus, the inequality (3.3) in the direction > is true.
If g(u) is a concave function on 7, the proof is similar. This
completes the proof of Theorem 3.1. [

flx,y))dx dy

Corollary 3.1. Let f(x,y) be a positive continuous function on
[a,b] x [c,d] C R*.

1.Ift>1o0rt<0and

b d
[ [ fwsaxay = o -aa-o),
then

/a}7 /cd.f'(x,y)dx dy > {/ﬂh /Cdf(x,y)dxdy} : . (3.5)

2.If0 <t <1 and

b d
/ / fey)dx dy < [(b— a)(d - O],

then
1

/a b / df'(x,y)dx dy < { / b / df(x, y)dx dy} - (3.6)

3.0 1¢[0,1) and  f(x,y) = [b—a)d—c)]* for
(x,») € [a,b] X [e,d], then the inequality (3.5) is valid.

4.0f 0<t<1l and f(x,y)<[(b—a)d—c)" for
(x,y) € [a,b] x [c,d), then the lnequallty (3.5) is reversed.

SIf 122 and f(xy) = (t=1)[x—a)y =) for
(x,») € [a,b] X [e,d], then the inequality (3.5) is valid.

Proof. This follows from applying g(u) = u' for u >0 and
t € Rin Theorem 3.1. [



Some inequalities of Qi type for double integrals

339

Theorem 3.2. Let ICR, be an interval and r#0, and let
fila,b] x[c,d CR* =1 be a continuous function and
g: I — R.. If g(u) is r-mean convex (or r-mean concave, respec-
tively) and satisfies

g(l0 - a)d =) "u)Zg (16~ a)(d = )" )g(w), wer

(3.7)
and
/b /df( Jdx d _g(l0-a@-o1") (3.8)
A T Y L '
then

(2 2rimasa)”)

12 [ A, v)dx dy

Uab / Ce(r ) dy} "

Proof. Making use of the r-mean convexity of g, adopting
notations in (3.4), and employing Lemma 2.1 lead to

g<[ / b / )y dy} w)

1/r

111

(3.9)

n—oo

i=1 j=

< g([(b —a)(d - c)}”") lim (

1/r
Zzg (f(xir ;) ]

i=1 j=1

—a 1/r 1/r
- g([[((bbf a))(gjf 6);}1/ : {/a & (fxy)dx dy]

< (/1 /cdf(&y)dx dy) Uabg'(f(xw))dx dy} l/r‘

The inequality (3.9) is thus proved.
The rest can be proved similarly. The proof of Theorem 3.2
is complete. [

<g(((b—a)d— o)) {hm

Theorem 3.3. For ICR, being an interval, let
f:a,b] x [c,d CR* = I be a continuous function, and let
g: I — R, be ageometrically convex (or geometrically concave,
respectively) function. If

g(eb a)(d—c u)>g(e(b a)(de'))g(eu)7 uel (310)
b d
/ / Sx, y)dx dyZg (e ), (3.11)
then
- (exp (f: f:l Inf(x,y)dx dy))
exp <(b— / / Ing(f(x,y))dx dl)z f: f‘d/(x,y)dx O .
(3.12)

Proof. Utilizing the geometric convexity of g and using
Lemma 2.1 result in

g (exp < / ' / Cinflry)dx d y) )

g(exp((b a) ,}m}(),,zzzlnf\' >>

=1 j=1

S(b—a)(d— 1/
<g(el ) /}lgg<HHV(x,,y, )

i=1 j=1

non 1/n?
< g(e 99 [im (HHg(f(xi,y/))>

=1 j=1

b nd
— g(e® ) exp (Wlww [ 1ng<f<x,y>)dxdy)

< </h /f{lf (y)d dy) exp <(b_a)lﬁ / b / d lng(f(x,y»dxdy).

Consequently, the inequality (3.12) is true.
The rest can be proved similarly. The proof of Theorem 3.3
is complete. [

Remark 3.1. We remark that, as an example, Theorems 3.1,
3.2, and 3.3 generalize Theorem 3.4 below.

Theorem 3.4 [15, Theoreml.1], [16, Propositionl], and [17,
Theoreml]. Let t>1 and [ be a continuous function on
[a,b] C R such that

/bf(x)dx >((b-—a)". (3.13)

Then the inequality (1.2) is valid.
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