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Abstract In this article, using the difference operator B(a[m]), we introduce a lower triangular
Toeplitz matrix T’ which includes several difference matrices such as A", 4™ B(r,s), B(r,s,1),
and B(7,5,7,u) in different special cases. For any xew and me Ny ={0,1,2,...}, the
difference operator B(a[m]) is defined by (B(a[m])x), = ax(0)xx + ar_1(1)xk—1 + ax2(2)x52 + - -
+ag_ (M) Xi_m, (kK € Ng) where a[m] = {a(0), a(l), ..., a(m)} and a(i) = (a(i)) for 0 < i< m are
convergent sequences of real numbers. We use the convention that any term with negative subscript
is equal to zero. The main results of this article relate to the determination and applications of the

inverse of the Toeplitz matrix 7.
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1. Introduction

Let w be the space all real valued sequences. We write a[m] for
any convergent sequence a(i) = (ax(i)) of real numbers satisfy-
ing a(i) # a(j), where m € Ny and 0 < i, j < m. Let x = (x;) be
any sequence in w, then we define the generalized difference
operator B(a[m]) as follows:

(B(a[m])x), = ar(0)xx + ar—1 (1)Xk—1 + ax—2(2)xk—2
+ @ (M) X, (k€ Np). (1.1)
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We assume throughout that any term with negative subscript is
zero. It is natural that the difference operator given in Eq.
(1.1), can be expressed as a lower triangular Toeplitz matrix
T = (bu), where

ay(0) 0 0 .. 0 0
ag(1) a;(0) 0 .. 0 0
ap(2) a (1) ax(0) 0 0
(bur) = : . : :
ap(m) ay(m—1) a(m-2) ... a,(0) 0

0 ar(m) am—1) ... au(l) an1(0)

In particular, the difference operator B(a[m]) has the following
generalizations:

(i) For a(0)=e=(, 1, 1, ..), a(l)=—e and
a(i)=0=(0, 0, 0, ...) for 2<i<m, the difference
matrix B(a(m)) reduces to 41 studied by Kizmaz [1].
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(i1) For a(0) = e, a(l) = —2e, a(2) = e and a(i) = 0 for
3 <i<m, the difference matrix B(a(m)) reduces to A°
studied by Dutta and Baliarsingh [2].

(i) For a(0) =re, a(l) =se, 0#r, s € R and a(i) = 0 for
2 <i<m, the difference matrix B(a(m)) reduces to
B(r, s) studied by Altay and Basar [3].

(iv) For a(0) =re, a(l) =se, a(2) =te, 0#r,s,t € R and
a(i) = 0 for 3 <i<m, the difference matrix B(a(m))
reduces to B(r, s, t) studied by Furkan et al. [4].

(v) For a(i) = (T for 0 <i<m and m = r, the differ-

ence matrix B(a(m)) reduces to A" studied by Dutta
and Baliarsingh [5].

(vi) For a(0) =re, a(l) =se, a(2) =te, a(3) = ue, 0+#r,s,
t,u € Rand a(i) = 0 for 4 < i < m, the difference matrix
B(a(m)) reduces to B(7, 5,1, u) studied by Baliarsingh and
Dutta [6].

For last several decades, many new theories and fundamen-
tal results have been introduced and studied by different
authors contributing to the development of sequence spaces.
Amongst all, one of the most interesting idea is the study of se-
quence spaces by using difference matrices. For example:
Kizmaz [1] introduced the difference matrix 4 and studied
the sequence spaces X(4), for X = {, ¢, ¢y, Et and Colak
[7] generalized these results by introducing the generalized dif-
ference matrix 4™, (m € Ny) and Baliarsingh [8] studied the
difference sequence spaces A(I', 4% u) for A € {{,., co, ¢} by
introducing the difference matrix 4% (« € R). The difference
matrices B(r, s), B(r, s, 1) and B(7, 3, 1, i) have been introduced
and studied by Altay and Basar [3], Furkan et al. [4] and
Baliarsingh and Dutta [6], respectively. Recently, using differ-
ence matrices, various sequence spaces have been defined and
different results concerning their topological properties, matrix
transformations, spectral properties and many more (see [8—
28]) have been established. The main objective of this work
is to define a generalized difference operator and unify most
of the difference matrices defined earlier and establish certain
results concerning its inverse.

