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Abstract In this paper, we demonstrate the effectiveness of the new generalized (G’/G)-expansion
method by seeking more exact solutions via the mKdV equation and the Gardner equations. The
method is direct, concise and simple to implement compared to other existing methods. The trav-
eling wave solutions obtained by this method are expressed in terms of hyperbolic, trigonometric
and rational functions. The method shows a wide application for handling nonlinear wave equa-
tions. Moreover, the method reduces the large amount of calculations.
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1. Introduction

A large variety of physical, chemical, and biological phenom-
ena are governed by nonlinear partial differential equations.
One of the most exciting advances in the field of nonlinear sci-
ence and theoretical physics is the development of methods to
look for exact solutions of nonlinear partial differential equa-
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tions. Exact solutions to nonlinear partial differential equa-
tions play an important role in nonlinear science, since they
can provide much physical information and more insight of
the physical aspects of the problem and thus lead to further
applications. Wave phenomena in dispersion, dissipation, dif-
fusion, reaction and convection are very much important. In
recent years, several powerful methods for obtaining explicit
traveling and solitary wave solutions of nonlinear evolution
equations have been established, such as, the ansatz method
[1], the Adomian decomposition method [2], the Darboux
transformation method [3], the Backlund transformation
method [4], the inverse scattering transformation method [5],
the Jacobi elliptic function method [6.7], the Exp-function
method [8,9], the extended tanh method [10], the Cole-Hopf
transformation [11], the (G’/G)-expansion method [12-16],
and the modified simple equation method [17,18].
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Recently, Naher and Abdullah [19] established a highly
effective extension of the (G’/G)-expansion method, called
the new generalized (G’/G)-expansion method to obtain exact
traveling wave solutions of NLEEs. The objective of this arti-
cle is to search for new study relating to the new generalized
(G'/G)-expansion method for solving the mKdV equation
and the Gardner equations to demonstrate the appropriateness
and straightforwardness of the method.

2. Description of the new generalized (G'/G)-expansion method

Let us consider a general nonlinear PDE in the form

) =0, (1)
where u = u(x, t) is an unknown function, P is a polynomial in
u(x, t) and its derivatives in which highest order derivatives and

nonlinear terms are involved and the subscripts stand for the
partial derivatives.

P(Ll, Upy Uy Upgy Upyy Uy - -

Step 1: We combine the real variables x and 7 by a compound
variable @,

u(x,t) =u(®), ®=x=xV1 (2)

where V' is the speed of the traveling wave. The traveling wave
transformation (2) converts Eq. (1) into an ordinary differen-
tial equation (ODE) for u = u(®):

Q(u’ ul7u”7ul”7" ') = 07 (3)
where Q is a polynomial of # and it derivatives and the super-
scripts indicate the ordinary derivatives with respect to ®.

Step 2: Suppose the traveling wave solution of Eq. (3) can be
expressed as follows:

N N
w(®) = a(d+ H) +) bi(d+H)", (4)
=0 i=1

where either ay or by may be zero, but both ay and by could
be =zero at a time, « (=0,1,2,...,N) and b;
(i=1,2,...,N) and d are arbitrary constants to be deter-
mined later and H(®) is given by

H(®) =(G'/G) (5)

where G = G(®) satisfies the following auxiliary nonlinear or-
dinary differential equation:

AGG" — BGG' — EG* — C(G')’ =0 (6)
where the prime stands for derivative with respect to ®; 4, B, C

and F are real parameters.

Using the general solution of Eq. (6), we have the following
solutions of Eq. (5):

Family 1: When B#0, y =A4—C and Q= B>+
4E(A4 - C) > 0,

_ B _yoCrsinh (¥8¢) + Coeosh (¥5¢)
22 Crcosh (¥¢) + Cysinh ($2¢)

Family 2: When
Q=B +4FEA4-C) <0,

B#0,

-3
e
v 2¥ ¢ cos (%é) + C, sin (% 5)

Family 3: When B=#0, y =A—C and Q=B +
4E(A4—-C) =0,

G B G
H®) = (—)=—+—2 9
(@) (G) 2y Cr+ G ®)
Family 4: When B =0,y = A—Cand A = yE > 0,

G\ A Cisinh (VTZ 5) + C, cosh (“7; 5)
H(®) = (6) 2 C, cosh (‘/TZ€> + C,sinh (%f)

Family 5: When B=0,y = A—Cand A = yE <0,

(10)

V=R ~Cisin (53¢) + C; cos (S5¢)
v Clcos(ﬂf)JrCzsin(;ch

(11)

A > A

Step 3: To determine the positive integer N, taking homoge-
neous balance between highest order nonlinear terms
and the derivatives of the highest order appearing in
Eq. (3).

