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ABSTRACT  

Nonylphenol (NPL) is concerned as a substance that may disrupt human endocrine 
systems. NPL is extensively prevalent in the environment which could disrupt the 
nervous system, immune system, reproduction. Its high hydrophobicity, makes NPL can 
withstand environmental conditions for an extended period particularly those in soil. 
Determining NPL risk depends up on the exposure circumstances including exposure 
pathways, exposure time, and exposure concentrations. It's critical to comprehend these 
concerns to evaluate the risk for human. NPL contaminates the environment through soil, 
and wastewater effluents causing its toxicity. Hence, determining origin, fate and harmful 
impact of NPL, besides elimination of it appears to be a top priority. NPL can be treated 
using microbiological and physicochemical techniques. Meanwhile, the fact that 
microbial techniques are environmentally friendly makes them popular. This review 
shows NPL toxicity, fate, and the ways for elimination from the environment. 

Keywords:  Endocrine disruptor, Nonylphenol, Organ toxicity, Toxic effects. 

INTRODUCTION 

Recently, environmental pollution has been 

arising as the main issue, because of 

increased urbanization, widespread 

industrialization, and population growth 

(Liu et al., 2021). Strong estrogenic activity 

is exhibited by a highly diverse range of 

compounds known as endocrine disruptors 

(EDCs) (Gingrich et al., 2020). Over the 

lifespan, EDCs can cause disease by 

interfering with normal hormonal 

signalling and endocrine functioning 

(Kassotis et al., 2020). Many different 

substances are included in EDCs, including 

bisphenol S (BPS), triclosan (TCL), 

nonylphenol (NPL), and bisphenol A 

(BPA). Kahn et al. (2020) reported that 

EDCs are extensively present in a variety of 

industries and are present in medical 

supplies, food, and food packaging that 

results in environmental contamination. 

EDCs have the ability to negatively impact 

ecosystems, aquatic life, and human 

activity, even while they are applicable. 

The detrimental effects of exposure to these 

exogenous substances on endocrine 

processes and functions have been proven 

by numerous reports (Kaur et al., 2020 b). 

Surfactants are a type of phospholipid layer 

substance that can penetrate the bronchioles 

of the lung and small air passages. In these 

areas, they serve a variety of protective 

functions, including preventing the airways 

from collapsing (Olayiwola and Dejam, 

2020). And, surfactants are compounds that 

act in decreasing surface tension in 

industrial products by acting as detergents, 
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dispersions, and wetting agents  (Nagarnaik 

and Boulanger, 2011). In the food and 

agricultural sectors, alkylphenol 

ethoxylates (APEOs) are among the 

surfactants that are most frequently used 

(Mahalakshmi et al., 2020). The most 

widely used APEOs, making over 80% of 

all applications, are nonylphenol 

ethoxylates (NPEOs) (He et al., 2020). 

However, the application, the effective 

elimination of NPEOs from the 

environment is critical. Conventional 

techniques are unable to eliminate NPEOs 

from the environment and generate 

alternative compounds, such as 

nonylphenol (NPL) (He et al., 2020). Due 

to its toxicity to organisms, 

bioaccumulation in biotas, and persistence 

in environmental areas, NPL is one of the 

primary EDCs that has recently gained 

substantial attention. There are several 

applications for this non-ionic surfactant. 

NPL is a xenobiotic chemical, poorly 

soluble and has very hydrophobic phenol 

ring and possess on the para position nine-

carbon chain. NPL causes water 

contamination due to high usage (Tang et 

al., 2020), and its level can vary from 644 

mg/L in water to 1350 mg/L in wastewater 

(Medvedeva et al., 2017). This chemical 

compound is prevalent in both household 

and industrial wastewater and is stable in 

the environment. Studies have shown a 

correlation between the incidence of 

specific diseases and occupational exposure 

to NPL (Snijder et al., 2012). 

Even though exposure from employment, 

the public is exposed to NPL through 

inhalation, digestion, and cutaneous contact 

because it is more enduring in the 

environment, among which the primary 

pathway is digestion. In terms of digestive 

exposure, NPL can reach humans through 

the food chain when they bioaccumulate 

from contaminated environments. 

