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1. Introduction

Fractional differential equations have gained considerable
importance due to their application in various sciences, such
as physics, mechanics, chemistry, engineering, etc. In the
recent years, there has been a significant development in or-
dinary and partial differential equations involving fractional
derivatives, see the monographs of Kilbas et al. [1], Miller
and Ross [2], Podlubny [3], and the papers [4-16] and the
references therein.

Let 7= (0,7],L, = L,(0, 7] be the space of Lebesgue inte-
grable functions on /. and C(0, 7] be the space of continuous
functions defined on /.
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Consider the weighted nonlocal Cauchy type fractional
problem

D*(p(t)u(t)) = flt,u(t)) ae.t€(0,7],T < (1)
limp(u() = > (), € 0.7), %)

where D* denoted the Riemann-Liouville derivative of order
o€ (0,1].

Problems with non-local conditions have been extensively
studied by several authors in the last two decades. The reader
is referred to [7-9,17-19] and references therein.

Nonlinear fractional differential equation with weighted
initial data has been carried out by various researchers. In
present, there are some papers which deal with the existence
and multiplicity of solutions for weighted nonlinear fractional
differential equations.

In [12] Khaled et al. studied the weighted Cauchy-type
problem
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D*u(t) = f(t,u), t€(0,7]
(’){ f=u(t)] = b

where D* is the fractional derivative (in the sense of Riemann—
Liouville) of order 0 < o < 1, f is a continuous nonlinear
function.

In [10] Furati et al. studied the weighted Cauchy-type prob-
lem (/) where f(¢,u) is assumed to be continuous on R" x R
and |f(z,u)| < t"e "W (1)|ul".

Also in [5] El-Sayed et al. studied the problem (/) where the
function f satisfies Carathéodory conditions with growth con-
dition. In [19] the existence and uniqueness of the solution of
the problem (/) was discussed by using the method of upper
and lower solutions and its associated monotone iterative.

In [16] Weia et al. studied the existence and uniqueness of
the solution of the periodic boundary value problem for a frac-
tional differential equation involving a Riemann-Liouville
fractional derivative

{D“u(l) =flt,u), t€(0,T]
1u(t)] g = 1 u(t)] g

by using the monotone iterative method. In [11] Jankowski dis-
cussed the existence of solutions of fractional equations of Vol-
terra type with the Riemann-Liouville derivative,

{D“x(z) = f(t, x(t), [i k(1,)x(s)ds),

1 u(t) o =,

t€(0,7]

existence results are obtained by using a Banach fixed point
theorem with weighted norms and by a monotone iterative
method.

In [4] Belmekki et al. studied the existence and uniqueness
of the solution for a class of fractional differential equations

{ D*u(t) — Ju(t) = flt,u(r)), te€(0,1]

lim ' ~*u(t) = u(1)
t—0T

by using the fixed point theorem of Schaeffer and the Banach
contraction principle.

In this paper we will study the existence of solutions for
problem (1) and (2) with certain nonlinearities, using the
equivalence of the fractional differ-integral problem with the
corresponding Volterra integral equation. We prove the exis-
tence of at least L; and continuous solutions of the problem
(1) and (2) such that the function f satisfies Carathéodory con-
ditions and

(e, u)| < (1),

where A(f) is a Lebesgue function on (0, 7]. Also the unique-
ness of the solution will be studied.

Our problem (1) and (2) includes as a special case when
p(t) = 1, the nonlocal fractional differential equation

Dru(t) = f(1,u(1))
lim '~ u(t) = zm:a,-u(‘;,»), 7, €(0,7).

1—0"

a.ete (0,7

ae. t€(0,7,T < o0

2. Preliminaries

In this section, we present some definitions, lemmas and nota-
tion which will be used in our theorems.

Definition 2.1 (see /2,3,13,14]). The Riemann—Liouville frac-
tional integral of order o >0 of a Lebesgue-measurable
function f: R" — R is defined by

) = % / (1= s ) ds,

Ja

when a = 0 we write If(1) = Pf(1).
And we have, for o, f € R*,

(}"1) 12 2L1—>L1,
(r2) f() € Ly, I3 Iif (6) = I £ (o).

Definition 2.2 (see /2,3,13,14]). The Riemann—Liouville frac-
tional derivative of order « € (0, 1] of a Lebesgue-measurable
function f: R — R is defined by

D) = G100 = g [ (= A

Theorem 2.1 (Schauder fixed point Theorem). Let S be a non-
empty, closed , convex and bounded subset of the Banach space
X and let Q: S — S be a continuous and compact operator.
Then the operator equation Qu = u has at least one fixed-point
in S.