Step 4: Substitute Egs. (4) and (6) including Eq. (5) into Eq.
(3) with the value of N obtained in Step 3, we obtain
polynomials in (d + HY(N=0,1,2,...) and
d+ H™ (N=0,1,2,...). We collect each coeffi-
cient of the resulted polynomials to zero yields a set
of algebraic equations for ¢; (i = 0,1,2,..., N) and
b; i=1,2,...,N), d and V. This procedure yields
a system of algebraic equations whichever can be
solved to find a;,b,, d and V. Substituting the values
of a;,b;, d and V into Eq. (4) along with general solu-
tions of Eq. (6) completes the determination of the
solution of Eq. (1).

3. Applications of the method

In this section, we will bring to bear the new generalized (G'/
G)-expansion method discussed in Section 2 to the mKdV
equation and the Gardner equations which are very important
in the field of nonlinear mathematical physics.

3.1. The Gardner equation

In this section, we consider the Gardner equation [20,21] in the
following form:

U, = 6uiy + 6821, + Ugyy, 0> 0, (12)

This equation known as the combined KdV-mKdV equation
is widely studied in various areas of physics that includes plas-
ma physics, fluid dynamics, quantum field theory and solid
state physics.
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Table 1 Comparison between Taghizade and Neirameh’s [13] solutions and the obtained solutions.

Taghizade and Neirameh’s [38] solutions

The obtained solutions

i. If C; = 0,1 = 0and u(¢) = uy(P), solutions
Eq. (18) becomes:

— /7~ o (V)

ii. If C; = 0, 2 = 0 and u(&) = uz(P), solutions
Eq. (18) becomes:

u3(P) = 5 L /72 — 4ucoth (—M) —ﬁ

iii. If 22 — 4 = 0, u(&) = us(®), 2 = 0,
solution Eq. (18) becomes

i C: 1
u5(<15) - f (C|+2sz) T 2

iLIfA=1,C=0,Q=7
then the solution is

. /72 _ane
=14/2* —4pucoth (%) =%

ii. Ifd=1,C=0,Q= 4
then the solution is

w3 (@) = Zisy//lz — 4ucoth (—4“27;%) - ﬁ

iii. IfA = 1, C = 0, & = & then solutions

i C 1
M5((p) - é <C|+ZC2€) vy

—4p, & = —&

—4p, & = —e

To seek the traveling wave solutions of Eq. (12), we make
the transformation ® = x — V¢. Then (12) reduces to

Vil +302) +28) +u" = 0. (13)

where superscripts stand for the derivatives with respect to ®.
Integrating Eq. (13) once with respect to @ yields:

K+ Vu+3u* + 280 +u' = 0. (14)

where K is an integral constant that can be determined later.

Taking homogeneous balance between the highest order
nonlinear term #° and the highest order derivative «” in Eq.
(14), we obtain N = 1. Therefore, the solution of Eq. (14) is
of the form

u(®) = ay+ a)(d+ H) + b (d+ H) ™, (15)

where ag, a;, b; and d are constants to be determined.

Substituting Eq. (15) together with Egs. (5) and (6) into Eq.
(14), and executing the parallel course of algorithm as carried
out in Section 2 yields a set of simultaneous algebraic equa-
tions (for simplicity which are not presented here) for ao, a;,
by, d and V. Solving these algebraic equations with the help
of symbolic computation software, we obtain following:

1
= ————(%id — 2deyy — Be by =0
W=~ g o = Be), b =0,
_ _ti _ 2 2 22
d=d, a =1 V= ~ 7 2A2(3A +4Ee"y + & BY),
-5 4A2 (A% + 4Ey + B*&?). (16)
4_
H &
11
_2_- e ety :
_4_- K x
-6 2
10 S -10
-5 =5
0 0
L ]
10710
Figure 1  Singular kink of us(®) when C; =2, C; =1, =1
d=1,4A=1,B=2,C=2,E=1and —10< x, 1< 10.

where y = A — C, A, B, C and E are free parameters.

Substituting Eq. (16) into Eq. (15), along with Eq. (7) and
simplifying yields following traveling wave solutions (if
C; = 0but C,#0 and C, = 0 but C; #0) respectively:

1 . VQ
m (:tlA + &V Qcoth <2A¢>)7
1 VQ
(@) = iz P (ilA + ¢V Qtanh <_A @))

where @ = x + 335 (34° + 4Eey + & B)1.

Similarly, substltutmg Eq. (16) into Eq. (15), along with
Egs. (8)-(11) and simplifying, we obtain respectively the fol-
lowing exact solutions (if C; =0 but C,#0;C, =0 but

C#0)

uz (@) = iﬁ (:I:iA + &iv/Qcot <¢2:1_Q qb) ) ,

uy(P) = (ilA eiv/Qtan (Q <15>>

us(®) = iziAsz Hid + 2 (C1 6o ))

ug(P) 21/482 (:l:zA Be 4 2ev/Acoth <\/7K cD) >
u7(®P) (izA Be + 2eV/A tanh \/7Z<15>>
ug(P) 21A 53 (:l:zA Be + 2igV/A cot (g >>,
uy(®) = £ 5 A . (izA Be — 2igv/Atan (g @) ) ,

Beyond the Table 1, we found new exact traveling wave
solutions u», u4, ug, u7, ug and ug in this article, which have
not been reported in the Ref. [13] (see Table 1).

