

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

Some inequalities of Qi type for double integrals

Bo-Yan Xi a,*, Feng Qi b

Received 10 August 2013; revised 23 October 2013; accepted 2 November 2013 Available online 22 December 2013

KEYWORDS

Integral inequality; Qi type integral inequality; Double integral; Geometrically convex function; Generalization; Open problem **Abstract** In the paper, the authors establish some new inequalities of Qi type for double integrals on a rectangle, from which some known integral inequalities of Qi type may be derived.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 26D15; 26A51; 26D20

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction

In [1] and its preprint [2], the following interesting integral inequality was obtained.

Theorem 1.1 [1, Proposition1.3] and [2, Proposition2]. Let $n \in \mathbb{N}$ and the *n*-th order derivative of f be continuous on

Production and hosting by Elsevier

 $[a,b]\subseteq\mathbb{R}$. If $f^{(i)}(a)\geqslant 0$ for $0\leqslant i\leqslant n-1$ and $f^{(n)}(x)\geqslant n!$ on [a,b], then

$$\int_{a}^{b} f^{n+2}(x) \mathrm{d}x \geqslant \left[\int_{a}^{b} f(x) \mathrm{d}x \right]^{n+1}.$$
 (1.1)

At the end of [1,2], the following open problem was posed.

Open Problem 1.1 [1, Theorem1.5 (OpenProblem)] and [2, OpenProblem]. Under what conditions does the inequality

$$\int_{a}^{b} f'(x) dx \geqslant \left[\int_{a}^{b} f(x) dx \right]^{t-1}$$
(1.2)

hold for some t > 1?

Thereafter, many mathematicians devoted to finding answers to Open Problem 1.1 and to generalizing the integral inequality (1.1). See [3–11] and plenty of references therein. For a collection of over forty articles, please refer to the list of references in the recently published paper [12].

Motivated by Open Problem 1.1, we now naturally pose the following questions.

^a College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region 028043, China

^b Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin City 300387, China

^{*} Corresponding author. Tel./fax: +86 475 8313197. E-mail addresses: baoyintu78@qq.com, baoyintu68@sohu.com, baoyintu78@imun.edu.cn (B.-Y. Xi), qifeng618@gmail.com (F. Qi), qifeng618@hotmail.com, qifeng618@qq.com (F. Qi).

338 B.-Y. Xi, F. Qi

Open Problem 1.2. Let f(x, y) be a positive and continuous function defined on a rectangle $[a, b] \times [c, d] \subseteq \mathbb{R}^2$. Under what conditions does the inequality

$$\int_{a}^{b} \int_{c}^{d} f'(x, y) dx dy \geqslant \left[\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \right]^{t-1}$$
(1.3)

hold for some $t \in \mathbb{R}$?

The aim of this paper is to provide several affirmative answers to Open Problem 1.2. In other words, some new inequalities for double integrals on a rectangle $[a,b] \times [c,d]$, from which some integral inequalities of Qi type may be derived, will be established in this paper.

2. A definition and a lemma

For providing affirmative answers to Open Problem 1.2, we need a definition and a lemma which are not common knowledge.

Definition 2.1 ([13,14]). Let $I \subseteq \mathbb{R}_+ = (0, \infty)$ be an interval and $r \in \mathbb{R}$. A function $f: I \to \mathbb{R}_+$ is said to be r-mean convex on I if

$$f([\lambda x^{r} + (1 - \lambda)y^{r}]^{1/r}) \leq [\lambda f'(x) + (1 - \lambda)f'(y)]^{1/r}, \quad r \neq 0$$
(2.1)

01

$$f(x^{\lambda}y^{1-\lambda}) \leqslant f^{\lambda}(x)f^{1-\lambda}(y), \quad r = 0$$
(2.2)

for all $x, y \in I$ and $\lambda \in [0, 1]$. If the above inequalities reverse, then we say that the function f is r-mean concave on I.

Remark 2.1. The 0-mean convex (0-mean concave, respectively) functions are the well known geometrically convex (geometrically concave, respectively) functions.

