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Abstract In this paper we introduce some interval valued double sequence spaces defined by Orlicz
function and study different properties of these spaces like inclusion relations, solidity, etc. We
establish some inclusion relations among them. Also we introduce the concept of double statistical
convergence for interval number sequences and give an inclusion relation between interval valued
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1. Introduction

The idea of statistical convergence for single sequences was
introduced by Fast [1] in 1951. Schoenberg [2] studied statisti-
cal convergence as a summability method and listed some of
elementary properties of statistical convergence. Both of these
authors noted that if bounded sequence is statistically conver-
gent, then it is Cesaro summable. Existing work on statistical
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convergence appears to have been restricted to real or complex
sequence, but several authors extended the idea to apply to
sequences of fuzzy numbers and also introduced and discussed
the concept of statistically sequences of fuzzy numbers.

Interval arithmetic was first suggested by Dwyer [3] in 1951.
Development of interval arithmetic as a formal system and
evidence of its value as a computational device was provided
by Moore [4] in 1959 and Moore and Yang [5] 1962. Further-
more, Moore and others [6-9] have developed applications to
differential equations.

Chiao in [10] introduced sequence of interval numbers and
defined usual convergence of sequences of interval number.
Sengéniill and Eryilmaz in [11] introduced and studied
bounded and convergent sequence spaces of interval numbers
and showed that these spaces are complete metric space.
Recently Esi in [12,13] introduced and studied strongly almost
A—convergence and statistically almost A—convergence of
interval numbers and lacunary sequence spaces of interval
numbers, respectively.
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A set consisting of a closed interval of real numbers x such
that a < x < b is called an interval number. A real interval can
also be considered as a set. Thus we can investigate some prop-
erties of interval numbers, for instance arithmetic properties or
analysis properties.We denote the set of all real valued closed
intervals by IR. Any elements of IR is called closed interval
and denoted by x. That is ¥ = {x € R: a < x < b}. An inter-
val number X is a closed subset of real numbers [10]. Let x;
and x, be first and last points of ¥ interval number, respec-
tively. For X;,X, € IR, we have X; =X, <= x|, = X3, Xj,
=x3. N+N={xeR:x;,+x, <x<x,+x,}, and if
o >0, then aX = {x € R:ax;, < x < oax;,} and if « < 0, then
a¥ ={x € R:ax; <x<oax,},

o {x € R :min{xy,.xz,, X1,.X,, X1,.X2,, X1,.X2, } < x}
X1.X2 = .

< maX{X],.le, X1,-X2,, X1,.X2,, X1, .er}

The set of all interval numbers IR is a complete metric
space defined by

d(x), %) = max{|x;, — x3,|,|x1, — x2,|} [4].
In the special case X; = [a,d] and X, = [b, b], we obtain usual
metric of R.

Let us define transformation f:N —R by

k — flk) =X, x=(X;). Then X = (X;) is called sequence of
interval numbers. The X, is called kth term of sequence
X = (x;). w' denotes the set of all interval numbers with real
terms and the algebric properties of w' can be found in [10].

Now we give the definition of convergence of interval
numbers:

Definition 1.1 [10]. A sequence X = (X) of interval numbers is
said to be convergent to the interval number X, if for each
& > 0 there exists a positive integer k, such that d(X;, X,) < ¢
for all k£ > k, and we denote it by lim;x; = X,.

Thus, lim X, = X, <= limkxk/ = Xq and limyxy, = x,,.

Recall in [14,15] that an Orlicz function M is continuous,
convex, nondecreasing function define for x > 0 such that
M(0) =0 and M(x) > 0. If convexity of Orlicz function is
replaced by M(x+y) < M(x)+ M(y) then this function is
called the modulus function and characterized by Ruckle[17]. An
Orlicz function M is said to satisfy Ay-condition for all values u, if
there exists K > 0 such that M(2u) < KM(u), u > 0. Subse-
quently, the notion of Orlicz function was used to defined
sequence spaces by Altin et al [18], Tripathy and Mahanta [19],
Tripathy et al [20], Tripathy and Sarma [21] and many others.

Let’s define transformation f from N xN to R by
i,j— fli,j) =%, X=(X;;). Then ¥ = (X;;) is called sequence
of double interval numbers. The X;; is called (i, j)th term of
sequence X = (X; ).

Definition 2.2. An interval valued double sequence ¥ = (X; ) is
said to be convergent in the Pringsheim’s sense or P-conver-
gent to an interval number X, if for every & > 0, there exists
N € N such that

d(x;;,%,) < ¢efori,j>N

and we denote it by P — limX; ; = X,. The interval number X, is
called the Pringsheim limit of X = (X; ;). More exactly, we say

that a double sequence of interval numbers X = (¥;;) con-
verges to a finite interval number X, if X; ; tends to X, as both
i and j tend to infinity independently of each another. We de-
note by & the set of all double convergent interval numbers of
double interval numbers.

