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 مصر. –المركزي بجنوب خلیج السویس بالمنخفض  –سفل المیوسین أ –رواسب متكون النخل   خصائص خزان
منتجا للنفط في العدید من حقول النفط بخلیج الس�ویس س�واء م�ن خ�لال الرس�وبیات الرملی�ة او م�ن خ�لال  –سفل المیوسین أ –یعتبر متكون النخل  :الخلاصـة

س�فل و ساس�ا م�ن عض�و ش�عب عل�ي لأأالنخ�ل ال�ذي یتك�ون  بار بجنوب خلیج السویس لدراسة جیولوجیة و بتروفیزیقی�ة متك�ونآالحجر الجیري. تم اختیار ستة 
ن المتكون الكامل یوجد عادة علي الرمیة السفلیة بینم�ا غالب�ا م�ا یوج�د بش�كل غی�ر كام�ل عل�ي الرمی�ة العلوی�ة. مرج�ع ذل�ك أعلي. وجد عضو متبخرات غارة لأ

إل�ي ث�لاث وح�دات ص�خریة ك�ل وح�دة تمث�ل تركی�ب ص�خري وبیئ�ة مك�ن تقس�یم عض�و ش�عب عل�ي كما ألحركة الفوالق التي اعقبت ترسیب عضو شعب علي. 
ل�ي ممت�از م�ن حی�ث الخص�ائص البتروفیزیقی�ة حی�ث یتمی�ز بنفاذی�ة ومس�امیة إزان جی�د الحجر الرملي لعضو شعب علي خ�خري. یمثل ترسیبیھ  مختلفة عن الأ

 نواع صخریة وتسع وحدات تدفق ھیدرولیكیھ.أث  تحدید ثلا –یضا أمكن من خلال الدراسة ألي محتوي طفلي ضئیل. إضافة عالیة بالإ

ABSTRACT: The Lower Miocene Nukhul Formation is oil producing in several fields throughout the Gulf of Suez 
either from clastics or reefoidal limestones. Six wells were selected in the central trough of the southern Gulf of Suez to 
investigate the geologic and petrophysical properties of the Nukhul Formation. It consists mainly of lower Shoab Ali 
clastics Member and upper Ghara anhydrite Member. The complete succession of the Nukhul Formation is usually 
encountered on the downthrown side and faulted part is usually located on the upthrown one. This may be attributed to 
fault movements post Shoab Ali Member. This member can be divided into three units. The upper boundary of the lower 
unit defined a sequence boundary. The middle unit represents a sandstone interval deposited in a basin floor fan. The 
upper unit which its lower boundary defined as an erosion surface was deposited in a fan complex. The Nukhul clastics 
represent a good reservoir quality with high porosity and permeability as well as low shale content. Three reservoir 
rock types as well as at least nine hydraulic flow units can be detected within these Nukhul clastics.   

INTRODUCTION
The Nukhul Formation represents the first clue to 

the Gulf of Suez rifting.  However, initiation of the Gulf 
of Suez rifting was started earlier during the Late 
Oligocene (Garfunkel and Bartov, 1977).  The 
depositional facies and thickness of the Nukhul 
Formation and the overlaying sediments were 
controlled in most part by the degree of the rift 
intensity. Other controlling factors include tectonic 
elements (uplift or subsidence), climate, sea level 
change, sediments supply and phyisographic position of 
the depositional basin. Several studies were published 
concerning with the Gulf of Suez tectonic evolution, 
structure setting, stratigraphy and the petroleum 
potentiality by Garfunkel and Bartov, 1977; Evans, 
1988; Montenat et al., 1986; 1988; 1998; Richardson 
and Arthur, 1988; Patton et al., 1994; EGPC, 1996; 
McClay et al., 1998; Plaziat et al., 1998; Bosworth et 
al., 1998;  Bosworth and McClay, 2001;Winn et al., 
2001; Moustafa, 2002; Jackson et al., 2006 and Wilson 
et al., 2009. 

The syn - rift strata was subjected to various 
divisions and nomenclatures. The Egyptian General 
Petroleum Corporation (EGPC) Stratigraphic 
Committee (1964) divided the Miocene sediments of 
the Gulf of Suez into two groups: Ras Malaab Group 
(Evaporite) that overlies the Gharandal Group (Clastic). 
The last group is often dated as Lower and Middle 
Miocene, while the Ras Malaab Group is belonging to 
the Middle/Upper Miocene. For petroleum geologists, 
Gharandal Group has a significant role in forming 
petroleum reservoirs, and many of its units are 
significant as source rocks. The evaporites of Ras 

Malaab Group are always thought as the ultimate seal. 
Generally, the thickness of the two groups is about 
twice that of the pre- Miocene sequence. However, in 
the depocenters the thickness of the two groups is five 
times more than that of the Pre- Miocene sequence 
reflecting a rapid sediment accumulation and a fast 
subsidence during a relative short geologic time (El 
Sharawy, 2006). 