Theorem 2.2 (Kolmogorov compactness criterion [20]). Let
QCIr0,7),1 <p<oo. If

(i) Q is bounded in LP(0,T) and
(1) uy — u as h — 0 uniformly with respect to u € Q, then Q
is relatively compact in I7(0,T) where

1 t+h
up(1) = 7 / u(s)ds.
t

Definition 2.3. A function f: I x R — R is called Carathéod-
ory function if:

(i) t — f(t,u) is measurable for all u € R, and,
(ii) u — f(¢,u) is continuous for all ¢ € I.
(iii) There exists a Lebesgue function A(¢) on 7, and

3. Integral equation representation

We investigate in our paper the Cauchy problem for the non-
linear fractional differential equation with the nonlocal condi-
tion with the following assumptions.

(h1) The function f:(0,7]xR—R is
function.

(hy) p(t) >0 for all
info.n|p(1)] = p.

m aj
() S i #1.

Carathéodory

tel and is continuous with

Lemma 3.1. The solution of the nonlocal problem (1) and (2)
can be expressed by the fractional-order integral equation
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— LH % ! M s,u(s))ds
O3 Ler Ty
+p(t) /0 ) f(s,_l(s))ds (3)
where A = (1-37", ,ﬁ)

Proof. From the properties of Riemann—Liouville fractional
derivative, Eq. (1) can be written as,

%1‘*@(1);{(1) = flt,u(1)),

integrating from 0 to ¢ both sides, we get
ot
P p(tyu(t) — I p(0)ult)] o = / S5, u(s))ds,
0
!
1 ployule) — € = [ fisau(s)ds
0

operating by I* on both sides, we have
PIp(t)u(t) — PC = Pt u(h))

Ou() = gy = (),

differentiate both sides, then

) =S = [t

_ (4)

1—o _ C 1—a ! (l‘—S)“ 1

£ p(Hu(t) = I50) +1¢ /0 m‘f(& u(s))ds,
and from (2) we have,

. C m
}fg}fmp(l)“(f) =Tl ;a/”(fj)~ (5)
Now from (4), putting ¢ = t;, we obtain

Cy L7 ="
) = e e o O
Z” - ,;pu,)rmr(a) (6)

cC & a;C ~ 4 [T (t;—s)""
T~ 2 p(ye T 20 7(w) [ s

J
=

C _ 1 Clj Y (Tj—S)ail s uls /s
@‘;pw/o o1y /151D

; 9 (g —s)""
————f(s,u(s))ds. O
s [ )
Substituting in (4) we get (3).

Now we want to prove that if u(r) satisfied (3), then

lim,_o+ ' p(t)u(r) = Y77 \aju(t;), from (3) we have,

lim ' p(t)u(f) =

1—0"

S [T =) s
A;pm)/o ORI

+ lim ¢ /t ﬂj(s, u(s))ds

1—0* I'(x)
e [Tyt
‘A,:Zlm-)/o O

Also from (3),

m m a;
au(t) = | 4 — 1)
; ! ! ( =1 T} p(fi)

_ - a; T/M- .
A;P(Tf)/o I'(a) SUs, u(s))ds.

Then the integral Eq. (3) is equivalent to the nonlocal problem
(1) and (2).

4. Existence of L; solutions

Here we study the existence of at least one L; solution of the
nonlocal Cauchy problem (1) and (2).

Definition 4.1. By a solutions of the nonlocal Cauchy problem
(1) and (2) we mean a functions u € L;(0, 7] on the interval

(0, 7] and this functions satisfies (1) and (2).

Theorem 4.1. Assume that the hypothesis (hy) — (h3) holds, then
the nonlocal problem (1) and (2) has at least one L, solution.

Proof. Let 7 be an operator defined by:

(o =23 [ %f( u(s))ds

p(1) = p(v) %)
1 "t —s)"!
a / ) )

Then from Definition 2.1 we can write it as

(Tu)(1) = ff(z)Z S gl + I%I)I“fo, u(t)).

Let f < o, then we can write

(i) =2 jilp(“;j)wlﬁfm () + s P ()

(®)
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and o 17, = Til, = [ 1T (0= (T
)< B> m i o)) —
o ; . :/0 ﬁ/, (Tu)(s)dls — (Tu)(¢) dt
Nl sult T +h
p(0)] <[5 ] 1w - mujda
and from assumption (4;), we have o hJi
u AP S al gy, U oy < Aaj|< G u d)
(Tl < > e )|1°< () + o) ;\p(n)l /0 o) V0 u)ldy

Let M = max, {I’h(1)}.

Then from assumption (/) we get

Al 1 n M _ oc p—1
(ru< A 4l /]“S ds
inf|p(7)] 1nf|p )|
_ z p— l
1nf|p |/
MWIUMM #ﬁ M et
p = p Tla=p+1) pI(a—p+1)
A" S g MTF M T
< 5 - +—
P S Ta—=p+1) p Ia—f+1)

and || Tull,, = / | Tu(z)|dt
Lt 7
2‘/:1 F(Ot—ﬂ+l) 0
M 7F T
+—————/dt
p I(a—p+1)
|A|Z || MT> "
al (—f+1)

N

M b1
p p Tla—p+1)

The last estimate shows that the operator 7' maps L, into itself.