Lemma 2.1 ([13,14]). Let $I \subseteq \mathbb{R}_+$ be an interval and $r \in \mathbb{R}$. A function $f: I \to \mathbb{R}_+$ is r-mean convex (or r-mean concave, respectively) on I if and only if

$$f\left(\left[\sum_{k=1}^{n} \lambda_k x_k^r\right]^{1/r}\right) \leq \left[\sum_{k=1}^{n} \lambda_k f^r(x_k)\right]^{1/r}, \quad r \neq 0$$
(2.3)

or

$$f\left(\prod_{k=1}^{n} x_{k}^{\lambda_{k}}\right) \lesssim \prod_{k=1}^{n} f^{\lambda_{k}}(x_{k}), \quad r = 0$$

$$(2.4)$$

holds for all $x = (x_1, x_2, \dots c, x_n) \in I^n$ and $\lambda_k \ge 0$ satisfying $\sum_{k=1}^n \lambda_k = 1$.

3. New inequalities of Oi type for double integrals

Now we are in a position to establish some new inequalities of Qi type for double integrals on the rectangle $[a, b] \times [c, d]$.

Theorem 3.1. For $I \subseteq \mathbb{R}_0 = [0, \infty)$ being an interval, let $f: [a,b] \times [c,d] \to I$ be continuous and not identically zero, and let $g: I \to \mathbb{R}_0$ be convex (or concave, respectively). If

$$g((b-a)(d-c)u) \leq g((b-a)(d-c))g(u)$$
 (3.1)

for $u \in I$ and

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \ge \frac{g((b-a)(d-c))}{(b-a)(d-c)},$$
(3.2)

then we have

$$\int_{a}^{b} \int_{c}^{d} g(f(x,y)) dx dy \gtrsim \frac{g\left(\int_{a}^{b} \int_{c}^{d} f(x,y) dx dy\right)}{\int_{a}^{b} \int_{c}^{d} f(x,y) dx dy}.$$
 (3.3)

Proof. Let

$$(x_k, y_k) = \left(a + \frac{k}{n}(b - a), c + \frac{k}{n}(d - c)\right), \quad 1 \le k \le n.$$
 (3.4)

By the convexity of g, by inequalities (3.1) and (3.2), and by Lemma 2.1, we have

$$g\left(\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy\right) = g\left((b - a)(d - c) \lim_{n \to \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i}, y_{j})\right)$$

$$\leq g((b - a)(d - c)) \lim_{n \to \infty} g\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i}, y_{j})\right)$$

$$\leq g((b - a)(d - c)) \lim_{n \to \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} g(f(x_{i}, y_{j}))$$

$$= \frac{g((b - a)(d - c))}{(b - a)(d - c)} \int_{a}^{b} \int_{c}^{d} g(f(x, y)) dx dy$$

$$\leq \left(\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy\right) \int_{a}^{b} \int_{c}^{d} g(f(x, y)) dx dy.$$

Thus, the inequality (3.3) in the direction \geq is true.

If g(u) is a concave function on I, the proof is similar. This completes the proof of Theorem 3.1. \square

Corollary 3.1. Let f(x, y) be a positive continuous function on $[a, b] \times [c, d] \subseteq \mathbb{R}^2$.

1. *If* t > 1 *or* t < 0 *and*

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \ge [(b - a)(d - c)]^{t-1},$$

then

$$\int_{a}^{b} \int_{c}^{d} f^{l}(x, y) dx dy \geqslant \left[\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \right]^{t-1}.$$
 (3.5)

2. If 0 < t < 1 and

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \leq [(b - a)(d - c)]^{t-1},$$

then

$$\int_{a}^{b} \int_{c}^{d} f'(x, y) dx dy \leq \left[\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \right]^{t-1}.$$
 (3.6)

- 3. If $t \notin [0,1)$ and $f(x,y) \ge [(b-a)(d-c)]^{t-2}$ for $(x,y) \in [a,b] \times [c,d]$, then the inequality (3.5) is valid.
- 4. If $0 < t \le 1$ and $f(x,y) \le [(b-a)(d-c)]^{t-2}$ for $(x,y) \in [a,b] \times [c,d]$, then the inequality (3.5) is reversed.
- 5. If $t \ge 2$ and $f(x,y) \ge (t-1)^2 [(x-a)(y-c)]^{t-2}$ for $(x,y) \in [a,b] \times [c,d]$, then the inequality (3.5) is valid.

