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Abstract  
Strong organic acids, such as phosphoric acid (H3PO4), have been trapped in a 

variety of polymeric solids that have been synthesised from the acid solutions. 

Polyvinyl alcohol (PVA)-based polymer electrolytes comprising with various 

concentrations of H3PO4 are prepared using a solution casting technique. To study 

conductivity and charge transport in the solid polymer electrolytes (SPEs), 

measurements of electrical conductivity and transference number were carried out. 

The frequency dependent AC conductivity at room temperature obeys the modified 

universal power law and the DC conductivity was obtained from the fitting parameter. 

The room temperature protonic conductivities of solid polymer electrolytes PVA-

H3PO4 is higher than 10
-4

 S cm
-1

. According to the conductivity results, the ionic 

conductivity of the samples increases when the amount of acid is increased. The 

results of the transference number measurements agree with this hypothesis. The 

films' temperature-dependent conductivity appears to follow the Arrhenius principle. 

The proton transport mechanisms are affected by acid concentrations. The 

characteristics of these different solid polymer electrolytes have been examined to 

increase the protonic conductivity and maybe apply these solid polymer electrolytes 

in electrochemical devices such as batteries, sensors, and electrochromic devices. 
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Introduction 

Due to their potential use in 

solid electrochemical devices such as 

energy conversion units (like 

batteries/fuel cells), electrochromic 

display devices/smart windows, photo 

electrochemical solar cells, etc., ion 

conducting solid polymer electrolytes 

(SPEs) have recently gained 

widespread interest in the fields of 

solid-state electronics and Ionics[2–4]. 

The fundamental advantages of SPEs 

are their mechanical characteristics, the 

flexibility with which thin films of 

appropriate sizes may be produced, 

and their ability to create satisfactory 

electrode-electrolyte interfaces. 

Numerous extensively researched 

polymers may dissolve substantial 

amounts of a wide variety of salts, 

oxides, nanometals or acids to create 

SPEs [5]. 
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Because liquid electrolytes have 

limitations including leakage, 

corrosion, and packing issues, SPEs 

have recently gained increased 

attraction with the emergence of 

electrochemical devices such as 

electrochromic and energy storage 

devices like batteries, supercapacitors, 

and fuel cells. To overcome these 

practical problems, SPEs  or hydrogel 

polymer electrolytes have been 

employed. Therefore, polymer 

electrolytes such as poly (vinyl 

alcohol) (PVA), poly (vinyl chloride), 

poly (ethylene oxide) (PEO), poly 

(vinylidene carbonate), and poly 

(vinylidene fluoride) have a distinct 

advantage over solid electrolytes (10
-7

 

to 10
-8

 S.cm
-1

). 

Due to their ability to produce 

materials with a variety of 

advantageous physical, chemical, 

thermal, and mechanical characteristics 

of organic and inorganic phases, 

inorganic-organic hybrid materials are 

of interest. Conductive proton in the 

literature, inorganic-organic hybrids 

with different acid species have been 

described [6–10]. 

In addition to filler additives, choosing 

an appropriate polymer matrix is a key 

to producing excellent ionic solid 

polymer electrolytes[11]. The 

fabrication of ionic solid polymer 

electrolytes has been described for 

several synthetic and natural polymers, 

including poly(ethylene oxide) 

(PEO)[12–14], cellulose[15], 

polyvinylidene fluoride (PVDF)[16], 

polyacrylonitrile (PAN)[17], chitosan 

[18], poly(methyl methacrylate) 

(PMMA)[19], starch [20], and 

poly(vinylidene fluoride-

hexafluoropropylene] (PVDF-HFP) 

[21],  poly(vinyl alcohol) (PVA)[22]. 

The synthetic water-soluble polymer 

polyvinyl alcohol (PVA), with 

excellent biocompatibility and 

biodegradability, as well as chemical 

resistance, good mechanical behaviour, 

adhesion, excellent film forming 

properties, and widespread availability, 

is the best candidate in the category for 

creating an ionic solid polymer 

electrolyte. As a result, considering the 

characteristics of the previous 

mentioned materials, the current study 

aims to develop ionic solid polymer 

electrolyte films of PVA using H3PO4 

acid as the filler and investigate their 

suitability for use as matrix materials 

in ionic solid polymer electrolyte 

engineering applications. 

