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Abstract In this paper, we investigate a mathematical model which takes account the cure of
infected cells and the loss of viral particles due to the absorption into uninfected cells. The global
stability of the model is determined by using the direct Lyapunov method for disease-free equilib-
rium, and the geometrical approach for chronic infection equilibrium.
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1. Introduction

The aim of this work is to study the dynamical behavior of the
following model describing the interaction between the suscep-
tible host cells (x), infected cells (y) and free virus (v), this
model is formulated by the following nonlinear system of
differential equations:
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where the susceptible host cells are produced at a rate 4, die at
a rate dx and become infected by virus at a rate f(x,y,v)v.
Infected cells may be killed because of viral or immune effects,
or they may be lost by noncytolytic elimination of the cccDNA
in their nucleus. The loss rate of infected cells is given by a + p,
where a is the death rate of infected cells and p is the reversion
rate into the uninfected state. The term py into first equation of
(1) gives a measure of the uninfected cells which are created
through “cure”, per unit time. Recently, this cure of infected
cells is considered by several works [1-6]. Finally, free virus
is produced by infected cells at a rate ky, decays at a rate uv
and the parameter i takes only the values 0 or 1. When i =0
corresponds to the system treated by Hattaf et al. in [6], and
i =1 takes account the loss of viral particles when it enters
the target cells. Note that, when a pathogen enters an
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uninfected cell, the number of pathogens in the blood de-
creases by one. This is called the absorption effect, which is
considered in [9-11] and is ignored by many authors such as
[1-8]. As in [6-8], we assume that the function f(x,y,v) is
continuously differentiable in the interior of Ri and satisfies:

f0,y,v) =0, forally = 0andv = 0, (Hy)
of

a()@y, v) >0, forall x>0, y > 0andv >0, (Ha)
() S0 and o (xp) <0, ¥ x>0 (Hy)

The rest of our paper is organized as follows. Section 2 deals
with some preliminary results concerning positivity and bound-
edness of solutions, basic reproduction number and existence of
equilibria. In Section 3, we discuss the stability of equilibria.
The paper ends with some applications in Section 4.

2. Preliminaries

In this section, we establish the positivity and boundedness of
solutions, basic reproduction number and existence of equilibria.

2.1. Positive invariance and boundedness

Theorem 2.1. The octant Ri ={(x,p,v)ER: x>0, y
>0, v = 0} is positively invariant with respect (1). Moreover,
all solutions of (1) are uniformly bounded in the compact subset
F={(xpv)eR: x+y <4, v<& where § = min{a,d}.
Proof. The positive invariance of the positive orthant is trivial.
It remains to show that the system (1) is uniformly bounded.
Let (x(1), y(¢), v(¢)) be any solution with positive initial condi-
tions (xg, ¥y, Vo). Adding the first two equations of the system
(1) gives, 4(x+y)=Ai—dx—ay<i—0d(x+y), with
0 = min{a,d}. Then we obtain that limsup, (x+y) <%
On the other hand, from the third equation of the system, it
is easy to see that limsup, v < % Hence, all solutions of
the system (1) which start in Ri are eventually confined in
the region I'. This completes the proof. O

2.2. Basic reproduction number and equilibria

By a simple calculation, system (1) has always one disease-free
equilibrium E_/(f}, 0, 0). Therefore, the basic reproduction num-
ber of (1) is given by

(k—(a+ p)z)f(:?, 0, 0) .

Ry =
0 u(a+p)

(2)
Using the same technique in [6], we deduce that there exists a

unique endemic equilibrium when R, > 1. Hence, we have the
following result.

Theorem 2.2.

(1) If Ry < 1, then the system (1) has a unique disease-free
equilibrium of the form Ey(%,0,0).

(ii) If Ry > 1, the disease-free equilibrium is still present and
the system (1) has a unique chronic infection equilibrium
of the form E*(x*,y",v*) with x* € (0,%),y" >0 and
vt > 0.

3. Local and global stability of equilibria

The Jacobian matrix of (1) at an arbitrary point is given by

—d-%v  —dv+yp ~Zy—f
J= %v %‘v —(a+p) %v +f . (3)
figf’:v kfig—;v fufi(er%bv)

Based on Jacobine matrix approach by evaluating (3) at E; and
E*, we can obtain the following results.

Theorem 3.1. The disease-free equilibrium Ey is locally asymp-
totically stable if Ry < 1 and it is unstable if Ry > 1.

Theorem 3.2. Suppose that Ry > 1. If i=0 or if i = 1 and the

function f satisfies the following hypothesis

(f(-’@)’v V) + vg_/> = 07 fOl’ all X, ),V = 07 (H4)
v

then the chronic infection equilibrium E* is locally asymptoti-
cally stable.

Remark 3.3. The assumption (Hy) is verified by different types
of the incidence rate including the mass action, the standard
incidence, the saturation incidence, Beddington-DeAngelis
incidence function, Crowley-Martin incidence function and
the more generalized incidence function proposed by Hattaf
el al. (see Section 5 in [8]).

Based on the following Lyapunov functional
V(t) = aipy(t) + v(2), it is not hard to establish the following

theorem.

Theorem 3.4. E; is globally asymptotically stable in I if a > d
and Ry < 1.

In order to establish the global stability of the chronic infec-
tion equilibrium E* when Ry > 1, we need first to show the fol-
lowing lemma.

Lemma 3.5. If Ry > 1, the system (1) is uniformly persistent.