3.2. The mKdV equation

In this subsection, we consider the mKdV equation in the form
U — 1Py + Sty =0, 6> 0, (17)

We utilize the traveling wave variable u(®) = u(x,t), ®
= x — Vt; Eq. (17) is carried to an ODE
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Vi — P + ou" = 0. (18)

where superscripts stand for the derivatives with respect to @.
Integrating Eq. (18) once with respect to @ yields:

1
K- Vuf§u3+5u”’:0. (19)

where K is an integral constant to be determined later.
Taking homogeneous balance between u* and »” in Eq. (19),
we obtain N = 1. Therefore, the solution of Eq. (19)is of the form

u(®) = ap+ ay(d+ H) + by (d+ H) ", (20)

where ag, a;, b; and d are constants to be determined.

Substituting Eq. (20) together with Egs. (5) and (6) into Eq.
(19), and executing the parallel course of algorithm discussed
in Section 2 yields a set of simultaneous algebraic equations
(for simplicity which are not presented here) for ay, a1, by, d
and V. Solving these algebraic equations with the help of sym-
bolic computation software, we obtain following:

30Q2dy + B)
, b =0, d=d,
EYN .
alz#&g, V:—%(BZMEW K=0. (21)

where y = A — C, A, B, C and E are free parameters.

Substituting Eq. (21) into Eq. (20), along with Eq. (7) and
simplifying yields following traveling wave solutions (if
Cy = 0but C,#0 and C, = 0 but C; #0) respectively:

D VG
= e Ve th(zA )
36 Ve

where @ = x + % (B* +4EY)t.

Similarly, substituting Eq. (21) into Eq. (20), along with Egs.
(8)—(11) and simplifying, we obtain respectively the following
exact solutions (if C; = 0 but C, #0; C, = 0 but C; #0):

uz(®) = + 30 /ot (mqb),

AV65 24
uy(®) = + 3\1/5_\/_ta <‘/2?q>),
w0 -+ (o ae)
e (®) = i#@ (35 B —2VAcoth (@ q§>>
ur (@) = i#@ (—35 <B —2v/Atanh (%qu )
ug (@) = iﬁ <—35 (B— 2ivV/A cot (gas))
ug(@)—i#@<—35<3+2i\/§ta (gqs))

4. Discussion

From the above solutions we observe that, if we put 4 = 1,
C = 0and Q = 2> — 4 in our solution u,(®) then the solution

Figure 2 Kink of solution u;(®) when 6 =1, d=1, 4 = 2,

B=0,C=1E=1and -10< x, 1< 10.
40
>
30 /
j 2
20 -
ﬂ‘=:"- =E:J ! E::‘h
1 SR 22 ) 2
b * T * ol
: -:':":J'. bressserend
-4 : 520 | = =
> '-"l:l: :':':"I 'J 'Eéi;::’_z 4
U‘ “ M ‘D
4

Figure 3  Periodic solutions of uy(®) whend = 1, a = 1, 4 = 2,
x, t <5.

B=1,C=4,E=1and -5<

Figure 4 Singular soliton solutions of us(®) when C; =1,
C;,=2,A=1,B=2,C=2,E=1,a=1,d=1land —-10< x
t < 10.

is identical to Wang et al.’s solution u; 5({) obtained if Ref.
[12]. Again if we put 4 =1, C = 0 and Q = 2> — 4y in our
solution u3(®) then it is identical to Wang et al.’s solution
u3 4(¢) attained in Ref. [12]. Similarly, Wang et al.’s solution
us (&) is identical to our solution us(®). Wang et al. [12] did
not find any more solution, but in this article, by using the
new generalized (G’/G)-expansion method, we obtain further
new exact traveling wave solutions us, uy, g, U7, ug and uy.
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5. Graphical representation of the solutions

The graphical illustrations of the solutions are depicted in the
Figs. 1-4 with the aid of symbolic computation software Ma-
ple 13.

6. Conclusion

Some new exact traveling wave solutions of the mKdV equa-
tion and the Gardner equations have been constructed in this
article by using the new generalized (G'/G)-expansion method.
The performance of this method is trustworthy and gives many
new solutions. Some of our obtained solutions are in good
agreement with the existing results which validates our solu-
tions. Therefore, the new generalized (G’/G)-expansion method
can be further used to solve many nonlinear evolution equa-
tions which frequently arise in various scientific real time appli-
cation fields.
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