Furthermore, the widespread use of NPEOs 

in food packaging materials results in the 

transfer of NPL into food (Loyo-Rosales et 

al., 2004). It has been found that NPL is 

present in a wide variety of foods. NPL a 

hormone-disrupting chemicals with 

estrogenic nature that is persistent in the 

environment, has negative effects on both 

people and wildlife. Several Evidence that 

shows how hazardous NPL to the 

neurological system, reproductive 

functions, and developmental processes. 

Even though NPL exposure has been linked 

to chronic liver damage (Mukherjee et al., 

2022). Many adverse impacts were 

documented on exposure to NPL like 

hepatotoxicity (Abd-Elkareem et al., 2018), 

nephrotoxicity (Kotb et al., 2018), 

testicular damage (Sayed and Ismail, 2017), 

neurotoxicity (Ton et al., 2006), 

genotoxicity (Al-Sharif, 2012), social 

behaviour disturbance (Xia et al., 2010), 

hemotoxicity (Madhu and Pooja, 2015), 

thyrotoxicosis (Naderi et al., 2015), 

immunosuppression (Sharma, 2015). 

Moreover, NPL has been demonstrated to 

cause DNA fragmentation, apoptosis, and 

the reactive oxygen species (ROS) 

generation and antioxidant enzymatic 

system depletion (Sayed and Soliman, 

2018). 

a. Chemical structure 

Nonylphenol (NPL) is the end product of 

the breakdown of ethoxylated alkylphenols 

(APEOs) in an environment (Fig. 1), which 

is composed of a phenol ring and a nine-

carbon chain on the para-position and 

accounts for approximately 80% of the 

APEOs. This environmentally stable 

chemical is present in both household and 

commercial effluent (Gong et al., 2009 and 

Gong and Han, 2006).  
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Fig1. Chemical structure of NPL (Tothova et al., 2009). 

 

 

b. Chemical and Physical properties of 

NPL 
Anaerobic breakdown of the ethoxylated 

alkylphenols (APEO) results in the 

formation of NPL. When compared to 

aerobic conditions, the creation of NPL is 

enhanced four to eight times in the absence 

of oxygen. Under aerobic conditions, the 

APEO break down into either low-

molecular-weight ethoxylates by the loss of 

ethylene oxide (EO) units or carboxylated 

ethoxylates, which finally end in water and 

CO2. According to reports, ethoxylated 

alkylphenol derivatives are more hazardous 

and persistent than their parent compounds. 

They can also cause natural hormones to be 

disrupted by interfering with the oestrogen 

receptor and cause physiological 

disturbance (Renner, 1997). Additionally, 

Hesselsoe et al. (2001) found that, NPL 

half-life in the soil was 3 to 6 days under 

aerobic conditions.  

The chemical formula of NPL is C15H24O, 

with M.M. equal to 220 g mol-1. Under 

ambient circumstances, it is a viscous liquid 

that dissolves in common organic solvents 

like acetonitrile and methanol and is 

marginally soluble in water (4.90 mg L-1 at 

25 °C). It has a density of 0.6 g mL-1 at 20 

ºC, a melting point of -10 °C, a boiling point 

of 304 °C, and a vapor pressure of 1.33 Pa 

(20 °C). With a pKa of 10, 7, it functions as 

a weak acid in aqueous solution. NPL is 

very harmful to aquatic creatures, 

persistent, and somewhat bio accumulative 

(Tothova et al., 2009). 

c. Mode of action. 

Natural or artificial substances known as 

"endocrine disrupting chemicals" (EDCs) 

could interact with the endocrine system, 

which can lead to a variety of health issues 

in both humans and animals (Lee et al., 

2013).  The harm that EDCs cause to 

humans, animals, and microorganisms is a 

topic of significant concern in today's 

developed world (Aly et al., 2012). 

