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Abstract This paper presents a new modification of He’s variational iteration method using Ado-
mian’s polynomials (VIMAP) to solve reaction—diffusion system with fast reversible reaction. An
auxiliary parameter is introduced into the VIMAP and optimally identified to adjust the conver-
gence region of the approximate solution. The results reveal that the VIMAP is very accurate
comparing with those obtained by the VIM but is not valid for large solution domain, while the
new modification have a remarkable accuracy for large domains.
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1. Introduction

Nonlinear phenomena are of fundamental importance in var-
ious fields of science and engineering. The nonlinear models
of real-life problems are still difficult to solve either numeri-
cally or theoretically. There has recently been much attention
devoted to the search for better and more efficient solution
methods for determining a solution, approximate or exact,
analytical or numerical, to nonlinear models [1].
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Many promising numeric-analytic methods have been pro-
posed recently such as the variational iteration method (VIM)
by He [2-5] and the Adomian’s decomposition method (ADM)
[6-9]. In recent years, many authors have successfully applied
the VIM [10-13] to solve a wide variety of linear and nonlinear
problems with approximations converging rapidly to accurate
solutions. With the passage of time some modifications in He’s
variational iteration method (VIM) has been introduced by
various authors [14-28].

The reaction diffusion equations (RDEs) have recently at-
tracted considerable attention, partly due to their occurrence
in many fields of science, in physics as well as in chemistry
or biology, partly due to their interesting features and rich
variety of properties of their solutions [29].

Recently, Eymard et al. [30] studied the numerical solution
of the reaction—diffusion system with fast reversible chemical
reaction of type mA = nB by using the finite volume method.

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.joems.2013.12.011


http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2013.12.011&domain=pdf
mailto:annsawoor@yahoo.com
mailto:malamroo@yahoo.com
mailto:malamroo@yahoo.com
mailto:alamr@uomosul.edu.iq
http://dx.doi.org/10.1016/j.joems.2013.12.011
http://dx.doi.org/10.1016/j.joems.2013.12.011
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2013.12.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A new modification of variational iteration method

397

Also, Al-Sawoor and Al-Amr [31] applied the VIM and the
ADM to solve this system and compared the obtained results.

The motivation of this paper is to present a new modifica-
tion of the variational iteration method using Adomian’s poly-
nomials (VIMAP) by introducing an optimal auxiliary
parameter into the VIMAP. The VIMAP and its modification
are successfully applied to solve reaction—diffusion system
which describes a reversible chemical reaction. Comparisons
are made between the standard VIM, the VIMAP and the pro-
posed method.

In this work, we consider a reversible chemical reaction be-
tween mobile species 4 and B, that takes place inside a
bounded region 2 C R, we have the reaction—diffusion system
of partial differential equations [30,32]:

u, = alu — ak(ry(u) — r(v)),
v, = bAv + ﬁk(rA (u) - "B(V))v

where 7 > 0 and Q is a bounded set of R, with the boundary
conditions

in Q x (0, 7),

in Q x (0,7), M

Vu-n=Vv-n=0, ondQx(0,T), (2)

and the initial conditions
H(X, 0) = u()(x)7 (X 0) - VO( )7 in Q. (3)

. . l .
For a reversible reaction a4 = fB, the rate functions are of
k»

the form r4(u) = kyu” and rpu) = k» v*, where k, and k- are
rate constants, ¢ and b are diffusion coefficients and k is the
chemical kinetics factor (for further details see [33,34]).

2. Variational iteration method using Adomian’s polynomials
(VIMAP)

To illustrate the methodology of the VIMAP, we first consider
the system of partial differential equations written in an oper-
ator form

Ltu+Rl(u7V)+N1(u7v):g17 (4)
L[V + R2(u7 V) + NZ(uu V) = &7,

with initial data

u(x,0) = fi(x), .
V(X, 0) :f2(x)7

where L, is considered, without loss of generality, a first order
partial differential operator, R; and R, are linear operators, N;
and N, are nonlinear operators, and g; and g, are inhomoge-
neous terms.

According to the VIM, we can construct a correctional
functional as follows [11,13]:

U (X) = 11, (x) +/0x;., (L1t (T) + Ry (i, ) 4 Ny (i, ) — &, (1)),

Vi1 (X) = V,,(X) + /OX;LZ[LtVn(T) + RZ([‘M ‘7)1) + Nl(ﬁn? ‘7)1) 7g2(7)]df7
(6)

where 4; and 4, are general Lagrange multipliers, which can be
identified optimally via the variational theory [5], the subscript
n denotes the nth order approximation, #, and v, are consid-
ered as restricted variations, i.e., di, = 0 and oy, = 0.