2. Main results

The most general and effective application of the difference
matrix a[m] is to redefine some triangles and find their inverses.
In the present section, we redefine some well known lower tri-
angular matrices such as generalized Fibonacci, Pascal and
weighted mean factorable difference matrices, and we obtain
some results related to the linearity, boundedness and inverse
of the difference matrix B(a[m)]).

Let F,, (n € Np) be the nth Fibonacci number which satis-
fies the recurrence relation F, = F,_ + F,_», with F, = 0,
F; = 1. Then for any s,7 € R, we define generalized lower tri-
angular Fibonacci matrix F(r, s) as follows:

r (k=n)
r+s, (k=n-1)
F(r,s)) = o et
(F(r; ) e Foar+Foos, (0<k<n-2) " )
0, (k> n)

Clearly, for r = 0, s = 1, the matrix F(r, s) reduces to the usual
Fibonacci matrix F studied in [28,29]. The lower triangular
Pascal matrix P = (p,y) is defined by

n
L (0<k<
Puic = (l’l—k) ( n)7 (nvkENO)'
0, (k> n)

The well known weighted mean factorable difference matrix
G(u,v; 4) = (g2) is defined as follows:
Uy Yy, (k=n)
uy(ve = i), (0<k<n-1),
0, (k > n).

g,j‘k = (n,k € Np),

where we write U for the set of all sequences u = (u,,) such that
u,# 0 for all n € Ny, and u, v € U. Now, we state some impor-
tant theorems.

Theorem 1. The difference operator B(afm]): w—w is a
linear operator and satisfying

1B(alm)Il = sup(|ax(0)] + (D] + -+ + la(m)]).

Proof. The proof is trivial, so we omit it. [

Theorem 2. If a;(0) # 0 for all k € Ny, then the inverse of the
difference operator B(a[m]) is given by a lower triangular
Toeplitz matrix C = (¢, )as follows:

s (k = n),
L)HD(H alm 0<k<n-1
e = n nfk( [ ])a ( ~ )7 (l’l,k c No),
a;(0)
=k
0, (k> ),
where
a (1) @(0) 0 0 0 ... 0
0 0 0

a(2) @ (1) ay+2(0)

@ (1) a(0) ... 0
ap1(2) an(l) ... 0

DY (alm]) = |an(m) @ (m—1) aa(m—2)

n

0 g1 (M) aa(m—1)

@y () —aa (1)

Proof. The proof is clear from the following examples. [

Examples

(i) The inverse of the difference matrix 4" is

_ I, (0<k<n)
AN = { ’ :
(( ) )nk 07 (k > }’l)
This follows from the fact that a(0) =e, a(l) = —e,
a(2) = a(3) ... = a(m) = 0 and D" (AV) = (=1)".
(ii) The inverse of the difference matrix 4™, m € N is
3 (k= n)
((A(m))*‘)nk — %7 O<k<n—1),

0, (k> n)

(n,k S N())

(}’I,k S No)
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Note that for this case, a(0)=e,a(l)= —me,a(2) Therefore, we conclude that (F(r, s)’l)n,k = (=1
_ m(r;!—I) e, ... 7a(’,n) _ (_1))716 and D,(10)(A(M)) _ m(m+1’)1.!..(m+n) (524”3::2?"7/(72 (n7 K S 2) 0

forallnm > 1.
(iii) The inverse of the difference matrix B(r, s), (r #0) is

0<k<n—1), mkeN).
0, (k> n)
In fact, here a(0) =re, a(l) =se, a2)=a(3)...=

a(m) = 0 and D" (B(r,s)) = s" for all n > 1.
(iv) The inverse of the difference matrix B(7,5), (r#0) for
all k € Ny, is

L, (k= n)
n—k—1
(BF)) ™), = (-1 * HH*‘, 0<k<n—1), (nkeN).
j=k
0, (k>n)

This follows from the fact that a(0) = (1), a(l) = (sp),
n—1

a2) = a(3) ... = a(m) = 0 and DﬁKBﬁyﬂ):%%i;fbraH
j=kJ

n=l.