The syn - rift megasequence was divided by 
Montenat et al. (1986) into 4 groups, namely; A, B, C 
and D from base to top. Each group is limited by an 
angular discordance of regional extension, which seems 
to reflect the major stages of the rifting. Plaziat et al. 
(1998) adopted Montenat such classification but 
subdivided each group into units (Table 1). 

Dolson et al. (1996) divided the Miocene deposits 
of the northern Gulf of Suez into five regional terraces 
defined time breaks and the intervening units were 
treated as “sequence”, while Ramzy et al. (1996) 
recognized at least seven terraces in the central and 
southern Gulf of Suez. 
Study area and data: 

Six wells distributed throughout the central trough 
of the southern Gulf of Suez were selected to study the 
geologic and petrophysical attributes of the Nukhul 
Formation. The selected wells are belonging to four 
oilfields which are from South to North; Ashrafi, Hilal, 
Sidki and Amal (Fig. 1). The first three oilfields are 
produced from Miocene and Pre Miocene reservoirs. 
The fourth field (Amal) is produced only from Miocene 
reservoir.  
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Table 1: Classification and nomenclature of syn – rift megasequence (Age after Patton et al., 1994). 
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Fig. (1): Location map of the study area (modified after Bosworth et al., 1998). 
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The available data include electric logs, routine 
and special core analysis as well as 2D seismic profiles. 
The electric logs include gamma ray, natural gamma 
ray (wells A and F), density, neutron, sonic, resistivity, 
dipmeter and composite. The routine core analysis was 
available for wells (A and B). Such core analysis 
includes horizontal and vertical permeability, helium 
and fluid porosity, grain density and fluid saturation. 

In well A, one core plug (3 ft thick) was analyzed 
provided three core samples. The horizontal 
permeability ranged from 1257 to 2468 md with 
average value of 1993 md. The helium porosity ranged 
from 27.6% to 29.8% with average value of 28.6%. The 
grain density has 2.65 g/cc average value. The core 
analysis indicates that the sandstone is tansh grey fine 
to medium grained occasionally coarse – grained with 
traces of glauconite and pyrite. 

In well B, three core plugs (81 ft thick) were 
analyzed provided 81 core samples. The uppermost six 
samples are siltstones and the remaining samples are 
sandstones. The horizontal permeability ranged from 
0.93 to 4020 md with average value of 1118 md. The 
helium porosity ranged from 9.4% to 22.9% with 
average value of 17.7%. The grain density has 2.65 g/cc 
average value. The core analysis indicates that the 
sandstone is light grey medium to coarse grained 
occasionally fine – grained  with mica and iron oxides, 
traces of glauconite, kaolinite patches, argillaceous 
cement and poor to medium cemented. 

The special core analyses (SCAL) are available 
for wells A and B. They provide determination of 
cementation and saturation exponents and formation 
factor. Eight core samples in well B were subjected to 
mercury injection provided eight mercury injection 
capillary pressure curves from which the pore throat 
size and the best relation between permeability, 
porosity and pore throat size can be determined. 

METHODOLOGY 
To achieve the purpose of this article, electric logs 

were environmentally corrected and depth matched 
with core data. The IP software program was used to 
calculate the petrophysical parameters such as effective 
porosity, water saturation and clay volume. 10%, 
porosity, 35% clay volume and 50% water saturation 
are used as cutoffs. The cementation factor, saturation 
exponent and formation water resistivity derived from 
SCAL are introduced to IP to calculate such 
petrophysical parameters. Dipmeter in cluster 
processing is used to define the components such as 
faults and unconformities. Determination of sequence 
stratigraphic boundaries is defined based on Neal et al. 
(1993) contributions. 
Nukhul formation: 

A wide variation in depositional facies 
characterized the Nukhul Formation. The facies 
changed from clastics sandstone, conglomerates and 
shale to carbonates and evaporites. Due to these wide 

lithofacies variations, Souadi and Khalil (1984) 
subdivided the Nukhul Formation into lower clastic 
Shoab Ali Member occurred only in the southern Gulf 
of Suez and three coeval members. Ghara Member 
occurs only in the southern Gulf of Suez and consists of 
anhydrite and marl. October Member consists of 
sandstone and conglomerates and occurs in the northern 
Gulf of Suez. Hydrocarbons can be produced from 
many oilfields such as Asl, Sudr and Matarma. 
Gharamul Member consists of reefoidal limestones 
which produced oil from several fields e.g. Esh – El 
Mellaha and Issran (EGPC, 1996). 