Proof. This follows from applying $g(u) = u^t$ for u > 0 and $t \in \mathbb{R}$ in Theorem 3.1. \square

Theorem 3.2. Let $I \subseteq \mathbb{R}_+$ be an interval and $r \neq 0$, and let $f: [a,b] \times [c,d] \subseteq \mathbb{R}^2 \to I$ be a continuous function and $g: I \to \mathbb{R}_+$. If g(u) is r-mean convex (or r-mean concave, respectively) and satisfies

$$g\Big([(b-a)(d-c)]^{1/r}u\Big) \lesssim g\Big([(b-a)(d-c)]^{1/r}\Big)g(u), \quad u \in I$$
(3.7)

and

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \gtrsim \frac{g([(b-a)(d-c)]^{1/r})}{[(b-a)(d-c)]^{1/r}},$$
(3.8)

then

$$\left[\int_{a}^{b} \int_{c}^{d} g^{r}(f(x,y)) dx dy\right]^{1/r} \gtrsim \frac{g\left(\left(\int_{a}^{b} \int_{c}^{d} f'(x,y) dx dy\right)^{1/r}\right)}{\int_{a}^{b} \int_{c}^{d} f(x,y) dx dy}.$$
(3.9)

Proof. Making use of the r-mean convexity of g, adopting notations in (3.4), and employing Lemma 2.1 lead to

$$g\left(\left[\int_{a}^{b} \int_{c}^{d} f'(x,y) dx dy\right]^{1/r}\right)$$

$$= g\left(\left[(b-a)(d-c)\right]^{1/r} \left(\lim_{n \to \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} f'(x_{i},y_{j})\right)^{1/r}\right)$$

$$\leqslant g\left(\left[(b-a)(d-c)\right]^{1/r}\right) \lim_{n \to \infty} \left(\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} f'(x_{i},y_{j})\right)^{1/r}\right)$$

$$\leqslant g(\left[(b-a)(d-c)\right]^{1/r}) \left[\lim_{n \to \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} g^{r}(f(x_{i},y_{j}))\right]^{1/r}$$

$$= \frac{g(\left[(b-a)(d-c)\right]^{1/r})}{\left[(b-a)(d-c)\right]^{1/r}} \left[\int_{a}^{b} g^{r}(f(x,y)) dx dy\right]^{1/r}$$

$$\leqslant \left(\int_{a}^{b} \int_{c}^{d} f(x,y) dx dy\right) \left[\int_{a}^{b} g^{r}(f(x,y)) dx dy\right]^{1/r}.$$

The inequality (3.9) is thus proved.

The rest can be proved similarly. The proof of Theorem 3.2 is complete. \square

Theorem **3.3.** For $I \subseteq \mathbb{R}_+$ being an interval, $f: [a,b] \times [c,d] \subseteq \mathbb{R}^2 \to I$ be a continuous function, and let $g: I \to \mathbb{R}_+$ be a geometrically convex (or geometrically concave, respectively) function. If

$$g(e^{(b-a)(d-c)u}) \leq g(e^{(b-a)(d-c)})g(e^u), \quad u \in I$$
 (3.10)

 $\int_{a}^{b} \int_{a}^{d} f(x,y) dx dy \gtrsim g(e^{(b-a)(d-c)}),$

$$\int_{a}^{b} \int_{c}^{a} f(x, y) dx dy \gtrsim g(e^{(b-a)(d-c)}),$$
then
$$(3.11)$$

$$\exp\left(\frac{1}{(b-a)(d-c)}\int_{a}^{b}\int_{c}^{d}\ln g(f(x,y))\mathrm{d}x\,\mathrm{d}y\right) \ge \frac{g\left(\exp\left(\int_{a}^{b}\int_{c}^{d}\ln f(x,y)\mathrm{d}x\,\mathrm{d}y\right)\right)}{\int_{a}^{b}\int_{c}^{d}f(x,y)\mathrm{d}x\,\mathrm{d}y}.$$
(3.12)

Proof. Utilizing the geometric convexity of g and using Lemma 2.1 result in

$$\begin{split} g\left(\exp\left(\int_a^b \int_c^d \ln f(x,y) \mathrm{d}x\,\mathrm{d}y\right)\right) \\ &= g\left(\exp\left((b-a)(d-c)\lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n \ln f(x_i,y_j)\right)\right) \\ &\leqslant g(e^{(b-a)(d-c)})\lim_{n\to\infty}g\left(\prod_{i=1}^n\prod_{j=1}^n [f(x_i,y_j)]^{1/n^2}\right) \\ &\leqslant g(e^{(b-a)(d-c)})\lim_{n\to\infty}\left(\prod_{i=1}^n\prod_{j=1}^n g(f(x_i,y_j))\right)^{1/n^2} \\ &= g(e^{(b-a)(d-c)})\exp\left(\frac{1}{(b-a)(d-c)}\int_a^b \int_c^d \ln g(f(x,y)) \mathrm{d}x\mathrm{d}y\right) \\ &\leqslant \left(\int_a^b \int_c^d f(x,y) \mathrm{d}x\,\mathrm{d}y\right)\exp\left(\frac{1}{(b-a)(d-c)}\int_a^b \int_c^d \ln g(f(x,y)) \mathrm{d}x\mathrm{d}y\right). \end{split}$$

Consequently, the inequality (3.12) is true.