Numerous researchers have examined 

the behaviour of acid-based polymer 

electrolyte complexes as proton 

conductors, and it has been suggested 

that these complexes may be used as 

gas sensors and electrochromic devices 

[23, 24]. 

In the conducted study, solution cast 

complexes of polyvinyl alcohol (PVA) 

with orthophosphoric acid (H3PO4) in 

thin film form have been prepared at 

various stoichiometric ratios. 

Experimental methods such as X-ray 

diffraction (XRD) pattern, Infra-red 

(IR), Scan electron microscopy (SEM), 

Thermal Gravimetric Analysis (TGA), 

Differential Scanning Calorimetry 

(DSC), and UV-vis spectroscopy are 

used to analyse thin films of PVA 

complexes. Wagner's polarisation and 

complex impedance techniques, 

respectively, have been used to 

measure electrical conductivity and 

transference number. 

 

Experimental 

The PVA-H3PO4 solid polymer 

electrolyte was prepared by vigorously 

mixing 30 mL of deionized water into 

3 g of polyvinyl alcohol (PVA) at a 
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temperature of 95 °C. The 3 g of 

phosphoric acid (H3PO4) was added to 

the PVA solution after the PVA had 

completely dissolved, and the mixture 

was vigorously stirred until it had 

produced a homogenous, sticky 

solution. The mixture was then cooled 

to room temperature when it solidified 

as a clear, transparent solid polymer. 

 

Result and discussion 
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Figure 1 FTIR for PVA-H3PO4

The analysis of polymer structures 

benefits from the use of FTIR 

spectroscopy because it focuses on the 

interactions and complexation of the 

many components found in polymer 

electrolyte complexes[25]. The FTIR 

spectra of pure PVA and PVA 

complexed with various phosphoric 

acid concentrations are shown in 

Figure 1. The absorption peaks of 

virgin PVA are attributed to O-H 

stretching, C-H stretching, C-O 

stretching, O-H and C-H bending, and 

C-O stretching, respectively, at 3240, 

2912, 1720, 1446, and 1096 cm
-1

. For 

PVA complexed with H3PO4, the 

absorption peaks corresponding to 

wave numbers 3340 and 2910 cm
-1

 are 

discovered to be unshifted, but the 

peaks belonging to wave numbers 

1720, 1446, and 1096 cm
-1

 are shifted 

to 1700, 1420, and 1085 cm
-1

, 

respectively. 

Additionally, for PVA complexed with 

H3PO4, all these peaks can be seen at 

2325, 1329, 976, 925, 819, 584 and 

476 cm
-1

 [26]. A unique interaction of 

the dopant with the polymer matrix is 

revealed by the shifting of the 

aforementioned wave numbers for acid 

doped systems compared to pure PVA, 

which sufficiently supports the 
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complexation of the system. 

Additionally, from pure PVA to the 

PVA-H3PO4 system, there has been a 

steady broadening of the peak 

corresponding to C-H stretching. This 

denotes an increase in the sample's 

amorphicity, which may be caused by 

the intermolecular forces that are 

random in nature and result in slightly 

variable force fields for each absorbing 

group. The examination of the DSC 

and XRD has revealed this sort of 

behaviour. However, the peak 

corresponding to 1720 cm
-1

 has been 

found to be missing in the complexed 

PVA in the presence of phosphoric 

acid. This also implies complexation 

and specific interaction of the dopant 

in the polymer matrix. 

The P-O groups[27], which evolved 

from (H2PO4)
-
 and (VHPO4)

2-
, are 

represented by the peaks at 986–880 

cm
-1

. While the (VHPO4)
2-

 peak 

changes to a lower wavenumber as the 

acid concentrations increase, the P-O 

peak can be seen emerging at 828 cm
-1

. 