Another comprehensive study of the Nukhul 
Formation was introduced by Winn et al. (2001). They 
divided the Nukhul Formation at Gebel Zeit into two 
units. Lower marine clastic unit was deposited by 
sediments gravity flows where water depth was more 
than 300 ft. Upper carbonate unit, in response to the sea 
level rise, consists of dolomite and calcareous dolomite 
deposited in deep open marine condition. They stated 
that deposition during the Nukhul Formation was 
controlled by short – segments, closely spaced faults. 

In the study area, the Nukhul Formation rested 
unconfromably on the Eocene deposits or older rocks 
and is overlain by the Rudeis Formation (Fig. 2). The 
complete section was encountered in well C. In other 
wells, missed sections are detected from well – to – 
well correlations (Fig. 3). The thickness ranged from 
568 ft in the South to 192 ft thick in the North (Table 
2). The Nukhul Formation can be divided from top to 
bottom into; 
1- Nukhul paleo: 

The Nukhul Paleo unit represents the uppermost 
part of the Nukhul Formation. It consists mainly of 
shale and limestone intercalations. The thickness varies 
from 15 ft in well E to about 180 ft in well A (Table 2). 
The Nukhul paleo is absent in well B. 
2- Ghara member: 

The Ghara Member consists of intercalations of 
anhydrite, shale, limestone and marl. The anhydrite can 
be completely absent as in well A, occurred in one layer 
as in well E or occurred in two layers as in wells B and 
C.  The anhydrite layers were separated by open to 
shallow marine facies. These anhydrite layers may be 
represented fall in the sea level at the end of Aquitanian 
(Haq et al., 1987). The thickness of the anhydrite layers 
vary from one well to another. In well B, the upper 
layer attains 60 ft thick while the lower layer attains 
about 22 ft thick. In well C, the upper layer is 6 ft thick 
while the lower layer is 10 ft thick. In well F, both 
anhydrite layers have similar thicknesses with 23 ft 
thick for each. The thickest section was encountered in 
well D in which 216 ft thick were drilled. It consists of 
two layers of anhydrite separated by about 170 ft thick 
of marl. The thickness of anhydrite layers ranged from 
20 to 26 ft. The Ghara thickness decreased northwards 
to 117 ft thick as in well F. 
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Fig. (2): Generalized stratigraphic column for the central trough of  
the southern Gulf of Suez (Rock Units age after Patton et al., 1994). 

 
Table 2: Nuhkul Formation thickness  (ft) in the studied wells 

Well Total Paleao Evaporite Clastics 

A 568 187 174 207 

B 378 - 109 269 

C 541 139 170 232 

D 258 42 216 - 

E 223 15 208 - 

F 192 75 117 - 
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Fig. (3): Well – to – well correlations showing the missed sections in the Nukhul Formation. 
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Fig. (4): Dpmeter log in well B. 
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3- Shoab Ali Member: 
The Shoab Ali Member consists of intercalations of 

sandstone and shale. The thickest section was encountered 
in well B in which 269 ft thick of sandstone and shale with 
gross sand of 131 ft rested unconformably on the Thebes 
Formation were encountered. This member can be 
subdivided into three units. The upper unit consists of 
shale and sandstone intercalations. The sandstone ratio 
increased downwards. The thickness is 132 ft. The middle 
unit consists of 82 ft thick of sandstone rested 
unconformably on the lower unit and overlain 
unconformably by the upper unit as indicated from 
dipmeter (Fig. 4). The lower unit consists of intercalations 
of sandstone and shale. It attains 55 ft thick.  

RESULTS AND DISCUSSIONS 
Six drilled wells, distributed along the southern 

Gulf of Suez, were selected to study the Nukhul 
Formation. Three of them were encountered the Shoab 
Ali Member. These wells are A, B and C. Absence of 
the Shoab Ali Member in other wells is attributed to 
faulting processes (Fig. 5).  
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Fig. (5): Dipmeter of well E indicates that missing 

Nukhul clastic is due to normal fault. 

The well drilled on the downthrown side 
encountered the complete Nukhul Formation (Fig. 6).  