Estrogen recipient agonists, or EDCs, 

interfere with hormone synthesis, release, 

metabolism, and storage while also 

changing how they normally work 

(Dobrzyńska, 2014).  One of the most 

common substances that disrupts hormones 

is APEOs. The class of EDCs known as 

non-ionic surfactants may pose a risk. 

These substances find widespread 

application in the manufacturing of various 

detergents, cleansers, and emulsifiers 

(Gong et al., 2009). NPL can bind to 

estrogen receptors and shares a structural 

resemblance with estrogen. Research has 

demonstrated that NPL can cause 

reproductive disorders in animals, 

including disturbance in spermatogenesis 

and ovarian development (Di et al., 2018). 

Because of NPL binds to estrogen receptor 

binding sites, it can compete with 17β-

estradiol (E2) and disrupt the body's 

endocrine system, which is why it has 

hazardous effects (Yadetie et al., 1999). 

Furthermore, NPL is referred to as a potent 

mitochondrial uncoupler since it could 

increase the proton permeability of the 

mitochondrial membrane and interfere with 

ATP synthesis (Bragadin et al., 1999).  

d. Sources and environmental exposure 
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Industrial detergents including insecticides, 

cosmetics, additives, plastics, polyvinyl 

chloride pipes, food processing industries, 

packaging, paint, and other agricultural 

items are frequently made using NPL (Zhao 

et al., 2015). NPL is also widely employed 

in many other sectors, such as modifiers for 

phenolic resin, gasoline additives, and 

rubber antioxidants (Soares et al., 2008). As 

represented in Fig.2, Numerous 

environmental sectors, including the air, 

soil, sediments, and water, are known to 

have NPL deposits (Cao et al., 2019). A 

concentration of 28.6µg/L of NPL was 

found in Chinese river and lake water, 

while a significantly greater amount of NPL 

was found in surface water from Spain, 

with a concentration of 644µg/L (Fu et al., 

2007). 

 

 

 

Fig.2. Sources of NPL exposure in water ecosystems. Nonylphenol enters the water ecosystem 

via water and agricultural sources, wastewater treatment plant effluents, agricultural runoff, 

and groundwater discharge from air, soil (Hong et al., 2020).

  

e. Industrial uses 

The primary class of non-ionic surfactants, 

NPLs are widely employed in human care 

items such as paints, cleaners, detergents, 

hair dyes, hair dyes, insecticide 

formulations, and many other synthetic 

goods. Additionally, it is present in 

polyvinyl chloride (PVC), which taints the 

water that passes via PVC pipes (Rivero et 

al., 2008). 

f. Toxicokinetic profile of NPL 

Absorption, bioavailability, and 

metabolism of NPL 

Industrial effluents and community 

wastewater treatment plants are the two 

main ways that NPL enters the environment 

(van den Berg et al., 2003). Adipose tissue 

can harbour accumulations of NPL, due to 

the lipophilic characteristic. Therefore, it 

can enter the food chain. Routes of 

exposure with NPL include absorption, eye 

contact, skin contact, ingestion, and 

inhalation. The target organs for NPL 
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include skin, eyes, gastro/intestinal tract, 

respiratory system, liver, brain, thyroid, 

pancreas, kidney, bladder, female (ovary, 

endometrium, breast cancer, and foetus), 

and male (sperm, epididymis, testis, Sertoli 

cell). Human plasma samples from healthy 

individuals were found to contain 0.2–0.3 

ng/ml of NPL (Kawaguchi et al., 2004). 

Moreover, the initial absorption of NPL 

through the gastrointestinal tract is likely 

substantial and rapid (Daidoji et al., 2006). 

