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 قیاسیة معطیات المسح الجوى لأشعة جاما الطیفیة على جبل غرامول 
 والمناطق المتاخمة فى شمال شرق الصحراء الشرقیة بمصر

تخدام یشرح هذا البحث الخطوة الأولى لمسح أشعة جاما الطیفیة فى منطقة جبل الغرامول والتخوم بناحیة الشمال الشرقى من الصحراء الشرقیة واس الخلاصـة:

تبعتها دراسة حقلیة  ٢٠٠٣فى البحث عن تركیزات الیورانیوم والثوریوم والبوتاسیوم، وقد تم ذلك بأسلوب قیاسیة المعطیات الطیفیة والتى تم جمعها فى عام  ذلك

تقلة) فى كل نقطة قیاس وقد تضمن هذا الأسلوب حساب معدلات العدات الجویة الخطیة التراجع (التابعة) مقابل التركیزات الأرضیة (المس ٢٠١٢فى عام 

، ولما كان میل خط التراجع قد تأكد فى Kو eThو  eUأرضیة، وقد تم عرض ومناقشة العلاقات الخطیة بین المعطیات الأرضیة والأخرى الجویة لكل من 

  .كیزات الإشعاعیةحساسیته الإشعاعیة فإنه یمكن بالتالى استخدام المعادلات الخطیة الناتجة فى تحدید القیم الأرضیة لتلك التر 

ABSTRACT: The present work explains the first step of putting the airborne gamma ray spectrometric data of 
Gabal Gharamul area and its surrounding, North Eastern Desert into use in radioactive source search at ground 
concentration of uranium, thorium and potassium. This is done through applying the standardizing procedure of these 
spectrometric data. Such data were collected in 2003 then a field trip was conducted in 2012. Initially, the procedure 
involved a linear regression of the airborne count rates (the dependent) against the ground concentrations (the 
independent) for each measurement point on the ground. 
These linear relationships with zero intercept between the ground data and the airborne data for eU, eTh and K were 
illustrated. Since the slope of the regression line was assured to be the radioactivity sensitivity, the resultant linear 
equations will be used to determine the values of the ground data. 

INTRODUCTION 
Standardization is the procedure for unifying 

disparate data by converting them to either radioelement 
concentrations or dose rate units and ensuring the data 
are levelled. The procedure of standardizing airborne 
gamma-ray measurements were developed in the mid of 
1970s as a result of large government uranium 
exploration programs such as those carried out in the 
United States and Canada (Darnley et al., 1975; Duval, 
1991). Data standardization requires knowledge of the 
survey parameters, and some insight into the quality of 
the survey data. An important prerequisite is an 
acceptable accuracy of the geographical positioning of 
the survey data points.   The International Atomic 
Energy Agency (IAEA) has dealt with the calibration 
and processing procedures to convert the airborne 
measurements to ground concentrations of potassium, 
uranium and thorium (IAEA, 1991). Recently, the 
Australian Geological Survey Organization (Grasty and 
Minty 1995) have described in more detail the 
specifications for airborne gamma-ray surveys. The 
present study deals essentially with the correlation 
between the ground and airborne gamma-ray data trying 
to reach mathematical relation between them to 
standardize the airborne gamma ray spectrometry data 

in G. Gharamul area and its surrounding. These will 
provide base-line information that can be used as a 
reference to determine the relation between the airborne 
gamma ray spectrometric data and the ground 
spectrometric data in other areas to convert the airborne 
data to the ground data. 

Geologic setting of the study area: 
The G. Gharamul area lies in the northern part of 

the Eastern Desert, Egypt between latitudes 27° 49′ & 
28° 25′ N and longitudes 32° 50′ & 33° 32′ E (Fig. 1). 
The regional geological setting is depicted in (Fig. 1). It 
is covered mainly by a variety of rock formation from 
Quaternary, Tertiary and Cretaceous Eras. The study 
area contains man made features such as several oil 
fields (Kareem and Shukhier oil fields) and water wells 
(Bir Abu Nakhla).The western part of the area under 
investigation is dominated by several mountains having 
average height ranging from 100 to 300 meters above 
sea level (Fig. 2), while the eastern parts represent a part 
of the Gulf of Suez coast.  Gabal Gharamul is located at 
the central part of the mapped area and is characterized 
by height reaching 300 meters above sea level.  
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Figure (1): Surface geologic map, G. Gharamul and its surrounding, North Eastern  
Desert, Egypt (After Conoco & EGPC,  1987). 

 

G. Gharamul 

 
Figure (2): Shaded color topographic map, G. Gharamul and its surrounding,  

North Eastern Desert, Egypt. 
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          It is formed of Shagra Formation, which is mainly 
sandstone and Umm Ghieg Formation which is 
composed of crystalline carbonate. Gebel Zeit at the 
south eastern part of the mapped area which is formed 
of undeformed alkali feldspar granitic rocks, while El 
Malha at central eastern part of the mapped area is 
formed of sabkha deposits, silt, clay, evaporate sand, 
algal and reefal limestone. Most of the area is covered 
by Quaternary deposits. 
Airborne Spectrometric Survey Data: 

During May 2003, the Airborne Geophysics 
Department of the Nuclear Materials Authority (NMA) 
of Egypt conducted a multi-channel gamma-ray survey 
covering 1,900 km2 (12,907 line km) over Gabal 
Gharmul area and its surroundings, Northern Eastern 
Desert, Egypt. 