Definition 2.3. An interval valued double sequence X = (X; ;) is
bounded if there exists a positive number M such that
d(x;;,X,) < M for all i,j € N. We will denote the set of all
bounded double interval number sequences by /2. It should
be noted that, similarly to the case of double sequences, ¢? is
not the subset of /2,.

Let p = (p; ;) be a double sequence of positive real numbers.
If0<p,; <sup,;p;,;=H<ooand D = max(1,2%7"), then for
a;j,b;; € Rforall i,j € N, we have

lai; + bl < DJai " + |biy™).
2. Results

In this paper, we define new double sequence spaces for inter-
val sequences as follows.

Let M be an Orlicz function and p = (p;;) be a double
sequence of strictly positive real numbers. We introduce the
following sequence spaces:

for some p >0

x=(%,):P 711m”1”i [ (d\,/ )]m:o7

2, (M, p) = e
for some p >0

and

m_n

- d(X;;,0) Pij

33 () <
J=

2woc(M7p) = i=1
for some p >0

Theorem 2.1. (a) If 0 <p,; <gq;; and (%) is bounded, then
21?’(M,]J)2¥T/(M, q) A

(b) ZW(MJ))ZWOC (Map) and ZWO(M7P)2WOO (M“D)

Proof. (a) If we take [M (%)rl =w;, forallij € N, then

using the same technique employed in the proof of Theorem
2.9 from [16], we get the result.

(b) It is easy, so omitted. [
Theorem 2.2. (a) If 0 <infy;p;; <p;; <1,
w(M),

M If1<p;<

then ,w(M,p)C

sup; ;p; ; < oo, then yw(M)Caw(M, p).
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Proof. The first part of the result follows from the inequality

7ZZM Yt}a ZZ }w”xa Pii

mn 4= mn e

and the second part of the result follows from the inequality
m n ‘C[ b xo xl s ’Co

— M

e ()] ()

This completes the proof. [

Theorem 2.3. Let M, and M, be two Orlicz functions. Then
2}77(M1 ,p)mzw(Mz,p)Czﬂi(Ml + Mz,p).

Proof. Let (X;;)€,w(M,,p)Maw(M,,p). Then

m n

Pij
‘xl 7YU
—lim%ZZ{Ml( -/ ))} =0, for some p, >0

i=1 j=1
and

lim ZZ (% ,,x,,) " 0, for some p, >0
mn mn — Y p2 .

i=1 j=

Let p = max{p,,p,}. The result follows from the following
inequality

S 5

i=1 J:

ofS5fn())

i=1 j=1

S [ (1)

This completes the proof. O

Theorem 2.4. The double sequence space 1wy, (M, p) is solid and
hence monotone.

Proof. Let (X;;)€,Ws(M,p) and («;;) be a scalar sequence
such that |a;;| < 1 for all #,j € N. Then

M(d(oc+,0)> < M(@)

= suplii{M<M)r./

P

1 m n d()_Ci/-,(_)) Pij
< — M| ——2 .
w2 ()] <
This completes the proof. [

Now we give the definition of double statistical convergence
for interval numbers as follows:

Definition 2.4. The double interval sequence X = (X;;) is said
to be double statistical convergent to an interval x, provided
that for every ¢ > 0

1
P—lim—|{i<m,j<n
mn MMNn

: d(va./'vxa) = ‘c}| =0.

In this case, we write 5, — lim X; ; = X, and denote the set of
all double statistically convergent sequences of interval num-
bers by 5. We shall now establish an inclusion theorem
between 5, and ,w(M, p).

Theorem 2.5. Let M be an Orlicz function and 0 < h <
inf; ;p, ; < sup; ;p; ; = H < oo, then ,w(M, p) C 5.

Proof. Let X = (X;;)€2w(M,p). Then there exists r > 0 such
that

LR

i=1 J

as (i,j) — oo in the Pringsheim sense. If ¢ > 0, then we obtain
the following:

LSslv(ee)

i=1 j=1

:%ZZ { (d x,,,xo)ﬂm

)
> %2% %z {M(d x,,,xo))}”"f

> m—2(§ Q)"

> S min () ()

d(\,, ‘C(,)>L

> %\{(i,j) eNxN:d(%,,%,) > 8}|min{M<§)h7M<f)H}.

;
Hence X = (X;;) € 5,. This completes the proof. [
Theorem 2.6. Let M be an Orlicz function, 0 < h < infy p,

<supgpy = H < oo and X = (X;;) a bounded sequence of
interval numbers. Then 5, C w(M, p).

Proof. Let x=(X;,)€/?> and 5 —limx;;=X, Since

X = (%;;) €2, then there is a constant integer M > 0 such
that d(X;;,X,) < M for all i,j € N. Given ¢ > 0, we have

S
7%2"1 Z, 1[ <M)} :

a'(\,, \,,)<L

H i,j)eNxN: alx,j7 9}]
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Hence X = (X;;) € w(M, p). This completes the proof. [

The following corollary follows directly from Theorem 2.5
and Theorem 2.6.

Corollary 2.7. 5, N 12, =2 Nw(M,p).
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