In contrast, the well drilled on the upthrown side 
mostly missed the Shoab Ali section (Fig. 7). So, the 
movements along the Gulf of Suez fault trends were 
initiated after deposition of Shoab Ali Member and 
continued during deposition of the Ghara one. These 
movements resulted in creation of large antithetically 
tilted blocks (Montenat et al., 1998). The Shoab Ali 
Member can be divided into three units based on 
lithology. Upper and lower units are characterized by 
intercalations of shales and sandstones. The middle unit 
consists mainly of sandstone. The sandstone of the 
middle unit may be deposited in basin floor fan as 
indicated from the response of electric logs (blocky 
gamma ray character with sharp base). The typical 
basin floor fan can be observed in well B between 
10410 and 10479.5 ft depth. This interval is 
characterized by high porosity and permeability and 
low clay content. The upper unit, which its lower 
boundary is characterized by erosion, may be deposited 
in slope fan complex where sands were deposited as 
overbank sheets and alternate with shale. The lower unit 
may be deposited in a highstand system tract as 
indicated from the electric log and the nature of 
sediments. Sequence boundary separated the lower unit 
from the middle unit (Fig. 4).  

Plotting of potassium versus thorium indicates 
that most of the clays are kaolinite with traces of heavy 
minerals (Fig. 8). The well log interpretation indicates 
good reservoir quality in which the litho – saturation 
crossplots at wells A, B and C reveal low shale volume, 
low water saturation and high porosity (Figs. 9, 10 and 
11).  

Good empirical relation exists between core 
porosity (Φc in %) and core permeability (Fig. 12). The 
relation can be expressed in the following equation with 
a coefficient of determination             (r2) = 0.85: 

K = 0.017 e0.553 Φc    (1) 
This good relation between permeability and 

porosity is rarely encountered. This may be attributed to 
the following reasons. First, deposition in a basin floor 
fan gives excellent reservoir properties. Second, low 
shale content and low to medium cementation resulted 
in low reduction in original porosity and permeability 
and consequently the porosity plays the major role in 
determination of permeability. 

Permeability can be predicted using electric logs 
via several methods such as empirical equations (Morris 
and Biggis, 1967 and Timur, 1968). It can be predicted 
also using statistical methods such as regression 
analysis and artificial neural network. Based on 
irreducible water saturation derived from capillary 
pressure, the Timur equation has the following form 
with  r2 = 0.87: 

K = 0.00007 9.19.3 SwirΦ   (2) 
It is noticed that the exponents are close to that of 

Timur equation (4.4 and 2). However, in this equation 
there is an irreversible relationship between 
permeability and irreducible water saturation.  
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Fig. (6): Seismic  line GOS 87 -214 interpretation showing location of  

well B on the downthrown side. 
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Fig. (8): Identification of clay minerals from potassium versus thoruim  

crossplot in well B (Schlumberger, 1982). 
 
 

 
Fig. (9): Litho – saturation crossplot for well A. 
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Fig. (10): Litho – saturation crossplot of well B. 

 
 

 
Fig. 11: Litho – saturation crossplot for well C. 
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Fig. (12): Core permeability versus core porosity in well B. 
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Fig. (13): Predicted permeability using artificial neural  

network for Nukhul clastics. 
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        Good relation can be observed between 
permeability and density log. The relation has the 
following form with r2 =0.716: 

ln K = -23.22 ρb + 60.116  (3) 
However by using Multiple Regression Analysis, 

it gives weak relation. Using artificial neural network, 
the permeability prediction improved considerably (Fig. 
13). The prediction was based on Φn, ρb and Φe as 
input and permeability as output. The relation between 
core porosity (Φc) and log – derived porosity (Φd) can 
be expressed as the following with               r2 = 0.753:  

Φc = 0.0687 + 0.7119 Φd   (4) 
Using regression analysis improves the relation 

slightly with r2 = 0.79: 
Φc =  1.13 – 0.406 ρb  (5) 
Heterogeneity of the Nukhul reservoir can be 

determined based on two scales; pore scale and macro 
scale. Respecting to pore scale and depending on 
Dykstra - Parsons Coefficient (Vk) (1950), the Nukhul 
clastics are extremely heterogeneous where Vk = 0.98 
(Fig. 14). Heterogeneity based on macro scale can be 
observed from intercalations of sandstone and shale, 
missed sections and effect of faults and unconfromaties.  

 
Fig. (14): Determination of reservoir 

heterogeneity using Dykstra - Parsons  
Coefficient, Vk. 