Theorem 3. The inverse of the Fibonacci matrix F(r, s ) is given by

b (k=n)
(F(rs) ) = AT - te=n=) . (k€ No)
Tyt (0<k<n-2
0, (k> n)

Proof. We prove the Theorem for the Fibonacci matrix of
finite order n. By Theorem 2, we obtain that

L (k=n),

(F(r,) ) = § CLEDO, (F(r5)), (1<k<n), (mkeN),
0, (k> n),

where
r+s r

o 2r+s r+s ... 0
D, (r,s) = : : . .|z
For+F,_\s F,_ir+ F,_»s r+s

In fact, we use induction method for proving this theorem. For
n=1, it is obtained that D\”(r,s)=r+s, (F(r,s)_l)]_’0
—C0 i n=2,D(r,s) = s> +rs— 1> and (F(r,s)")y,
=2l and  if n=3,D(r,s) = s(s> +rs—17) and
(F(r, 5)71)310 = (Sz”f—[’z)s This completes the basis step. As per
the principle of mathematical induction, we have

r+s r 0

0 2r+s r+s 0
Dgwr)l(rvs) =

Foar+F,s For+ F,1s r+s

Theorem 4. The inverse of the Pascal matrix P = (p,;) is given
by

0, (k> n)
Proof. The proof follows from the fact that
k+1
< K ) 1 0
k+2 k+2 |
k k+1 v
DO(P)=| (k+3 k+3 k+3 :<”>
k k+1) \k+2) k

(]

(=)

(e}

In particular,

I 0 0
I I
13 3 .0

D) =| N

Theorem 5. The inverse of the generalized weighted mean fac-
torable difference matrix G(u, v;A) is given by

(k=n)
(Gl ) ™) e=q (=10 el (0<hke<n—1), (mk€Ny).
0, (k>n)

Proof. The proof of this theorem is the direct consequence of
Theorem 2. By using Theorem 2, one can calculate

L (k=n)

inVn

— =

DY, (Glu,v; ), (0<k<n—1)

. (nkeNy),

(Gu,v;4)7") =

ujv;

.

=

(k>n)

where

= (r+5)DV(r,s) —rDV(r,s) = s(DV(r,s)) = (s> +rs — r?)s"".

n
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Upe+1 Up1 Vi1 0 cee 0
ey Upea(Vest = Viga) Up+2Vi+2 0
DI (Gat,v;4)) = (v — Vi ) | M43 W3 (st = Vki2) i3 (Vip2 = veia) oo 0

ty Uy (Vest = Vi2) U (Vesa = Vii3) ty (Vi1 — V)

On further simplification, we obtain that

D,(,k) (G(u,v;4)) = (k= Vi) (Vier = Vis2) Wk = Vi) o (Vi = V)l

« <u U1 Vit 1 )(u Up+2Vi+2 ) (u un—lvn—l>
k1 — k2 — e\ U
Vit — Vi2 Vi+2 = Vi43 Vi1 —Vn

= (Ve = Vi 1) (i1 Vie2 ) (= U2V 3) oo (=1 V)t
n—1

= (=" e = ) [ v

J=k+1

Therefore, for 0 < k< n—1, the exact entries of (G(u, v;
M) Y, are as follows:

-1
n—kn—k—1 (Vk - VkH)“ﬂH;:kHujVjH

—1
H,'lk ujvy
(_I)Z(n—k)—l (V% — Visr) ) 0O
UV Viet1

(Gu,v:4) ), = (=1)

3. Conclusion

The most important tool of studying sequence spaces via
different operators are the determination of their topological
structures, duals, matrix characterizations, compactness, and
spectral properties etc. In fact, for an operator, all these inves-
tigations are quite easier and even possible by finding its in-
verse. The main purpose of this work is to unify most of
lower triangular Toeplitz matrices and determine their in-
verses. As the results of the present article relate to the infinite
dimensional matrices it is natural to implement these results
for finite dimensional cases. As an application of Theorem 2,
in our next study we design algorithm for inverse of any lower
triangular Toeplitz matrix of finite dimension. Therefore, this
study is more essential and effective for different computer ori-
ented languages such as C, C+ +, Matlab etc.

Acknowledgment

The authors are grateful to the anonymous referees for careful
checking of the present manuscript and their helpful
suggestions.

References

[1] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24
(2) (1981) 169-176.

[2] S. Dutta, P. Baliarsingh, On the spectrum of 2-nd order
generalized difference operator A? over the sequence space ¢y,
Bol. Soc. Paran. Mat. 31 (2) (2013) 235-244.

[3] B. Altay, F. Basar, On the fine spectrum of the generalized
difference operator B(r, s) over the sequence spaces ¢ and ¢, Int.
J. Math. Math. Sci. 18 (2005) 3005-3013.

[4] H. Furkan, H. Bilgi¢, B. Altay, On the fine spectrum of the
operator B(r, s, t) over ¢y and ¢, Comput. Math. Appl. 53 (6)
(2007) 989-998.