However, this is not the case for the 

VHPO4 peak. The O-P-O peak for the 

PVA doped acid sample, however, 

moves to a higher wavenumber as the 

acid concentrations increase. It is 

possible to see clearly both the 

vibration modes in  (PO4)
-3

 and the 

deformation of O-P-O [28]. 
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Figure 2 shows the DSC, TG and its derivative for PVA-H3PO4 

The glass transition (Tg), melting (Tm), 

and crystallization temperatures (Tc) 

may be determined using the 

Differential Scanning Calorimetry 

(DSC) method. Figure 2 depicts the 

DSC thermograph for the PVA 

polymer film and the PVA-H3PO4 

composite films at concentration ratios 

in the temperature range of 30–800 
o
C. 

In all the electrolytes, the curves 

exhibit a broad endothermic peak 

cantered at around 85 
o
C.  This 

demonstrates that the overlapping 

between Tg transitions and any 
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remaining water in the electrolytes has 

evaporated. The melting temperature 

(Tm) of PVA is 240 
o
C, where an 

endothermic peak appears. The Tm of 

pure PVA powder with a hydrolysis 

degree of 98-99 % is approximately 

225 
o
C [29]. When H3PO4 is doped 

into PVA polymer at a ratio of 1:1, it is 

observed that the melting temperature, 

Tm, of the PVA-H3PO4 composite 

polymer film shifts to a lower 

temperature (Tm = 213 C). With a 

larger concentration ratio, a lower Tm 

indicates a transition from a 

semicrystalline to an amorphous phase. 

The results for Tg and Tm match those 

from other publications [30, 31]. 

[Exothermic peak at 456 
o
C]. 

The thermal stability of PVA is an 

important factor in the thermal 

processing of PVA. TGA was used to 

examine the thermal stability of pure 

PVA and PVA-H3PO4 composites. 

From room temperature to 800 
o
C, 

measurements were recorded. The 

TGA traces were displayed in Figure 2. 

Water loss may be primarily 

responsible for the mass loss below 

200 
o
C. The thermal decomposition of 

pure PVA begins nearly at the same 

temperature as Tm. The initial 

decomposition temperature of PVA 

significantly increases to a higher 

temperature, around 213 
o
C, with the 

addition of phosphoric acid. The 

decomposition temperature was 

substantially lower than Tm, which was 

much higher. It is evident that the 

phosphoric acid inclusion gave PVA 

its thermal processing window, or 213 
o
C. When compared to pure PVA, 

PVA's thermal stability increased, 

which indicates a strong interaction 

between PVA's hydroxyl groups and 

phosphoric acid. Previous research 

[32] established a two-step process for 

the heat degradation of PVA, which is 

started by the removal of side groups 

from the main chain. The elimination 

of the hydroxyl and acetate side groups 

is the first stage of PVA's breakdown. 

The percentage of acetate side groups 

is quite low in completely hydrolysed 

PVA. These show that at least 

hydroxyl groups are involved in the 

heat degradation of PVA, and that 

hydroxyl group stability is essential for 

PVA stabilization. The phosphoric acid 

could form strong interactions with the 

hydroxyl groups of PVA, and thus the 

thermal stability of PVA was 

improved. It is also likely that the 

endothermic nature of the melting 

process in plasticized PVA at about 

213 
o
C would inhibit the degradation 

process and improve the thermal 

stability of PVA[33]. 

The TG and differential gravimetric 

analysis (DTG) thermographs of the 

PVA and PVA-H3PO4 composite solid 

polymer electrolyte are shown in 

Figure 2. The PVA- H3PO4 polymer 

films' TG and DTG curves showed 

three primary weights loss zones, 

which were represented by three peaks 

in the DTG curves. The evaporation of 

physically weak and chemically strong 

bound H2O caused the first region, 

which was at a temperature of 40–170 
o
C (Tp, 1 at 115 

o
C), to form; this 

caused a weight loss of 6.5-8.7 wt.%. 

The degradation of the side chain of 

the PVA- H3PO4 solid polymer 

electrolyte caused the second 

transitional region to occur at around 

170 to 270 
o
C (Tp, 2 at 213 

o
C); the 

overall weight loss at this stage was 

between 20–24 wt%. 