The two primary metabolic routes that are 

probably implicated include glucuronide 

and sulphate conjugation, as well as the 

significant NPL first pass metabolism that 

is ingested through the alimentary tract 

(Inoue et al., 2016). NPL is mostly excreted 

in the urine and stool and is widely 

dispersed throughout the body, with fat 

containing the largest quantity (Careghini et 

al.,   2015). Additional research revealed 

that NPL can alter the metabolism of steroid 

hormones, which could increase its harm to 

reproduction (Ying et al., 2012). 

g. Nonylphenol toxicodynamic profile 

Through several methods, NPL can have a 

negative impact on many tissues and 

organs. The central neurological, 

endocrine, immunological, and 

reproductive systems of both people and 

animals can be adversely affected by NPL 

(Ho and Watanabe, 2018). 

g.i. Hepatotoxicity  

The liver serves as the primary organ in the 

body's detoxification process, metabolism, 

and production of energy-producing 

macromolecules for several vital processes 

(Djordjevic et al., 2011). Therefore, when 

assessing the impact of specific 

xenobiotics, hepatotoxicity is a crucial 

endpoint. To determine the effects of 

chemical exposure on specific organs, 

clinical chemistry and histological 

examinations are frequently employed 

techniques (Mossa et al., 2012).  NPL 

increased serum alkaline phosphatase 

(ALP)  level and hepatic (HO-1 and 

Gadd45b) genes expression in compared 

with the control group (Kazemi et al., 

2016). The livers of both male and female 

fish subjected to 100 μg/l of NPL showed 

considerably lower levels of SOD and 

CAT, and microscopic examination of the 

liver tissues revealed distinct changes in 

fish exposed to NPL (Shirdel et al., 2020). 

Increased amounts of ALP, AST, and ALT 

were observed, indicating that NPL had a 

significant effect on liver enzymes. When 

considered collectively, Mirror carp fish's 

hepatic tissue's histological changes 

suggested oxidative stress (Rahman et al., 

2022).  

Liver cells have been shown to contain a 

particular estrogen receptor, and the 

relationship between the hormone and the 

responses of the cells has been identified. 

NPL is commonly metabolized by 

microsomal UDP glucuronosyltransferase 

(Doerge et al., 2002). Exposure to NPL+ 

high sucrose-high fat diet (HSHFD) 

enhances expression of Sterol regulatory 

element binding protein 1(SREBP1), fatty 

acid synthase (FAS). Enzymes and lipid 

production are regulated by SREBP1, a 

crucial liver transcription factor (e.g., fatty 

acid synthase) catalysing numerous steps in 

the fatty acid and also triglyceride synthesis 

and elevated the plasma levels of 

triglyceride (TG), and total cholesterol 

(TC) (Yu et al., 2018). 

NPL induced haemolytic anaemia, 

leucocytosis, azotemia, hyponatremia, and 

hyperkalemia. Also, significantly elevated 

levels of AST, ALT, and LDH, ammonia, 

creatinine, cholesterol, TNF-alpha, and 

MDA were reported. Furthermore, splenic 

lymphoid depletion coupled with hepatic 

structural injury (Mohamed et al., 2019). 

g. ii. Nephrotoxicity 

As the kidney is regarded as a vital organ 

responsible for reabsorption of substances 

and then elimination outside the body 

through urine (Al-Jassim et al., 2016). In 

the kidney, NPL causes tubular epithelial 

degradation, congestion region, infiltration 

of mononuclear cells, and necrotic lesions 

(Woo et al., 2007).  Bisphenol A (BPA) and 

NPL may harm the kidneys. by increment 
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in serum levels of creatinine and blood urea 

nitrogen (Shi et al., 2021).  

It was discovered that 4-NPL poisoning 

may result in cell death and debris 

accumulation, which may obstruct the renal 

tubular system, resulting in an 

accumulation of fluid within the 

glomerulus.  4-NPL has an impact on the 

structure of the renal tubules; it causes a 

noticeable reduction in the tubular brush 

border's thickness, which results in renal 

fluid stasis and renal tubule lumen 

dilatation. On the other hand, anomalies in 

the renal tubular structure may interfere 

with the body's natural fluid absorption, 

which could result in proteinuria, it is 

thought that 4-NPL-induced nephrotoxicity 

causes glomerular cell loss in catfish (Kotb 

et al., 2018). 

g. iii. Reproductive toxicity 

NPL exhibits moderate estrogenic action. 