Anisotropy greatly affects fluid flow 
characteristics of the rock. The difference in 
permeabilities measured parallel and vertical to the 
bedding plane is the consequence of the origin of the 
sediment. It is a measure of the variations of physical 
properties in the horizontal and vertical directions, 
which contributes to the variations of cementation 
exponent “m “ (Salem and Chilingarian, 1999). It is 
expressed in terms of the hydraulic anisotropy 
coefficient “λh” as follows: 

2
1

v

h
h )

K
K(=λ    (6) 

Where: Kh and Kv are the horizontal and vertical 
permeabilities respectively, parallel and normal to the 
bedding planes. The hydraulic anisotropy coefficient 
increases with increasing the horizontal permeability 
along the bedding planes. The horizontal permeability 
is always greater than the vertical one, unless the 
medium is completely isotropic. Anisotropy normally 
ranges between 1 and 5. In the Nukhul Formation, 
anisotropy is ranged from 0.26 to 6.43 with average 
value of 1.36 (Fig. 15). 

 
Fig. (15):  Vertical permeability versus horizontal 

permeability showing the Nukhul reservoir 
anisotropy. 

Hydraulic Flow units can be determined from 
Stratigraphic Modified Lorenz plot (SML) or Winland 
equation. Gunter et al. (1997) described a technique for 
combining porosity, permeability, and bed thickness 
data for flow unit identification. They utilized the 
Stratigraphic Modified Lorenz plot for characterization. 
The SML plot is a crossplot of “cumulative flow 
capacity” – defined as the product of average 
permeability time thickness of an interval (kh) – versus 
“cumulative storage capacity” – defined as the product 
of average porosity and thickness of the same interval 
(Φh). Change in the slope indicates a new flow unit 
while horizontal trend can be treated as barrier where 
no flow occurred. Figure16 shows the SML plot for 
well B. We can determine at least nine HFU in well B 
for the cored interval with six barriers. We can 
conclude that about 90% of the fluid flow has been 
occurred from the interval between 10430 and 10470 ft 
depth (Fig. 17). This figure indicates also high degree 
of heterogeneity in this well. The mercury injection 
capillary pressure curves indicate three hydraulic flow 
units for these eight samples (Fig. 18). The HFU1 
represents gentle plateau indicating narrow pore throat 
size distributions (well sorted). On the other hand, 
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HFU3 represents steep plateau indicating wide pore 
throat distributions (poorly sorted).  

 
 

Fig. (16): Stratigraphic modified Lorenz (SML) plot 
showing the hydraulic flow units in the Nukhul 

Formation at well B. 
 

 
Fig. (17): SML plot showing reservoir flow and 
storage capacity for well B. We note that 90%  

of the productions come from the interval  
between 10430 and 10460 ft depth. 

 
Winland (published by Koldozie, 1980) carried 

out regression analyses on sandstone samples to get out 
a relationship among porosity, permeability and pore 
throat size. He found the best fit at 35% mercury 
saturation. The Winland equation has the following 
form: 
Log r35 = 0.732 +0.588 log K – 0.864 log Ф…….(7) 

In the study reservoir, the equation that 
determined the best fit has the following form with             
r2 = 0.96: 
Log r60 = 1.043 + 0.29 log K + 1.3 log Φc……….(8) 

The reservoir rock type based on Winland 
equation is illustrated in Figure 19. This figure indicates 
that three rock types are present. These rock types are 
meso, macro and mega rock types. 

 
 

Fig. (18): Mercury injection capillary pressure  
for well B (HFU = hydraulic flow unit). 

 
 

 

 
Fig. (19): Identification of reservoir rock type using 

Winland equation (Koldozie, 1980) 
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CONCLUSIONS 
- The lower Miocene Nukhul Formation represents 

the first strata responded to the Gulf of Suez 
rifting. 

- Facies and thickness of the Nukhul Formation vary 
from one place to another. The complete formation 
is missed in many wells due to the effect of fault 
movements post Shoab Ali Member. The complete 
section is usually encountered on the downthrown 
while on upthrown, the lower clastics section is 
usually missed. 

- Shoab Ali Member can be divided into three units; 
each one was deposited in a different environment.   

- The Nukhul clastics have a good to an excellent 
reservoir quality.  

- Porosity plays the major controlling role in 
determination of permeability due to slightly 
diagenesis processes. 

- Based on pore scale, Nukhul clastics reservoir is 
extremely heterogeneous.   

- Three reservoir rock types as well as at least nine 
hydraulic flow units can be detected within the 
Nukhul clastics. 

- Rock density is a good indicator for both porosity 
and permeability.  
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