[5] S. Dutta, P. Baliarsingh, On the fine spectra of the generalized
rth difference operator 47 on the sequence space ¢;, Appl. Math.
Comput. 219 (4) (2012) 1776-1784.

[6] P. Baliarsingh, S. Dutta, On certain Toeplitz matrices via
difference sequence spaces, Acta Math. Sci. (2013).

[71 M. Et, R. Colak, On some generalized difference sequence
spaces, Soochow J. Math. 21 (4) (1995) 377-386.

[8] P. Baliarsingh, Some new difference sequence spaces of
fractional order and their dual spaces, Appl. Math. Comput.
219 (18) (2013) 9737-9742.

[9] M. Et, M. Basarir, On some new generalized difference sequence
spaces, Periodica Math. Hungar. 35 (3) (1997) 169-175.

[10] S. Dutta, P. Baliarsingh, A note on paranormed difference
sequence spaces of fractional order and their matrix
transformations, Egyptian Math. Soc. (2013).

[11] S. Dutta, P. Baliarsingh, On certain new difference sequence
spaces generated by infinite matrices, Thai. J. Math. 11 (1)
(2013) 75-86.

[12] M. Basarir, On the generalized Riesz B-difference sequence
spaces, Filomat 24 (4) (2010) 35-52.

[13] M. Et, On some topological properties of generalized difference
sequence spaces, Int. J. Math. Math. Sci. 24 (11) (2000) 785-791.

[14] P. Baliarsingh, S. Dutta, On certain summable difference
sequence spaces generated by infinite matrices, J. Orissa Math.
Soc. 30 (2) (2011) 67-80.

[15] M. Et, Y. Altin, H. Altinok, On some generalized difference
sequence spaces defined by a Modulus function, Filomat 17
(2003) 23-33.

[16] B.C. Tripathy, Y. Altin, M. Et, Generalized difference sequences
spaces on seminormed spaces defined by Orlicz functions, Math.
Slovaca 58 (3) (2008) 315-324.

[17] B.C. Tripathy, P. Chandra, On some generalized difference
paranormed sequence spaces associated with multiplier
sequences defined by modulus function, Anal. Theory Appl. 27
(1) (2011) 21-27.

[18] B. Altay, F. Basar, On the fine spectrum of the difference
operator 4 on ¢y and ¢, Inform. Sci. 168 (2004) 217-224.

[19] P. Baliarsingh, A set of new paranormed difference sequence
spaces and their matrix transformations, Asian European J.
Math. (2013).

[20] B. Altay, F. Basar, Some paranormed sequence spaces of non-
absolute type derived by weighted mean, J. Math. Anal. Appl.
319 (2) (2006) 494-508.

[21] B. Altay, F. Basar, Generalization of sequence spaces {(p)
derived by weighted mean, J. Math. Anal. Appl. 330 (1) (2007)
174-185.

[22] E.E. Kara, M. Basarir, An application of Fibonacci numbers
into infinite Toeplitz matrices, Caspian J. Math. Sci. 1 (1) (2012)
43-47.

[23] S. Dutta, P. Baliarsingh, On a spectral classification of the
operator A, over the sequence space ¢y, Proceeding of National
Science of India (A) (2013).

[24] M. Basarir, E.E. Kara, On the mth order difference sequence
space of generalized weighted mean and compact operators,
Acta Math. Sci. 33 (B3) (2013) 1-18.

[25] S. Dutta, P. Baliarsingh, Some spectral aspects of the operator
A’ over the sequence spaces £, and bv,,(1 < p < oco), Chinese J.
Math. (2013).

[26] M. Basarir, E.E. Kara, On the B-difference sequence space
derived by generalized weighted mean and compact operators, J.
Math. Anal. Appl. 391 (2012) 67-81.

[27] E.E. Kara, Some topological and geometrical properties of new
Banach sequence spaces, J. Ineq. Appl. 2013 (38) (2013).

[28] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math.
Monthly 68 (1961) 455459.

[29] Gwang-Yeon Lee, Jin-Soo Kim, Seong-Hoon Cho, Some
combinatorial identities via Fibonacci numbers, Discrete Appl.
Math. 130 (2003) 527-534.


http://refhub.elsevier.com/S1110-256X(13)00119-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0105
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0105
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0105
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0110
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0110
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0115
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0115
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0120
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0120
http://refhub.elsevier.com/S1110-256X(13)00119-3/h0120

	On some Toeplitz matrices and their inversions
	1 Introduction
	2 Main results
	3 Conclusion
	Acknowledgment
	References