The cleavage of the PVA-H3PO4 solid 

polymer electrolyte's C-C backbone, or 

"carbonation," caused the third stage to 

peak at 460 
o
C (Tp,3 at 435 

o
C), with a 

total weight loss of around 55 wt% at 

800 
o
C. 
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Figure 3 the Uv-vis absorption spectra for PVA/H3PO4 

 

Figure 3 [34], displays the absorption 

spectra for films consisting of solid 

PVA and PVA-H3PO4 at mole 

concentration. In contrast to the 

reaction between PVA and H3PO4, 

which only exhibits one absorption 

band at 274 nm because of the 

interaction of PVA with the phosphate 

component, pure PVA has absorption 

bands at 204, 220, 280, and 330 nm 

[35]. The results of this investigation 

show good agreement [36]. The 

production of intra-and intermolecular 

hydrogen bonds, especially between 

the H3PO4 ions and nearby OH groups, 

is shown. As a result of changes in 

crystallinity within the polymer matrix, 

the bonds reflect changes in the energy 

band gap. 

The samples were subjected to 

Impedance Spectroscopy (IS) 

experiments at different temperatures 

using a sinusoidal signal of 10 mV 

with a frequency range of 20 Hz–10 

MHz. The Nyquist plot from the IS 

measurement on the SPE samples with 

0.1, 0.2, 0.3, and 0.4 wt % of 

phosphoric acid is shown in Figure 4a. 

Since the curves in the Nyquist plot 

initially overlapped, they were offset 

on a logarithmic scale for a clearer 

perspective. 

To get the bulk conductivity[37], b, 

using this relation    
 

  

 

 
     , the 

bulk resistance (Rb) value of the 

sample was determined from the 

Nyquist plot in the intercept of the 

lower frequency region on the Z' axis, 

where t and A are the thickness, area of 

the sample, respectively. The high 

frequency region of the Nyquist plot 

for the SPE samples shows a 

semicircle, while the low frequency 

region shows a spike, showing the 

typical behavior of a supercapacitor. 

The increase in acid content causes a 

decrease in bulk resistance and a 

prolongation of the spike, and the 

primary cause of total conductivity is 

ionic conduction[38]. 

The relationship between conductivity 

and the weight fraction of phosphoric 

acid in the solid polymer electrolytes is 

displayed in Figure 4b. When 0.1, 0.2, 

0.3, and 0.4 wt % of phosphoric acid 

are added, the conductivity of the solid 

polymer electrolyte samples is 
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drastically improved by 2 orders of 

magnitude. The conductivity increases 

steadily at 0.4 wt % phosphoric acid. It 

is generally known that the charge (q), 

charge number (n), and mobility of 

charges () have an influence on the 

conductivity of polymer electrolytes, 

and this relation can be used to explain 

it [39]: 

  ∑                                (2) 

Therefore, an increase in the number of 

charge carriers and their mobility 

might be responsible for the 

conductivity increasing with increasing 

acid concentration. When more than 

0.3wt % phosphoric acid is introduced, 

the solid polymer electrolyte samples 

reach saturation, which reduces the 

amount of free space in the samples 

and lowers the ionic conductivity[40]. 

The number of charge carriers is 

reduced as a result, which is probably 

caused by the development of ion 

aggregates or scattered [41]. 
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Figure 4: (a) Cole-Cole plot for PVA with different concentration of H3PO4, (b) Relation between 

concentration and σb 

The subsequent Nyquist plots were 

investigated using EIS software based 

on the electrical equivalent circuit 

observed in the inset of Figure 4a. The 

high, middle, and low frequency 

regions mainly consist of the Nyquist 

plot's frequency range. Based on the 

equivalent circuit, a sample's non-zero 

semicircle intersects at high 

frequencies, which is explained (Rs). It 

is the result of the interaction between 

the polymer electrolyte resistance, the 

interfacial resistance at the interface of 

the active material and substrate, and 

the internal resistance of the electrode 

material. The obtained Rs value of 0.4 

wt % PVA-H3PO4 solid polymer 

electrolyte is 130 Ω. This clearly 

reveals that Rs appears due to high 

addition of H3PO4 in the polymer. 