Data were acquired along primary lines spaced at 
250 m and along control lines spaced at 400 m. Nominal 
flying elevation was about 100 m (330 ft.) above ground 
surface (terrain clearance). The direction of the survey 
was 51-231 azimuth degrees for primary lines and 141-
321 azimuth degrees for control lines. The average 
speed of the survey was 250 km/h which is equivalent to 
70 m per second. 

Calibration Pads of Portable Gamma Ray 
Spectrometer (GS-512): 

Comprehensive descriptions of calibration and 
data processing for airborne and ground gamma ray 
spectrometry are presented by the International Atomic 
Energy Agency (2003), Grasty et al. (1997), Minty et 
al.(1997) and Grasty and Minty (1995). Calibration of 
gamma ray spectrometric system is required to 
determine parameters for the various correction stages 
which lead to ground level radioelement concentrations. 
This is done through IAEA approved calibration pads 
occurred in NMA in Cairo. Calibration pads have two 
purposes: 
a- To determine the various striping ratios of the 

airborne system; and 
b- To calibrate the ground spectrometer used to 

measure the ground concentration of the airborne 
calibration range. 
Stripping ratios account for the spectral overlap of 

radiation from different radioelement sources. They are 
determined experimentally using standard concrete 
calibration pads containing known concentrations of 
potassium, uranium and thorium plus the blank pad. A 
minimum of four pads are required to determine 
potassium, uranium and thorium sensitivity and 
stripping factors as well as to remove the background. 

The stripping ratios are the ratios of the counts 
detected in one window to those in another window for 
pure sources of potassium, uranium and thorium. A 
notation has been adopted in which α, ß and γ are ratios 

of counts in a lower energy window to those in a higher 
energy window and a, b and g are ratios of counts 
detected in a high energy window to those detected in a 
low energy window. 

The time spent for recording the window count 
rates on each pad controls the accuracy of the 
calibration constants. A longer counting time reduces 
uncertainties in the window count rate, which, in turn, 
will increase the accuracy of the calibration. For GS-
512 gamma-ray spectrometer detector, six minutes 
counting time is realistic, providing calibration 
constants that are sufficiently accurate for all practical 
purposes. 

The stripping ratios and infinite source 
sensitivities can then be determined using the program 
PADWIN. This program has the advantage over the 
straightforward matrix inversion technique in that the 
calibration constants and their associated errors are both 
calculated. These errors take into consideration Poisson 
counting errors as well as uncertainties in the 
concentrations of the pads. 

Table (1) gives calibration constants for GS-512 
gamma-ray spectrometer. For the standard window 
positions recommended by the International Atomic 
Energy Agency (IAEA, 1976), no counts should be 
recorded in the uranium and thorium windows from a 
pure source of potassium, consequently the reverse 
stripping ratios ‘b’ and ‘g’ should be zero. This is a 
useful check that the windows have been set in the 
correct position and the spectrometer was functioning 
correctly. 

Table (1): Calibration constants for sodium iodide, 
thallium activated NaI (TI) 76*76 mm  

scintillation crystal of GS-512 gamma-ray 
spectrometer. 

Type Coefficient Calibration  
constant 

Sensitivity K (cpm per pct) 143.7 
Sensitivity U (cpm per ppm) 14.64 
Sensitivity Th (cpm per ppm) 5.582 

Stripping ratio α 0.6344 
Stripping ratio β 0.7375 
Stripping ratio γ 0.9102 
Stripping ratio a 0.0306 
Stripping ratio b 0 
Stripping ratio g 0 

Field trip: 
Between 7th October 2012 to 11th October 2012 

the field trip was conducted. The ground gamma ray 
spectrometric survey was carried out along three 
profiles. Two of them are traverse lines trending 51º and 
one tie line trending 141º. Firstly, using the global 
positioning system was necessary to determine the 
ground points accurately with the same aircraft 
coordinate; the crew used the GPS to determine the 
points that will take the reading on it. To determine the 
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background values, gamma ray spectrometric readings 
were taken directly over Red Sea water surface at each-
day-survey morning. 
Stripping Corrections: 