The ADM assumes a series that the unknown functions
u(x,t) and v(x,7) can be expressed by an infinite series of the
form [16,17]

00

u(x, 1) = Zuk (x,1),

. (7)

1) = ka(x, 1).
k=0

And the nonlinear operators Nj(u,v) and N(u,v) can be
decomposed by the infinite series of the so-called Adomian
polynomials

V) = iAln
k=0

7\)) = ZBk
k=0

The Adomian polynomials A, and By are generated according
to the following algorithms [16]

Ay = o |:8/'Lk (Z} u,,EA v,)] R
©)

B, = Ii' {a ——N, (i; Ui, ZM,)] , k>o0.

=0

(®)

Substituting Egs. (7) and (8) into the variational iteration for-
mula (6), we obtain

U1 (3 / ZL,MA )+ R (Zuk,Zv/)JrZAk gz }
o= [ {ZL,vk +R7<Zu,\,2vk>+z& ol ]

k=0 k=0 k=0

(10)

The successive approximations u,, + 1(x, ), v,+1(x, 1), n = 0,
of the solutions u(x,?) and v(x,?) will be readily obtained by
using selected functions f} and f>. Consequently, the solutions
are given by Egs. (7).

3. Variational iteration method using Adomian’s polynomials
with an optimal auxiliary parameter (VIMAPOAP)

We assume that an unknown auxiliary parameter /4 can be in-
serted into the correction functional (10) of VIMAP, so that
we obtain

U1 (X, 1) 711/(]' A |:ZL,uk )+ R, <Zuk,2vk> +2Ak7g] :|d‘[7

k=0 k=0

Vo1 (x,h) = / 2 {ZL;V/( +R; (Zﬁhzﬁk) +ZBkg2(T):| de
(1)

The auxiliary parameter s can be determined by means of
the so-called A-curve and the error of norm 2 of the residual
functions to ensures that the approximations u,(x, %), v,(x,h),
n > 1, that contain the auxiliary parameter /, converge to
the exact solutions. In fact, the proposed method gives a sim-
ple and a powerful mathematical tool for nonlinear problems
and is cable to approximate the solution more accurately in
a large solution domain.
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4. Numerical experiment

We consider the reaction of the reversible dimerization of o-
phenylenedioxy-dimethylsilane (for further details see [35]).

k
Since the reaction is of the type 24 /‘=‘l B, the reaction terms
ko

take the form r4(u) = k? and ra(v) = kyv [30]. Moreover,
o = 2 and f = 1. So that, we have the following reaction—dif-
fusion system:

w, = auy, — 2k(kj* — kyv), in [0,0.1] x (0, T), (12)
v, = by, + k(kju* — kyv), in [0,0.1] x (0, T),
and the initial conditions are defined as follows:
0 for x € [0,0.03], 3
1) =4 1 in (92 (x — 0.03)) for x € [0.03,0.1], (13)
1cos (3Ex) for x € [0,0.07],
() = § 4908 (5°) igadl (14)
0 for x € [0.07,0.1].

The rate constants for both reactions can be estimated at the
temperature 298 K,

ki~ 1.072-107*L>mol™® and k, ~2.363-107° L> mol 2,

and diffusion coefficients
a~1579-10°m?*s™" and b~ 1.042-10° m>s™".

To solve the system (12) by means of the VIMAP, we construct
correctional functionals which read

t
1 (5, 1) = (. 1) + / 2 [ty — ey + 2k 2 — 2kkey7,) do,
0

t
Vo1 (3, 8) = v (x, £) + / s [vm — bVyyy — kk.z?ﬁ + kkﬂn}dr.
0

(15)
Its stationary conditions can be obtained as follows:
A()=0, 14 40|, =0,
(1) =0, 14 A(1)|,_, =0.
The Lagrange multipliers, therefore, can be identified as 4, =
A» = —1, and the iteration formulas are given by

!
Upi1 (X, 8) = u,(x, 1) — / [um — QU + 2kky1? — 2k Vn]d‘L',
0

t
Va1 (3, 1) = wa(x, 1) — / [vm B —— kkluﬁ + kkzvn}dr.
Jo
(16)

We assume that the unknown functions u(x,?) and v(x,?)
can be expressed by

X, 1) = iuk(x, 1),
t) = ivk(x, 1),
=0

and the nonlinear terms can be decomposed by the Adomian
polynomials

() =u’ = iAk, (18)

(17)

where the Adomian polynomials 4, can be generated by (9).
Substituting Eqgs. (17) and (18) into the iteration formulas
(16), we obtain

i1 (X,1) = — /’ |:z”:ukr - azn:ukxx + ZkkliAk - 2kkzzn:vk:| dr,
O ~ o —
Vi (X,0) / [kar bev/m ke, ZAA +kk22vk] dr.