Let
|A|Z la;| M T**F +% Vo
al(e—B+1) p T(a—B+1)’

define the subset B, C Li(I) by B, = {u(t),t € I: |lull,, <71},
the set B, is nonempty, closed and convex.

©)

Now let ue€ dB,, that is |u||=r, then T(dB,)C
B, (closureofB,) if
. m§:MMW” v T
u — =r
L S al(a—B+1) p Me—p+1)

and || Tul|,, < r, where r is given by (9). Moreover,

m=£vmwmm<lh®m:wm

thus f'is in L, (0, 7]. Further, f'is continuous in u (assumption
(i) and I* maps L,(0,7] continuously into itself, then
If(t,u(t)) is continuous in u € B,, and we have 7’ maps B, con-
tinuously into L, (0, 77.

To prove that T'is compact, we apply Theorem 2.2. So let Q
be a bounded set of B,. Then T(Q) is bounded in L, (0, 7], i.e.
condition (i) of Theorem 2.2 is satisfied. To prove that
(Tu), — Tu in L(0,7] as h — 0 uniformly with respect to
u € Q, we have from (7),

()

dsdt—i—/ 7

Ty preh
Ll I
o hJ;
! Pfs,u(s)) — ! If(t,u(t))

X[M<> (1)

Since fe L(0, 7], then I'f(.) € Li(0,T] and (1 If(t,u(t)) €
L(0,7]. Moreover e L,(0, 7], so we have, (see [21])

i G

1 t+h 1

— ——Pf(s,u(s)) — —=Ff(t,u(t))| ds — 0

i/ m)ﬂ U)Mﬂﬂ<w
for a.e. r € (0, T]. Therefore by Theorem 2.2, we have T(Q) is
relatively compact, that is 7" is compact operator. Now apply-
ing Theorem 2.1, then 7 has a fixed point.

ds dt.

al 7.—

—0

5. Existence of continuous solutions

Here we study the existence of unique and at least one contin-
uous solution of the nonlocal Cauchy problem (1) and (2).

Definition 5.1. By a solutions of the nonlocal Cauchy problem
(1) and (2) we mean a functions {u: ¢'~*u(¢) is continuous
on the interval (0, 7]} and this functions satisfies (1) and (2).

Let

C(0, 7] = {u : u(z) is continuous on (0, 7] : ||u||. = n}él)r(”u(t)\}
1€(0,

Ci_,(0, 7] =

{u: (e

weighted norm [|ul|, = ||’

) is continuous on (0, 7] with the

“u(r) )

Theorem 5.1. Assume that the hypothesis (hy) — (h3) holds.
Then the nonlocal problem (1) and (2) has at least one solution
ue Cl_x(O, T]

Proof. Define the subset Q, C C;_,(0, 7] by

0, = {u(t) € Coo(0, 1] : u(@lle, ,0n <1}

where

|A|Z |la;| MT*F M T-*
I'o—p+1) pF(oc—[)’+1)

The set Q, is nonempty, closed and convex. O
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Let T: Q, — Q, be an operator defined by (7).
For u € Q,, then T'is a continuous operator, i.e, if {u,(¢)} is
a sequence in Q, converges to u(t),Vt € (0, 7], for

. AT @ 9 (g —s)""
fim ) = 53 g || g i)

1 . t (f _ S)of—l
“ppim [ s ) s

by assumption (/;) and the Lebesgue dominated convergence
Theorem we deduce that

lim 7w, (1) = Tu(t).

Then T is continuous. Now from Eq. (8), let u € Q,, then

_ 4] =~ gl e o
[17(Tu)(1)] < —— FPIPn(t) + —— P IPh(r)
()l = Ip(f/)l 7 e
4] \a/IM f/*S“ - ds
\inf|p( 1nf\p
— 5 p-1
mflp )l /
o—f 1-p
<@§:|aj|M T +M t
pi p Tla=B+1) p I'la—p+1)
\A|MT’ b Z‘ |+ T
ST p+r D& T Ta—pr 1)

Then {Tu(?)} is uniformly bounded in Q,.

In what follows we show that 7 is a completely continuous
operator.