The rest can be proved similarly. The proof of Theorem 3.3 is complete. \square

Remark 3.1. We remark that, as an example, Theorems 3.1, 3.2, and 3.3 generalize Theorem 3.4 below.

Theorem 3.4 [15, Theorem1.1], [16, Proposition1], and [17, Theorem1]. Let t > 1 and f be a continuous function on $[a,b] \subset \mathbb{R}$ such that

$$\int_{a}^{b} f(x) dx \ge (b - a)^{t - 1}.$$
(3.13)

Then the inequality (1.2) is valid.

Acknowledgements

The authors appreciate anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

References

- [1] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math. 1 (2) (2000). Art. 19. http://www.emis.de/journals/JIPAM/ article113.html.
- [2] F. Qi, Several integral inequalities, RGMIA Res. Rep. Coll. 2 (7) (1999) 1039–1042. Art. 9. http://rgmia.org/v2n7.php.
- M. Akkouchi, On an integral inequality of Feng Qi, Divulg. Mat. 13 (1) (2005) 11-19.
- [4] K. Brahim, N. Bettaibi, M. Sellemi, On some Feng Qi type q-integral inequalities, J. Inequal. Pure Appl. Math. 9 (2) (2008). Art. 43. http://www.emis.de/journals/JIPAM/article975.html.
- [5] Y. Chen, J. Kimball, Note on an open problem of Feng Qi, J. Inequal. Pure Appl. Math. 7 (1) (2006). Art. 4. http:// www.emis.de/journals/JIPAM/article621.html.
- [6] V. Csiszár, T.F. Móri, The convexity method of proving moment-type inequalities, Statist. Probab. Lett. 66 (3) (2004) 303–313, http://dx.doi.org/10.1016/j.spl.2003.11.007.
- Y. Miao, Further development of Qi-type integral inequality, J. Inequal. Pure Appl. Math. 7 (4) (2006). Art. 144. http:// www.emis.de/journals/JIPAM/article763.html.

340 B.-Y. Xi, F. Qi

- [8] Y. Miao, J.-F. Liu, Discrete results of Qi-type inequality, Bull. Korean Math. Soc. 46 (1) (2009) 125–134, http://dx.doi.org/ 10.4134/BKMS.2009.46.1.125.
- [9] Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal. 3 (1) (2009) 115–121, http://dx.doi.org/10.7153/jmi-03-11.
- [10] T.K. Pogány, On an open problem of F. Qi, J. Inequal. Pure Appl. Math. 3 (4) (2002). Art. 54. http://www.emis.de/journals/ JIPAM/article206.html.
- [11] L. Yin, Q.-M. Luo, F. Qi, Several integral inequalities on time scales, J. Math. Inequal. 6 (3) (2012) 419–429, http://dx.doi.org/ 10.7153/jmi-06-39.
- [12] L. Yin, F. Qi, Some integral inequalities on time scales, Results Math. 64 (3) (2013) 371–381, http://dx.doi.org/10.1007/s00025-013-0320-z.

- [13] S.-H. Wu, r_P -convex function and Jensen's type inequality, Math. Pract. Theory 35 (3) (2005) 220–228 (Chinese).
- [14] B.-Y. Xi, T.-Y. Bao, On some properties of r-mean convex function, Math. Pract. Theory 38 (12) (2008) 113–119 (Chinese).
- [15] F. Qi, K.-W. Yu, Note on an integral inequality, J. Math. Anal. Approx. Theory 2 (1) (2007) 96–98.
- [16] N. Towghi, Notes on integral inequalities, RGMIA Res. Rep. Coll. 4 (2) (2001) 277–278. Art. 12. http://rgmia.org/v4n2.php.
- [17] K.-W. Yu, F. Qi, A short note on an integral inequality, RGMIA Res. Rep. Coll. 4 (1) (2001) 23–25. Art. 4. http:// rgmia.org/v4n1.php.