The stripping correction is used to correct each of 
the K, U and Th window count rates for those gamma 
rays not originating from their particular radioelement 
or decay series, (IAEA, 2003). The parameters of 
sensitivity and stripping ratios (α, β, γ and a) determined 
from calibration pads, as well as, over water background 
measurements were used to correct the values of 
potassium in percent, uranium and thorium in ppm 
according to the following equations (1, 2, and 3),  
IAEA (2003). 
K  corrected = K (cps)-k (background)/30) - β *Th (corrected) –γ 
*Ur (corrected)……………………… (1) 
Ur corrected= (Ur (cps)-Ur (background/30) - α*(Th (cps)-Th 
(background)/30) / (1-a* α)……… (2) 
Th corrected= (Th (cps)-Th (background)/30) - a*(Ur (cps) - Ur 
(background)/30) / (1-a* α)………..(3) 
where: 
α: are the counts in the U window per unit count in the 
Th window for a pure Th source, 
β: are the counts in the K window per unit count in the 
Th window for a pure Th source, 
γ: are the counts in the K window per unit count in the 
U window for  a pure U source, and 
a: are the counts in the Th window per unit count in the 
U window for a pure U source (Fig. 3). 

After correcting the ground data there should be a 
good correlation between the ground and the airborne 
measurements. Figures (4, 5 and 6) show a comparison 
of the ground and airborne gamma count rates in the eU, 
eTh and K channels respectively, where as the pattern of 
eU, eTh and K in the airborne gamma ray spectrometric 
data closely resembles the ground values. 
Correlation of the airborne and ground gamma ray 
spectrometric data: 

After correction and processing steps applied on 
the airborne data from such as calculation of  Standard 
Temperature and Pressure (STP) altitude, subtraction of 
cosmic and aircraft backgrounds, radon background, 
calculation of stripping ratios and height correction, the 
airborne and ground readings still different. So, our 
target for airborne gamma ray spectrometric data will be 
done through linear relationships between the ground 
and airborne data measured at the same points. The 
resultant linear equations among   the ground and 
airborne potassium, uranium and thorium data, as 
shown in (Figs. 7, 8 and 9 respectively) are expressed as 
follow: 
K (Ground) =1.8041*K (Airborne)…………….…..(4) 
eU (Ground) =0.4216*eU (Airborne)..….……….…(5) 
eTh (Ground) =0.4521* eTh (Airborne)……….......(6) 

 

Figure (3): Potassium, uranium, thorium spectra 
showing the positions of the conventional potassium,  
uranium and thorium windows and the parameters 

used for stripping (after IAEA, 2003). 
Generation of the spectrometric data after 
standardization 

After getting the three relations between the 
ground data and the airborne data, applying these 
equations to the data was very necessary, so the 
resultant maps are similar to the airborne maps but the 
values are different due to standardization, as shown in 
(Figs. 10, 11 and 12). 

CONCLUSIONS 
After correction and processing steps applied to 

the airborne data from such as calculation of STP 
altitude, subtraction of cosmic and aircraft backgrounds, 
subtraction of radon background, calculation of 
stripping ratios and height correction, the airborne and 
ground readings still different.  Our target for airborne 
gamma ray spectrometric data will be done through 
linear relationships between the ground and airborne 
data which are measured at the same points. 

By using the airborne and ground spectrometric 
data and making a mathematical relation between them 
we found that, initially the procedure involved a linear 
relation with zero intercept of the airborne count rates 
against the ground concentrations for each measured 
point on the ground. K (Ground) =1.8041*K (Airborne), 
eU (Ground) =0.4216*eU (Airborne) and eTh (Ground) 
= 0.4521* eTh (Airborne). 
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  Fig. (4):  The ground and airborne gamma ray spectrometric data of L910  
profile (its location shown in Fig. 2). 

 

     

Fig. (5):  The ground and airborne gamma ray spectrometric data of L2500  
profile (its location shown in Fig. 2). 
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    Fig. (6):  The ground and airborne gamma ray spectrometric data of T1430  
profile (its location shown in Fig. 2) 

 

 

   Fig. (7): The relationship of the airborne potassium count rates with ground Concentration for all  
profiles measured at G. Gharamul area and its surrounding, Northern Eastern Desert, Egypt. 
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Fig. (8): The relationship of the airborne equivalent uranium count rates with ground Concentration  
for all profiles measured at G. Gharamul area and its surrounding, Northern Eastern Desert, Egypt. 

 

 

Fig. (9): The relationship of the airborne equivalent thorium count rates with ground Concentration  
for all profiles measured at G. Gharamul area and its surrounding. Northern Eastern Desert, Egypt. 
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Figure (10. a, b): Filled Color Contour Map of the standardized (a) and airborne (b) Potassium  
Concentration of G. Gharamul and its surrounding area, Northern Eastern Desert, Egypt. 
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Figure (11. a, b): Filled Color Contour Map of the standardized (a) and airborne (b) equivalent uranium 
Concentration of G. Gharamul and its surrounding area, Northern Eastern Desert, Egypt. 
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Figure (12. a, b): Filled Color Contour Map of the standardized (a) and airborne (b) equivalent thorium 
Concentration of G. Gharamul and its surrounding area, Northern Eastern Desert, Egypt. 
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	Fig. (2) : MMS-4 High-sensitivity magnetometer processor with its CS-3  sensor, and Billingsly TFM Tri-axial fluxgate magnetometer.
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