The frequency dependence of ac 

conductivity for various concentrations 

of phosphoric acid in the SPE samples 

is shown in Figure 5a. For all SPE 

samples, a consistent pattern in the 

variation of the frequency vs ac 

conductivity is shown. The curves are 

divided into two separate regions: at 

lower frequencies, near 10 kHz, the ac 

conductivity is shown to increase with 

frequency, indicating the electrode 

polarization phenomenon [42], and at 

higher frequencies, from 10 kHz to 1 

MHz, the frequency independent 

plateau region appears. The dispersion 

region is the third region above 1 

MHz. A convenient formalism 

Jonscher’s universal power 

law ζ(ω)= ζdc+ A(ω)
s
  (3) helps to 

explain the variation of conductivity 

in SPE [43,44]. The DC conductivity, 

dc, includes the frequency-

independent ac conductivity. The dc 

of the prepared SPE samples was 

obtained by extrapolating the plateau 

region on the s-axis. The computed dc 



Journal of Basic and Environmental Sciences                           10.4.6   (2023) 156-175 

 

611 
 

values from the conductivity-frequency 

dependency plots and those derived 

from the Cole-Cole plot are in good 

agreement with one another [45]. This 

study's investigation of conductivity-

frequency dependency is quite 

comparable to earlier work that was 

published and focused on ionically 

conducting polymers, glasses, and 

doped crystalline solids [46,47]. The 

mechanism of charge transport 

behavior of charge carriers is supposed 

to match this. 
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Figure  5 : (a) variation of the frequency Vs ac conductivity, (b) variation of the frequency Vs Capacitance 

for PVA with different concentration of H3PO4 

In addition, as the concentration of 

phosphoric acid increased, so did the 

length of the spike region in the 

Nyquist plot and the frequency 

dependence of ac conductivity at low 

frequencies that correspond to the 

capacitance of the electrode 

polarisation. Figure 5b displays the 

capacitance vs. frequency. As can be 

observed, the capacitance increased 

dramatically as the frequency 

decreased at the low frequency side (f 

 100 kHz). This increment increased 

as the ionic concentration level 

increased, indicating that a higher ionic 

concentration level is quite effective at 

increasing the capacitance. 

Capacitance values are more stable in 

the high frequency range (f > 100 

kHz); all ionic solid electrolytes, 

glasses, and doped crystalline solid 

materials have identical capacitance. 

This is since a strongly alternating 

current cannot flow through 

accumulated ionic charges at the 

electrode/electrolyte interface.  

With increasing frequency[48], the 

frequency dependent impedance 

(Figure 6a) decreases in both the lower 

and higher frequency regions. The 

middle frequency region's observed 

frequency independent impedance 

shows ionic transport from the 

electrolyte to the electrode. However, 

spectra show that impedance decreases 

in the middle frequency range as acid 

content increases, which may be 

caused by the electrolyte's increased 

ionic charge carriers (ionic 

conductivity/diffusion or frequency 

dependent ionic diffusion).  
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Figure  6 : (a) Variation of frequency with Z and Φ, (b) Cole-Cole plot for PVA with different concentration 

of H3PO4 

The ideal-capacitive character is also 

revealed by the higher phase angle values 

(Figure 6a) of-83
o
 and-89

o
 for x = 0.3 and 

0.4, respectively, as it is closer to-90
o
. 

Even though x = 0.1 and 0.2 have a low 

phase angle, this may be due to the partial 

ideal capacitive behaviour or the redox 

nature of the systems [49] However, the 

reduced phase angle causes ionic diffusion 

to take place [50]. According to Figure 5b, 

which shows a drop in capacitance as 

frequency increases, a significant amount 

of capacitance is produced at low 

frequencies as opposed to high 

frequencies. 

