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ABSTRACT: The discrimination of lithologic and fluid contents has been achieved by cross plotting the log data of
two wells encountered in a channel located, off-shore West Nile Delta, Egypt. Cross plotting the log data of the two wells
A and B, on the same plot, helped in comparing the properties of the reservoir at different well locations. This has been
successfully achieved using depth, Gamma-ray, and P- and S- impedances data. Moreover, the same cross plots were used
individually for each well using the Gamma-ray, Resistivity and Density logs as the color code. Logs of well A shows that
the reservoir is characterized by clean and blocky sands, fully saturated with gas; while well B is characterized by sands
inter-bedded with shale, and filled with residual gas and water. When appropriate pairs of attributes are cross-plotted, the
common lithologies and fluid types can be discriminated and provide a straightforward interpretation.

INTRODUCTION

Cross plots are a convenient way to demonstrate
how various combinations of logs respond to lithology
and fluid. The Cross Plot is used to plot one attribute

together, providing a straightforward interpretation
(Chopra and Marfurt, 2005).

Discriminating between the different lithologies

against another, and to look for relationships between
these attributes. Log data can be treated as a result of a
controlled experiment, where various rock properties
are measured in the subsurface. Rock and fluid
prediction, away from well control, requires
understanding of how rock's bulk and seismic properties
are linked to each other and how they vary with
geologic age, depth and location (Schlumberger, 1989;
Hampson-Russell, 2004 cross-plot; and Dvorkin, 2008).

Rock Physics provides the connections between
elastic properties measured at the surface of the earth,
within the borehole environment or in the laboratory
with the intrinsic properties of rocks, such as
mineralogy, porosity, pore shapes, pore fluids, pore
pressures, permeability and the overall architecture,
such as laminations and fractures. Rock Physics
provides the understanding and theoretical tools
required to optimize all the imaging and
characterization solutions based on elastic data
(www.rockphysicists.org). Cross plotting of attributes
was introduced to visually display the relationship
between two or three variables (White, 1991). When
appropriate pairs of attributes are cross-plotted, the
common lithologies and fluid types often cluster

and fluids is one of the main objectives of a reservoir
characterization study. Logs are one of the most
important tools used to study the rock properties of the
reservoir. This has been accomplished by cross plotting
the log data like: depth, Gamma-ray, P- and S-
impedances, color-coded by the wells, which
encountered a channel located, offshore, West Nile
Delta, Egypt. The same cross-plots were applied in
Delhi Field, Louisiana by Mustafayev and Davis,
(2011). Moreover, the same cross-plots were used
individually for each well, using Gamma-ray,
Resistivity and Density logs, as the color code. This is
successfully accomplished using Landmark R5000,
Hampson-Russell version CE8R44 E-log module and
Tech-Log 2009 version.

METHODOLOGY

The target is to cross-plot the appropriate attributes,
against each other, to analyze the petrophysical
parameters. The cross plots between two or three
variables were carried out along the zones of interest
1584-1714m and 1593-1775m of the two wells A and B,
respectively. Figure 1 shows the locations of wells.


http://www.rockphysicists.org/
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Figure (1): A base map showing the
locations of the wells.

The selected logs (figure 2) are dependent on the
elastic properties of the subsurface rocks, which needed
to be investigated. Gamma-ray, resistivity, density, The
P-impedance and S-impedance logs are data to be used
in analyzing the petrophysical parameters of A, and B
wells. Select the logs (attributes) to be cross-plotted
against each other, as well as the color code. A cross-
plot of two or three or more variables, based on the
target or the properties needs to be investigated. The
interpretation of the cross-plots will be straightforward,
when appropriate pairs of logs are cross-plotted.
Therefore, it is easy to understand the rock properties of
the evaluated interval.
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Figure (2): Logs of A and B wells.
RESULTS

1- Cross-plots of well A and well B:

The cross-plot of the P-impedance versus depth
for both wells, A and B (Figure 3) demonstrated that,
there is a difference in the P-impedance values of both
wells. In well A, the top of the reservoir is at 1584m
(TVDss), while the base is at 1714m (TVDss). Well B,
the top of the reservoir is at 1593m (TVDss), while the
base is at 1775m (TVDss). It is obvious that the P-
impedance of well A is relatively lower than that of well
B. The plot can be used to distinguish between the gas
sands (softer), shale and brine sand (harder). The shale
has a higher impedance than the gas sand and has a
lower impedance than the brine sand. Usually the
relatively soft sands are found at relatively shallow
depths, where the sands are unconsolidated. At greater
depths, the sands become consolidated and cemented,
whereas the shales are mainly affected by mechanical
compaction (Avseth et al., 2005).

The cross-plot of the P -impedance vs. GR of both
wells (Figure 4) is used to discriminate the clean sand
from shale, even if there is a similarity in the P-
impedance values. It is obvious that, well A has cleaner
sands than well B. Sands of well B are inter-bedded
with shale, so that’s why they have higher gamma-ray
values than the sands of well A. In this case, GR values
are used to help in differentiation between the
lithologies in the P-impedance domain.

Using the data of the P- and S-impedances
(Gassman’s equation, 1951), one could discriminate
between the different fluids (Figure 5). The first trend
on the left with a low P -impedance is the gas sand
trend, while the other trend on the right with a high P-
impedance is the background shale trend.
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Figure (3): The P-impedance versus vertical
depth cross-plot for the two wells.
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Figure (4): The gamma-ray versus P-impedance cross-plot for the two wells.
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Figure (5): The P-impedance versus S-impedance cross-plot for the two wells.
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The above-mentioned cross-plots give an idea
about the petrophysical parameters of the reservoir
itself. It helps in discriminating between the different
lithologies and fluids. The same cross-plots are used for
each well, individually, using the gamma-ray, resistivity
and density logs, as a color code.