The suppression of estrogen binding to the 

ER by NPL causes hormonal problems by 

interfering with the body's natural hormone 

production, release, transport, metabolism, 

binding, action, and elimination (Kwack et 

al., 2002). The administration of NPL in 

rats resulted in deleterious effects on 

antioxidant enzymes, spermatogenic cells 

of the male reproductive system, apoptotic 

and anti-apoptotic proteins, steroidogenic 

testicular enzymes, hormonal and sperm 

parameters, and testicular morphological 

integrity (Ijaz et al., 2021).  

In the testes, undifferentiated male germ 

cells called spermatogonia go through 

spermatogenesis to become sperm. 

Exposure to bisphenol A (BPA) and NPL, 

two EDCs, is thought to have negative 

effects on sexual development and fertility. 

As spermatogonia is one example of early 

germ-cell development damaged by EDC 

exposure, this can lead to male infertility 

(Karmakar et al., 2017).  

NPL produced histological lesions in the 

testis of juvenile Caspian brown trout 

during smolting, and it also altered the 

plasma levels of sex hormones, 

gonadotropins, phosphorus, and the 

estradiol to testosterone ratio.  Both sex of 

smolts exposed to NPL had considerably 

higher plasma levels of estradiol due to 

NPL. In both genders, exposure to NPL 

reduced levels of testosterone and FSH. It 

has also increment in LH levels in females 

but did not show change in levels of LH in 

male fish (Shirdel et al., 2020). 

Research has shown that long-term 

exposure to NPL reduces testicular size, 

lowers blood levels of testosterone, reduces 

the number of sperm in the epididymis, 

lowers the activity of antioxidant enzymes 

in epididymal sperms, disrupts testicular 

structure, causes testis cancer, reduces the 

seminiferous tubules diameter, lumen, and 

epithelial thickness, causes cryptorchidism, 

increases Sertoli cell apoptosis, and causes 

Sertoli cells hypertrophy (Tan et al., 2003 

and Cardinali et al., 2004). Some prior 

research examined the impact of NPL on 

freshwater and marine organisms during 

reproduction and early stages of embryonic 

development (Arslan et al., 2007). In fish, 

lab animals, and humans, the main route of 

NPL is metabolism by cytochrome P450 

enzymes followed by glucuronidation. NPL 

has the ability to cause oxidative stress by 

generating ROS), which include superoxide 

anion (O2−) and hydrogen peroxide (H2O2). 

According to reports, the formation of ROS 

can upset the equilibrium between pro- and 

antioxidants, damage cellular components, 

and ultimately cause cell death. Because 

sperm's plasma membrane is high in 

polyunsaturated fatty acids, ROS can 

damage it and cause sperm loss and DNA 

breakage. Due to its detrimental effects on 

spermatogenesis and sperm quality, NPL 

may be the cause of male infertility 

(Kourouma et al., 2015). 

Testicular abnormalities caused by NPL 

exposure include a decrease in the number 

of sperm in the head of the epididymis, a 

drop in testosterone levels, a decrease in the 

proportion of motile sperm, and the 

modification of a particular form of 

testicular proteinases. Moreover, aberrant 
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semen analyses are seen in around 25% of 

male infertility patients (Pflieger-Bruss et 

al., 2004 and Working, 1988). Exposure to 

NPL reduced the developmental capability 

of oocytes and increased the number of 

atresia follicles. According to 

transcriptomic research, exposure to NPL 

changed the expression of over 800 genes 

in oocytes, including several biological 

pathways. An analysis of the subcellular 

structure revealed that NPL exposure 

resulted in chromosomal misalignment and 

disturbed meiotic spindle architecture. 