The complex impedance plane plots (Z' vs Z") 

are given in Figure 7. Usually a conduction 

process results in a semicircular arc in a linear 

complex plane plot. The log-log presentation 

in Figure 4a enables us to compare two 

responses with vastly different impedances in 

one plot. Despite the curved semicircular arcs, 

the logarithmic plot, moreover, has several 

positive effects, as Jonscher has noted [51]. 
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Figure 7 Cole-Cole plot for PVA-xH3PO4 (x= 0.1, 0.2, 0.3, and 0.4 wt%) at different frequencies 
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Figure 8 Relation between the frequency and the imaginary part of impedance with different concentration 

of H3PO4 

In Figure 8 we present the frequency 

dependence of the imaginary part Z" of the 

impedance Z* = Z'−iZ'' at different acid 

concentration. We observe at x= 0.1 a higher 

peak at about 10
4
 Hz, shifting to higher 

frequencies with decreased intensity as the 

acid concentration increases. At x = 0.4 it 

moves close of the frequency range of our 

experiment. This implies both electrical 

responses are thermal activated. 

 

Dielectric studies 

It is important to evaluate the dielectric 

relaxation to analyse the composition, 

physical characteristics, and 

electrochemical properties of solid 

polymer electrolytes and the 

composites they correspond to. 

Additionally, investigations of solid 

polymer electrolytes' dielectric and 

dipole relaxation over a broad 

frequency range are required and 

advantageous [52-54]. One of the 

effective and efficient methods for 

studying the mechanism of ion 

transport is dielectric spectroscopy 

[52-55]. Complex electric modulus 

(M*) and complex dielectric constant 

(ε*) measurements are required to 

achieve this aim. The dielectric 

constant (ε′) and dielectric loss (ε") are 

depicted in Figure 9: (a) and (b) 

compared to electrolyte systems that 

operate at ambient temperature. The 

magnitudes of ε′ and ε" utilising the 

formulae shown below [52-54],[56]: 



Journal of Basic and Environmental Sciences                           10.4.6   (2023) 156-175 

 

611 
 

   
  

     
 
 
   

 
 

                              (4)           

   
  

     
 
 
     

                               (5) 

Where Co = oA/d, o is the free space 

permittivity (8.854x10
12

 F m
-1

) and is 

the angular frequency. In contrast, it is 

nearly a plateau at a higher frequency. 

The value of ′ and " is very large 

inside the low-frequency range. It's 

interesting to note that at low 

frequencies, electrode polarisation 

causes charge build-up from free 

mobile ions at the electrode-electrolyte 

interfacial region, resulting in a thin 

layer of capacitance [57-58]. The 

applied electric field, on the other 

hand, quickly restores, and the 

majority of the ions may continue to 

exist in the majority of the sample. As 

a result, the electrode polarisation is 

reduced, which lowers the values of ' 

and " [52-54],[59]. 

It is observed that the ' increases as 

the acid content increases. This is 

because there are more charge carriers, 

which results in more polarisation [60-

63]. These results indicate that the 

dielectric constant may be used to 

easily control the conductivity of 

polymer electrolytes. The 

mathematical formula ni = no exp (U/' 

KBT) (6), where U is the energy of 

dissociation, has already been used to 

demonstrate the significant correlation 

between and the density of charge 

carriers (ni) [52,54,62-63]. In other 

words, a reduction in causes a 

reduction in DC conductivity. Two 

polymer factors that govern the DC 

ionic conductivity of polymer ion-

conducting electrolytes are the density 

of charge carriers (ni) and their 

mobility (i) (= qnii), where q is 

the charge on the ion carriers [52,54]. 

A precise study of ε′ is useful in that 

one can achieve a complete 

understanding of the electrical 

properties of polymer electrolytes, 

particularly the conductivity. 
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Figure  9  (a) Dielectric constant and (b) dielectric loss versus log (f) for PVA-xH3PO4 (x= 0.1, 0.2, 0.3, and 0.4 

wt %) 
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Figure 10 Tan δ versus log (f) for PVA-xH3PO4 (x= 0.1, 0.2, 0.3, and 0.4 wt %) 

This formula, Z* = R - jXC (7), where 

R and XC are the resistor element and 

the capacitive element, respectively, 

mathematically defines the complex 

impedance function [63]. According to 

the impedance's above mathematical 

function, a significant amount of 

current flows through the resistor 

element at low frequencies because the 

capacitive component is prominent. It 

is noticed that from the tan δ = ε”/ε’ 

(8) relationship, the tan δ is directly 

proportional to ε”. 