Proof. This lemma follows from a uniform persistence result,
Theorem 4.3 in [12]. To show that system (1) satisfies all the
conditions of Theorem 4.3 in [I12] if Ry > 1, we choose
X =R® and the set £ =T. The maximal invariant set M on
the boundary OI is the singleton E; and is isolated. By Theo-
rem 4.3 in [12], we can see that the uniform persistence of sys-
tem (1) is equivalent to the unstability of the disease-free
equilibrium E;. Hence, by Theorem 3.1, we know if Ry > I,
the system (1) is uniform persistence. [

Next, we establish a set of conditions which are sufficient
for the global stability of the chronic infection equilibrium
E’. According to Lemma 3.5, we know if Ry > 1, the system
(1) is uniform persistence. Hence, there exists a compact
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absorbing set K C T’ [ ] Along each solution (x(¢), y(t), v(t))

of (1) such that X, = (x(0), y(0),v(0)) € K, we put
p1 = lim supsup ( - —v(s))ds,
—00 Xoekl
o
=1i —=v(s) |ds.
7 “fls;‘p;i%z i ( y(s ay y(s) avv(?)) s

Theorem  3.6. Avvume Ry>1 and (Hy)  hold. If
max{k‘ zg{% d(y} ig—{,y and ip; < 6 or ifiq) < 9, then
E* is globally asymptotlcally stable.

Proof. To investigate the global stability of E*, we apply the
geometrical approach developed by Li and Muldowney in
[13]. The second additive compound matrix of the Jacobian
matrix J, given by (3), is defined by

Ju tin Jo3 —Ji3
JP = Jn Ju +is Jiz ) (4)
—J3 Ja Jn T3

where j,, is the (k, /)th entry of J. Let P = diag(1,%,%). Then
I)fPil = dlag<07§ - 17.2 - X) )

where matrix Py is obtained by replacing each entry p; of P by
its derivative in the direction of solution of (1). In addition, we
have
B B
B=rpp ' 4 P/P = ( 1 12)7
‘ By By
where
of  of
_ d Y, Y
(a+d+p) o’ T oy
B12:(i(:)‘v+f(x Y,V )) :‘(%(V“'f(%%"))),

By =

k—iZ by b
By = ( aJV) , Bzz:( , 12>7
3{5’ by by
which
L oF P oF
b]lzi—g— _d_a_{Cv_l(f+ f> b]zip—a—fv,
b21:gv7 b22:}—;—x—a—p—u+gv—lf+af
Ox yov Ay

Let (wy, wy, w3) denote the vector in R3, choose a norm in R® as
[wi, wa, w3| = max{|w|,|wa| + |ws|} and let p be the Lozinskii
measure with respect to this norm. Then we have the following
estimate, see [14]:

w(B) < sup{g. &}, (5)

where g, = 1, (Bi) + |Biz| and g, = |Bu| + 1;(Bxn), here g
denotes the Lozinskii measure with respect to /; vector norm,
| B2 and | By | are matrix norms with respect to /; norm. More-
over, we have

Y v of of | of

gIZ;—dﬁ-;a—a +6y 3 — 0. (6)

and
y v ky —of .of
=2___5 el
5 y v +max{ v ny (%y U
oA
— l(f+ E V) . (7)
If max {’i a)y, giy} kT‘ — 10 'y, then
f, L o
—0— - 8
&=t =o-i(gby+ o ®
From (5). (6) and (8), we get u(B) <{—5— ((hy +2 )
Hence,
I
G = hm sup sup — / u(B)ds < =6 +ip; <0.
—0o0 XoeK t 0
In general case, we have
y o, _of o
&= —d+ (axy o "o’ )
From (5. (@ and (9, we get pu(B)< ; — 5+
i %y — g_lf} — % v ). Consequently,
t
g = hm sup sup — ! / u(B)ds < =06 +ig, <0.
—00 Xoek b Jo

By Theorem 3.5 in [13], E”
stable. [

is globally asymptotically

From Theorem 3.6, we obtain the following result.

Corollary 3.7. Assume Ry > 1 and (Hy) hold. If i =
globally asymptotically stable.

0, then E* is

4. Applications

Here, we give some examples of incidence functions for which
we apply our theoretical results concerning the global stability
of E* when Ry > 1.

Example 1. Mass Action when f{x, y,v) = fix. In this case, the
hypotheses H,, H,,Hs and H,, are satisfied. In addition,

[ (2= 26 = Svto) s = [ ot

Since X + y = A — dx — ay, we have

| i <20 -Lia 4500 - 0 - 0.
0

Thus q; < /i—f By applying Theorem 3.6, we deduce that E* is
globally asymptotically stable if i =0 or if i = 1 and A < da.

Example 2. Standard Incidence when f(x,y,v) == ﬁ‘ In the
same, the hypotheses H;, H,, H; and H, dre Sdtlsﬁed
Moreover,

/ (gi Qe g’; (S)—%()) S:/Ol#_i%ds<ﬁz.
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Then g; < . From Theorem 3.6, E* is globally asymptoti-
cally stable if i=0orif i=1and < é.

Example 3. Saturation Incidence when f(x,y,v) = £ Then

) 14y
H,,H,.H; and H, are satisfied and %y(s) :%g /i—y If we
suppose that ff < k, we get max {1% — %y,%y} = 1% Further,

Since X + y = 4 — dx — ay, we have

[ o < BBty 430 - x0) - 00,
0

Hence p; < ’%. By Theorem 3.6, we deduce that E* is globally
asymptotically stable if i=0 orif i=1 and f < min(k,%").
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