Furthermore, it was shown that exposure to 

NPLs resulted in abnormal mitochondrial 

distribution and reduced membrane 

potential. Reactive oxygen species (ROS) 

accumulated as a result of NPL exposure, 

leading to oxidative stress and early 

apoptosis (Xu et al., 2020). 

g. iv. Neurotoxicity 

NPL induced oxidative stress that leads to 

neural stem cells to undergo apoptosis, 

which increases cytotoxicity and raises the 

possibility that NPL influences CNS 

neurogenesis (Mao et al., 2008). It has been 

suggested that the NPL contributes to the 

pathogenesis of neuropsychiatric disorders 

either directly or indirectly (Jie et al., 

2010). Following ingestion, the blood brain 

barrier (BBB) is eventually penetrated by 

NPL as it is distributed throughout the 

central nervous system by the circulation 

(Arukwe et al., 2000). The lipophilic 

properties of NPL leads to storage of NPL 

in different tissues high in fat content such 

as the brain (Geens et al., 2012). NPL 

decreased the activity of the acetylcholine 

esterase (AchE), monoamine oxidase 

(MAO) and Na+/K+-ATPase and alteration 

of antioxidant enzymes in an article shows 

that NPL similar to other endocrine 

disruptors, raises the possibility of exposure 

to environmental factors causing changes in 

neurochemical, and histopathological states 

(Tabassum et al., 2017). NPL has a variety 

of effects on how brain tissue develops, 

primarily through interfering with cell ion 

channels, influencing how cells use energy, 

decreasing the neurotransmitters 

production and release, impairing 

neurotransmitter receptor’s function, and 

eventually influencing the growth and 

differentiation of neurons. But as of right 

now, the majority of research has been done 

on animals like rats (Chitra et al., 2002 and 

Mao et al., 2010). By triggering 

inflammatory factors, NPL can result in 

brain inflammation. In certain pathological 

circumstances, the production of pro-

inflammatory cytokines increases, resulting 

in CNS damage (Aydoğan et al., 2008). 

1. Remediation.  

To remove NPL from the environment and 

water supplies, numerous techniques have 

been tried. Adsorption is a widely utilized 

method for removing NPL because it is 

easy to apply, affordable, and readily 

available. However, secondary 

contamination in water can result from 

complexes being adsorbed into a solid 

phase. The degradation process is a well-

liked and intriguing way for eliminating 

NPL among many physical, chemical, and 

biological utilized procedures because of its 

special qualities, which include simplicity, 

ease of operation, affordability, speed, and 

high selectivity (Kaur et al., 2020a; Liang 

et al., 2020). Many physicochemical 

remediation techniques have been used to 

clean up NPL-polluted environment. 

 

CONCLUSION 

NPL differs from more conventional 

pollutants such as heavy metals and 

nutrients. Among the many harmful effect 

endpoints of NPL toxicity are acute death, 

toxicity to growth and development, 

estrogenic effect, endocrine interference, 

and other toxicities. There is a lack of 

reliable reporting of NPL toxicity and 

there is currently no standard or relevant 
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study to measure the environmental risk 

and toxicity of NPL. 

ABBREVIATIONS 

AchE Acetylcholine esterase 

ALP Alkaline phosphatase 

ALT Alanine aminotransferase 

APEOs Alkylphenol ethoxylates 

AST Aspartate 

aminotransferase 

ATP Adenosine triphosphate 

BPA Bisphenol A 

BPS Bisphenol S 

CAT Catalase 

CNS  Central nervous system 

DNA Deoxy nucleic acid 

E2 17β-estradiol 

EDCs Endocrine disruptors 

chemicals 

EO Ethylene oxide 

ER Estrogen- receptor 

FAS Fatty acid synthase 

FSH Follicular stimulating 

hormone 

H2O2 Hydrogen peroxide 

HSHFD High sucrose-high fat 

diet 

LDH Lactate dehydrogenase 

LH Lutelizing hormone 

MAO Monoamine oxidase 

MDA Malondialdehyde 

NPEOs Nonylphenol ethoxylates 

NPL Nonylphenol 

O2− Speroxide anion  

PVC Polyvinyl chloride 

ROS Reactive oxygen species 

SOD Super oxide dismutase 

SREBP1 Sterol regulatory element 

binding protein1 

TC Total cholesterol 

TCL Triclosan 

TG Tri-glyceride 

TNF-alpha Tumor necrosis factor  

UDP Uridine di phosphate 
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