2- Cross-plots of each well individually:
2.1- Cross-plots: P- impedance versus depth:

The first cross plot (Figure 6) is between the P-
impedance versus vertical depth and the color code of
gamma-ray log values is used to differentiate between
the sands and shales. There are three sand layers, Sand
1, Sand 2 and Sand 3. Well A: The three gas sands have
low The P-impedance, from depth 1584 to 1699m (Gas
Down To, GDT level) and all the sands have low
gamma-ray values, because they are clean sands. Well
B: The sands are characterized by higher gamma-ray
values, because they are inter-bedded with shales. The
residual gas-water contact is at depth 1725m, within
Sand 2 (the upper part is filled with residual gas and the
lower part is filled with water).

The sands, from depth, 1593 to 1725m (Sand 3
and a part of Sand 2), are filled with residual gas and
show relatively lower P-impedance than that of the
background shale.

The sands (a part of Sand 2 and Sand 1), from
depth, 1725 to 1775m, have higher impedance than the
background shale, because they are brine sands.

The same cross-plot of the P-impedance versus
depth was generated using the resistivity log data, as the
color code (Figure 7) this plot is used to discriminate
between different fluids. Well A, the clean sands are
characterized by high resistivity (<1000 ohm.m) and
low P-impedance, due to the presence of gas. Well B,
the resistivity is low (<10 ohm.m), due to the presence
of residual gas and water.

The presence of residual gas can be investigated,
using the density tool (Schlumberger, 1989). The plot of
the P-impedance versus depth was generated, using the
density log data, as the color code (Figure 8). This plot
shows that, there is a subtle difference between the
commercial gas and the residual gas, because the
presence of residual gas over water within the sand
layer will make it denser than the gas sand layer.
Dewan, (1983), Schlumberger, (1989), and Brie, et al.,
(1998); stated that, the presence of gas would affect the
bulk density readings and cause them to decrease. The
density of sand sample fully saturated with gas is not as
dense as that partially saturated with gas or even
saturated with water. In well A, there is a huge
difference between the density of gas sands and the
background shale, while in Well B, there is a subtle
difference between the residual gas sands and the brine
sand.

2.2- Cross-plots: P- versus S-impedances:

Cross plotting between the P- and S-impedances
of each well individually demonstrated to apply
Gassman’s equation (1951) and to discriminate between
the lithologies based on different fluid contents
(Mustafayev, and Davis, 2011). The gamma-ray and
resistivity log data were used, as the color code, to
differentiate between the pay sands and the background
shale. When the gamma-ray log data were used as the
color code (Figure 9), for well A, the left trend is the
sand trend, while the right trend is the background shale
trend, while for well B, there's almost one trend,
because the sands are inter-bedded with shale. The color
code was changed using the resistivity log data for the
same plot (Figure 10), for well A, the left trend, which
shows gas sands (low P-impedance and high resistivity)
and the right trend is the background shale, while for
well B. there is almost one trend and verv low resistivitv.
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Figure (6): The P-impedance vs. vertical depth cross-plots for the two wells
(the color code is gamma-ray data).
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SUMMARY AND CONCLUSIONS

Cross plots are a convenient way to demonstrate
how various combinations of logs response to lithology
and fluid. The Cross Plot is used to plot one attribute
against another, and to look for the relationships
between these attributes. The cross-plots of two wells,
which encountered channel located offshore, West Nile
Delta, Egypt, were used to evaluate the rock properties
and to understand the responses due to the lithologies
and fluids. This has been accomplished using the cross-
plot of P-impedance versus depth, Gamma-ray versus P-
impedance, and P-impedance versus S-impedance, the
color-coded by the wells. The reservoir at well A, is
characterized by clean and blocky sands highly
saturated with gas, while at well B, is characterized by
sands inter-bedded with shale and filled with residual
gas and water. The cross plot of the P-impedance versus
depth could distinguish between gas sands, shale and
brine sand. The shale has higher acoustic impedance
than the gas sand and lower impedance than the brine
sand. The cross-plot of the P -impedance versus
gamma-ray of both wells discriminates the clean sand
from the shale, if there is a similarity in the P-
impedance values. The gamma-ray values used as a
color code helped in differentiation between the
lithologies in the P-impedance domain. The data of the
P- and S-impedances discriminated between different
fluids. There are two trends, the first trend with lower P
-impedance is the gas trend (softer), while the other
trend with higher The P-impedance is the background
shale trend (harder).

Moreover, the same cross-plots were used
individually for each well, using gamma-ray, resistivity
and density logs as the color code. Gamma-ray tool is a
lithology indicator, differentiated between the sands and
shale. Well A is characterized by clean and blocky
sands of low gamma-ray values, while well B is
characterized by sands inter-bedded with shale of higher
gamma-ray values. The resistivity is used as fluid
indicator, helped in discriminating between gas and
water. Well A is fully saturated with gas and
characterized by high resistivity <1000 ohm.m, while
well B is filled with residual gas and water and it is
characterized by low resistivity <10 ohm.m. It is
mentioned that, the presence of gas would affect the
bulk density readings and causes it to decrease. At well
A, there is a difference between the density of gas sands
and that of background shale, while at well B, there is a
subtle difference between the residual gas sands and
brine sand.
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