For t;,1, € (0, T],1; < t, such that |t, — #;]| < J, from (7) we
have

|( Tu)(ta)— fHo “(Tu)(t1)|

Hﬂ () pn) o lp/(la/) /Ti %ﬂé} u(s)) ds

e (tp—s5)""
+p(tz)/0 7]“(0() SfGs,u(s)) ds

tl’“ 0t — ) N
— / W S(s,u(s)) ds

‘ oA / %ﬂ&u@)m

)

(t2) “ < p(fj) I
e fs,uls)) ds
s [ st a
pté:) / o ;(;;] ls,uls)) ds|,

e
[P(lz) P(fl)]jzlp(r,-)/o (%) S(s, u(s))d

t;ﬂ . (zl _S)kl s, u(s S
+p<z2)/o ) &) 4

5] (lz _ s)ot—l

B
o) / ()

fs,u(s)) ds

)

l—o el
i |/ (i = 5) f(s,u(s)) ds

LU AVED SR
Hm e ,_1p<r,>/ ) /&)

i Lz%t; B pt;t:)} /0 (tlr_(;;“f(s,u(s)) ds

+47" L(ltz) —]ﬁ} /0[1 =9 ;(;;Hf(& u(s))ds

I R Gl — )" s,u(s)) ds
o) / ) ) d

e Z'A”“/' [

() pt)

|1} —t}‘“\/ (6 —s5)""!
h(s) ds
ol T

n (z1 - s)“

)

+ z{*"‘\

h(s) ds

l‘;x / 2_511
ds,
o) ")

‘ ! Z'A”“"/ ) db

() p(t)

l—a _yl
—h ‘/ (1 =) h(s) ds

5 402 — 5 p(s)ds
T / ) 04

l—o 1 _L " (ll — s)d_l ¢
0 T o / ) ) 4

which can be written as

1 IAHaI
4l J B
‘I TM)(Iz) t (TM tl ’\‘ l‘2 ([1 Z "~ Iﬂh )
—o_ ¢ 1
+Mr‘ ”I”h(t )+ F '1 h(1)
1
+l Prn(e
N RO

’ 1 1| |A||a,\M/ (t;—s)" " lds
P(lz) p(n)| &

t"l/ (i — “/’1d+t"M/ —“’“S
n

L "(n—s)““
p(t) p(t) I'(e—p)
<‘ 11 i|A||a/|MT*’/* MT* |ty —1, |

p(2) p(n)|pl(a—p+1)  plla—p+1)
T M(t,—1,)""
pl(a—p+1)

+ M

ds,

M1 ‘ [
F(a—B+1)|p()  p(n)|

Hence the class {Tu(t)} is equi-continuous, by Arzela-Ascolis
Theorem then {7u(r)} is relatively compact. Since all condi-
tions of Schauder fixed point Theorem are hold, then T has
a fixed point in Q,. Therefor the nonlocal problem (1) and
(2) has at least one solution u € C,_,(0, T].
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Theorem 5.2. Let f: (0,T] x R — R is continuous and satisfies
the Lipschitz condition

lf(lv ul) _f(tv uZ)‘

If the conditions (h,), (h;) are satisfied and

< L|u1 — u2|,L > 0, for all Uy, Uy € R.

21—2m (14 a T2ot1
VAL (WShlalT L )
I(e+3)p P

then the nonlocal problem (1) and (2) has a unique solution
uec Cl_“(07 ﬂ

Proof. Let 7 be an operator
T:Ci—(0,T] = C1-4(0, T]

defined by (7), then

It”(Tu)(t) la‘(TV)(t)l
IAI ||

o0 rj| 0 = s, ) s, (sl
+i / = s u(9) — s s

LTA'Z% [T i) s
e ~luts) — v(5)lds

£ jilm [T s - v

+ L;‘)‘“ /Ot Sdl(l{w)s)x_l S |u(s) — v(s)|ds

L|A| 4 / st —5)""
< u—v a; —t L s
p2 H ”C],,j;| ./| 0 F(OC)

L™ /' 51— )"
+ u—yv —— s
p H ||C1,y o F(OC)

L|A] " ay|t* ' T (e)
N L e By v
Jj=1
L' 21 (o
+ (o)

[l — V||c1_, W

A) a7
2172 /nL ,2:1: '
P

I(e+3)p

+ 1 lu=le, -

This means that

1#7(Tu)(x) = =*(T) (1)l

1-20 m |21
2R (ISl L
F(oc+§)p P B

Then by using Banach fixed point Theorem, the operator 7 has
a unique fixed point u(t) € C,_,.

6. Example

In this section we provide an example illustrating our result
obtained in Theorem 4.1.

Example 6.1. Consider the nonlinear fractional differential
problem

D (15;2 u(t)) = sinu(t)(1 + cos’ u(t))? + ¢ ae. t € (0,1],
lim+ﬁ 1':,’2 u(t) = 314(%) - 2u(%)

t—0

Observe, the above problem is a special case of (1) and (2).
indeed if we put f{t,u(t)) = sinu(t)(1 + cos? u(t))> +e', o =

5,p(1) = {5 Then we can easy check that the assumptions

of Theorem 4.1 are satisfied.

Then the problem has at least one positive solution
MEL] (0, 1}
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