(19)
The first three components of Adomian polynomials read
Ay = u%,
Ay = 2uyuy,

Az = 2u0u2 + l/l%

The solutions are obtained using the initial conditions only.
Consequently, the pair of zeroth components is given by

o1 (x,¢) for x €[0,0.03],

up(x,t) = < up(x,t) for x €[0.03,0.07], (20)
up3(x,t) for x €[0.07,0.1],

Uoy (X, l) = 07

1 50
uop(x, 1) = upz(x, 1) = 3 sin (771 (x— 0.03)),

vor(x,¢) for x € [0,0.03],
vo(x,1) = ¢ voa(x,t) for x €[0.03,0.07], (21)
vos(x,¢) for x € [0.07,0.1],

1
vor (x, 1) = voa(x, 1) = 1 cos (50771)6)7

Vo3 (X, l) = 07

and the pair of first components read

uy (x,¢) for x €[0,0.03],
u(x,t) =< up(x,t) for x €[0.03,0.07],
u3(x,1) for x €0.07,0.1],
uyy (x,1) =2 cos (32 x)1,
up(x,1) = 'ig"nzasm (3% (x—0.03))¢
— 81 5in? (322 (x — 0.03)) 1 +%2 cos (L)1,
ups(x,1) = —2072asin (3% (x — 0.03) ) r — &t sin” (322 (x — 0.03) )1,
vii(x, 1) for x €[0,0.03],
vi(x, 1) =< vip(x, 1) for x € [0.03,0.07],
viz(x, ) for x € [0.07,0.1],

vir(x,1) = —2n2bcos (3L x) 1 — 42 cos (L)1,

7
via(x,1) = — L rbeos (x) 1+t sin® (302 (x - 0.03))

kk3 cos (%) 1,

vi3 (o, 1) =51 sin’ (22 (x — 0.03)) 1.

And so on, the rest of components can be easily obtained.

A comparison between the numerical results of the pro-
posed method with those obtained by VIM [31] is given by
Table 1. The results show that the two solutions obtained
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Table 1 Comparison of the approximate values of u(x, ¢) and v(x, 7) obtained by using three iterations of VIMAP and VIM for k = 1
at time ¢ = 1.

R Uyimap uyml31] VvIMAP vrml31]

0 1.18149782428374e—06 1.18149782428374e—06 0.249999278075943 0.249999278075943
0.02 1.06449275718299¢—06 1.06449275718299¢—06 0.225241566544505 0.225241566544505
0.04 0.111258461144262 0.111258461144262 0.155873327356743 0.155873327356743
0.06 0.311724080934518 0.311724080934518 0.0556404903603831 0.0556404903603832
0.08 0.450440570555619 0.450440570555619 2.17526106277004e—05 2.17526106276869e—05
0.1 0.499946008340295 0.499946008340295 2.67970603236263e—05 2.67970603236036e—05

u(x,t)

Fig. 1

are in excellent agreement (see Fig. 1). So that the VIMAP is
very accurate for small solution domains.

To solve the system (12) by means of the VIMAPOAP, we
propose that an unknown auxiliary parameter / can be in-
serted into the correction functionals (19) as follows:

1 n n n n
i1 (X, 1) = —h/ |:Zuk, - aZum + Zkkle,‘. — Zkaka:| dr,
0 | k=0 k=0 k=0 k=0
t n n n n
Va1 (X, 1) = *h/ {Zwﬂ — bzvlm - kklZAk + kkzzvk} dr.
0 | k=0 k=0 k=0 k=0

(22)

We will find the approximations Zizo u,(x,¢) and
Zizo va(x,1), denoted by u'(x,t) and v'(x,7) respectively,
with (x,7) €[0,0.1]x [0,10,000] by means of the proposed
method.

We start with the initial conditions given by (20) and (21),
with the above iteration formulas, we found the pair of first
components

for x € [0,0.03],
for x € [0.03,0.07],
for x € [0.07,0.1],

U (X, t)
ulz(x, l)

u13(x, l)

u(x,1) =

upy (x, ¢, hy) =152 cos (3 x)1,
upn(x, 1, lp) = —hy (B2 n?asin (3 (x — 0.03))1

+50 sin (322 (x — 0.03)) 1 — %2 cos (3 x)1),
ups(x, 1, h3) = —h3 ("B n?asin (3% (x — 0.03))1

+45¢ sin® (% (x — 0.03))1),

v (x,1)

024
0.15- "
0.1

0054 :

X 0.08

The numerical results for: (a) u(x,?) and (b) v(x,?) by VIMAP for different values of ¢ with k = 1.

vii(x,¢) for x €10,0.03],
vi(x,1) = ¢ via(x, 1) for x € [0.03,0.07],
viz(x,¢) for x €[0.07,0.1],
v (x, 1, hy) = —hy (B b cos (3L x) 1 + 52 cos (X)),

via(x, 1, hy) = —hy (2 n?bcos (3L x)r — 5 sin® (3% (x — 0.03))¢

+52 cos (Xx)1),

vis(x, 2, hs) = "5 sin® (322 (x — 0.03)) 1.