There are two types of dipoles 

that can create peaks in highly 

electrically conductive polymer 

electrolyte systems: induced and 

permanent. The low-frequency 

relaxation peaks may disappear as a 

result of these dipoles being hidden by 

the polarisation relaxation of mobile 

charged species that are present in the 

material [64-65]. The dielectric loss 

tangent (tan δ) versus frequency is 

shown in Figure 10 and can be used to 

understand the relaxation process. 

Koop’s phenomenological model is 

used in the interpretation of the shape 

of tan δ [63,66]. The model's guiding 

principles state that tan δ increases 

with increasing frequency until it 

reaches a maximum value, at which 

point it begins to decrease. The 

explanation is since the Ohmic 

component of the generated current 

grows noticeably relative to its 

capacitive component in a low-

frequency region where tan δ 

increases. In contrast, the Ohmic 

component is essentially frequency 

independent in the high-frequency 

region, where tan δ drops and the 

capacitive component grows, resulting 

in a modest value of capacitive 

reactance[63,66-67]. Additionally, the 

wide nature of the tan δ peaks[68-69] 

is proof of the relaxation process' non-

Debye type behaviour. 

One can study the dielectric 

response that results from ion 

relaxation in which the electrode 

polarisation effects can be suppressed; 

in other words, small features in the 

high-frequency region are 
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recognised[70]. Through the equations 

shown below[71-72], the impedance 

data correlate the real and imaginary 

parts of the electric modulus. 
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Figure  11  the electric modulus versus log (f) for PVA-xH3PO4 (x= 0.1, 0.2, 0.3, and 0.4 wt %) 

 (a) Real component and (b) imaginary component. 

Figure 11: (a) and (b) shows that the 

real and imaginary components of the 

electrical modulus plot, which 

correspond to M′ and M", are 

frequency dependent. The low-

frequency region is where the data 

points for the real component of the 

modulus spectra are situated. This 

could be caused by the electrodes' high 

capacitance, which helps the ion 

conduction process' migration. It can 

be shown that in the high-frequency 

range, M′ approaches its maximum 

saturation level. The ′ decreases to a 

minimum, whereas M′ increases to a 

maximum (M = 1/) [73]. The 

samples are non-Debye because the 

frequency increases cause dispersion in 

M′  [74]. Figure 11b displays the 

imaginary component of the modulus 

spectra. It is seen that; the conductivity 

relaxation peaks appear at low 

phosphoric acid concentration. It also 

is notable that there is decrease of peak 

and a shift of peak position to the 

higher frequency region with the 

addition of further acid concentration. 

In addition, the translational ion 

dynamics and conductivity relaxation 

of the mobile ions are likely to be 

connected to some of the peaks in the 

M" spectra. The segmental mobility of 

the polymeric chain reduces the 

relaxation time and accelerates ion 

transport during the amorphous phase. 

To be accurate, the ionic charge 

carriers' relaxation time  is indicated 

by the mathematical relationship  = 

1/2fmax [75]. The relaxation peaks are 

shown to have shifted to the lower 

frequency side in Figure 11b. This is 

because the presence of phosphoric 

acid increases ionic conductivity, 

which reduces the relaxation time. 

Conclusion 

In this study, we have introduced the 

noble of the pure solid polymer 

electrolyte at room temperature used as 

an electrolyte as well as a separator 

from the piece of PVA and H3PO4 such 

that, the PVA samples were kept 

constant while the phosphoric acid was 

varied at 0.1, 0.2, 0.3 and 0.4. the 

PSPE results in higher conductivity of 

2x10
-4

 Scm
-1

 at the compositions of 

0.4, in addition to that, we also 

observed that, the bulk modulus Rb 

decreases with increasing 

concentration, recording 100 W at the 

highest compositions of 0.4. 
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