And so on. In order to find a proper value of /; for the approxima-
tions Zi:o Uy (x,2,hy) and Zi:o ty (x,2,hy), denoted by
ui(x,t,hy) and vi(x,t, hy) respectively, we plot the Aj-curve of
Ou;(x,t,hy)/0t and Ovi(x, t, hy)/0t when x = 0.02 and 1 = 5000
(see Fig. 2a) to discover the valid region of 4, which corresponds
to the line segments nearly parallel to the horizontal axis.

According to the system (12), we can define the following
residual functions:

O (x,t.n) Pt (x,1,h
o — 1 1
’1(x7t’hl) = 1 —ad—5a

—O(kaVT(X, 1‘7}11)7
ST (X, 1, hl) _ ('7\7’1‘(;[,/1]) _ b(’)'v}é;f,/n) _ ﬁkkﬂl?(x, 17/,11)
+ﬁkk2VT(X, l‘,h]).

To determine an optimal value of /4, we plot the error of norm
2 of the above residual functions with respect to /; (see
Fig. 2b), i.e.,

50 50 ‘ , 3
(S5t

1

50 50 1
(<51>’ 22(57%7200/'7/11))2> .

Lt akeyu? (x, 1, hy)
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Fig. 2

1x10¢ - (@)
1 5.x10°8 4
8.x1077
6.x10°7 4.%x10°8
4.x1077
3.x107%
2.x1077 A
2.x10°8 4
0 T T T T T T
0.6 0.8 1.0 12 1.4
7 hl
-2.x10"" A 1.x10°8 4
-4.x10"7
I~ G
T~ - 0.7
-7 Y .-
-6.%10 e sy s h

(a) The hy-curve of du;(x,t, )/t (solid line) and dv{(x, ¢, h,)/0t (dash-dot) when x = 0.02 and ¢ = 5000. (b) The error of norm
2 of rj(x, 1,/) (solid line) and sj(x, 1, /) (dash-dot) with respect to ;.

Table 2 Comparison of the approximate values of u(x, ) and v(x, f) obtained by using two iterations of VIMAP and VIMAPOAP for
k =1 at time ¢ = 10,000.

RY Uyimapr UyIMAPOAP VyivMap VVIMAPOAP

0 0.0115974381284457 0.0115456005366113 0.242884984176699 0.242913716409086
0.025 0.00981983151240772 0.00977593936897188 0.205656593731590 0.205680922008050
0.05 0.163237100088741 0.152050418931326 0.133441330722535 0.139620972048625
0.075 0.393980535536189 0.223115586936561 0.0133288130659265 0.0988667152668504
0.1 0.549488659313337 0.249419698888176 —0.0259995049389023 0.123916955251160

0.5 0.6
045 f (a)
05
04+
035 f 0.4
03 0.3
0.25
02 -\ o2
0.15 | 0.1
0.1+
0
0.05 f
0 : : 01 : . . :
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Fig. 3  The numerical results for u(x, ) and v(x, r) obtained by using two iterations of (a) VIMAPOAP and (b) VIMAP with k = 1.

According to Fig. 2, we can select #; = 1.06.

In the same manner, one can select /&, = 0.56 and
h; = 0.56. These calculations can be easily performed by using
MAPLE software.

A comparison between the numerical results of the VIMA-
POAP  with those obtained by VIMAP  with
(x,1) €[0,0.1] x [0,10,000] shows that the second one is not va-
lid for large solution domain while the first has an improved
accuracy (see Table 2).

We can compare the obtained numerical results (see Fig. 3)
with those obtained [30] by using finite volume method to in-
sure that the new technique is more accurate than VIMAP.

The same mesh and time step sizes are used in Fig. 3, so that
we take x = 0.000125,0.000375,...,0.099875 and ¢ = 0,100
,-+-,10,000.

5. Conclusions

In this work, we present a new modification of the variational
iteration method using Adomian’s polynomials (VIMAP). The
proposed technique was implemented to find the approximate
solution of reaction—diffusion system describes a fast reversible
chemical reaction. The numerical results reveal that the pro-
posed method is reliable, effective and accurate tool for solving
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nonlinear problems by introducing an auxiliary parameter into
the VIMAP to accelerate the convergence for large solution
domains. However, the accuracy of the VIMAP was proved
for small domains. In our work, we use MATLAB software
to obtain the approximate solutions.
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