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Abstract: This paper introduces a new family of discrete distributions, and investigates some of their
statistical properties. The geometric distribution is utilized as a baseline for this new family, resulting
in the derivation of a new discrete distribution, termed the generalized geometric distribution. This new
distribution exhibits a wider range of shapes in its probability mass function and hazard rate function
than the geometric distribution. Several mathematical properties of the proposed model are derived,
and three estimation methods, namely maximum likelihood, moments, and proportion estimation, are
employed to determine estimators for the new model. The performance of these estimators is evaluated
using simulated data sets, demonstrating their accuracy and reliability in estimating the parameters
of the generalized geometric distribution. The proposed model is applied to a real data set, and its
flexibility in fitting the data is compared to other well-known discrete distributions in the literature.
Our results suggest that the generalized geometric distribution provides a better fit for the data than the
existing models.
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1. Introduction

Discrete distributions are fundamental concept in probability theory and statistical analysis. In
contrast to continuous distributions, which represent probabilities over a range of values, discrete dis-
tributions describe probabilities for a finite set of values. These distributions are essential in modeling
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and analyzing random events that have a countable number of outcomes, such as the number of times
a coin lands heads in a series of flips or the number of defective items in a production run. The study
of discrete distributions is essential in many fields, including finance, engineering, and social sciences,
as they provide valuable insights into the probabilities of various events occurring. One of the essen-
tial properties of discrete distributions is the probability mass function (PMF), which describes the
probability of each possible outcome. The PMF is a crucial tool in understanding the behavior of dis-
crete random variables and can be used to calculate various statistics, such as the mean, variance, and
standard deviation. Discrete distributions also have various types, such as the Bernoulli distribution,
binomial distribution, Poisson distribution, and geometric distribution. Each of these distributions has
its own unique characteristics and applications. Understanding the different types of discrete distribu-
tions and their properties is essential in selecting the appropriate distribution for a particular problem
and interpreting the results correctly. Several discrete distributions have been offered as analogues of
continuous distributions in recent decades to provide a better alternative model for understanding count
data sets with complicated behaviour. Traditional probability models such as the negative binomial,
Poisson, Geometric, and binomial distributions are used to depict count data sets, however they may
not always provide the best fit. As a result, more adaptive distributions are required.

Numerous researchers across several disciplines random variables that are discrete in character or
are used frequently. In life testing trials, for example, continuously measuring a device’s life span
can be difficult or inconvenient can be difficult or inconvenient to continuously measure a device’s life
span. For instance, the lifespan of a switch has discrete values in the case of an on/off switching mech-
anism. When describing reliability data, it’s common to talk about how many shocks, runs, or cycles
a device can withstand before failing. In a survival analysis, we might count the days that lung cancer
patients have lived after starting treatment, or we might count the days that pass between remission and
relapse. In this context, the gamma and exponential distributions, respectively, are regarded as discrete
alternatives to the negative binomial and geometric distributions. These discrete distributions contain
monotonic hazard rate functions, which makes them inappropriate in some circumstances. Poisson and
Geometric counted data models, on the other hand, can only handle positive integers and zero values.
The first is to research a distinctive quality of a continuous distribution and create a comparable quality
in discrete time. The second is to think of discrete lifespan as the integer component of continuous
lifetime; for more information, see [19, 5, 21, 22]. By examining the connections between several
reliability measures, Roy [20] was able to determine a bivariate geometric distribution in a special way
using the bivariate extension of a univariate characterizing nature. He emphasized that the survival
function can be used to express the univariate Geometric distribution as a discrete concentration of an
equivalent exponential distribution.

All recent discrete distribution were derived by using the discretization method for a continuous
distribution. Discretization is a technique used in data preprocessing and analysis to transform con-
tinuous data into discrete values. This is typically done by dividing the range of possible values into
a set of intervals or bins and assigning each data point to the appropriate bin. Discretization is often
used when dealing with data that is too complex or noisy to be easily analyzed in its original form, or
when dealing with data that has too many distinct values to be effectively used in statistical models.
For more information see [5] which make a survey on discrete models. Hossain [6] presented a family
for obtaining basic discrete distributions existed in the literature such as Poisson, negative binomial,
Bernoulli, Geometric, and binomial distributions. Aboraya et. al. [15] discussed a family of discrete
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distribution by using discretization of continuous families. The G-negative binomial family: general
properties and applications was derived by [16]. Mardia and Sriram [17] introduced families of discrete
circular distributions with some applications. An extension of Panjer’s family of discrete distributions
by derived the recursion formula for the probabilities of corresponding compound distributions for one
such family see [18].

Our motivation in this paper is to derive a new family of discrete distributions without need of
discretization method and that was introduced in Section 2, and to introduce a generalized discrete
model which introduced in Section 3. We aim that the new discrete distribution will have more features
which makes it is preferable than its baseline model. Different estimation methods of the new model
were used to determine its unknown parameters in Section 4 along with study these methods behavior
in Section 5. Also, in Section 6, we will show that the new model has a superiority for modelling real
data sets than its baseline model and other well-known discrete model in the literature.

2. New family formulation

In this section, we derive a new family of discrete distributions, its cumulative distribution function
(CDF) is defined as follows

Fx)=1-[1-2G]"", 0<¢<1, x=0,1,..., 2.1)
where G(x) is the CDF of the baseline model. The PMF ofthe new family is defined as follows
PX=x)=Fx)-F(x-1)=[1-¢(G(x-1D]" - [1 - g“G(x)]“1 . (2.2)

Lemma 1. P(x) of Equation (2.2) is a PMF.

Proof. Since P(x) is between zero and one, to justify its PMF status, we will prove that )}, p(x) = 1
as follow

3P =[1-ZG-D] - [1 - LGO)] + [1 = ZGO)] - [1 = LG ++++ +[1 = {G()]" = 1,
x=0

this completes the proof. O

The survival function and the hazard rate functions of the new family are, respectively, defined as
follows

- [1-{G(x- D]
Sx) =[1-¢G ' oh(x) = -1

The family probability generating function is

PG(z) = Y 2'P(x) = [1 = {G(-D)]* = [1 = £G(O)] + z[1 = {G(O)] - z[1 = LG + -

x=0
=1+G-D ) 16" =1+@-1) ) &S x).
x=0 x=0
Its moment generating function is

M) =1+ (- 1) Z €S (X). (2.3)
x=0
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3. Generalized Geometric distribution
The CDF and PMF of the Geometric distribution (GoD) [5] are, respectively, defined as follows

G(x)=1-y", x=0,1,2,..., 0<y<1, 3.1)

PX =x)=0-y)7, (3.2)

where (1 — ) is the probability of success.

In this section, we derived a special model of our proposed family by replacing our baseline CDF
G(x) in Equation (2.1) by the CDF of the GoD in Equation (3.1). The new model will be known as
generalized Geometric distribution (GGoD), its CDF and PMF are, respectively, defined as follows

Foy=1-[1-¢(1-y*)]". 0<¢<l0<y<Lx=01,..., (3.3)

PX=x)=[1-2(1 =y = [1=¢ 1=y (3.4)

The survival and hazard rate (HR) functions of the GGoD are, respectively, defined as follows

x+1

S@=|1-¢(1-y)", (3.5)

oy = L@ =D+ (3.6)

[¢ (y = 1) + 1]

Different shapes of the PMF (3.4) are presented in Figure 1. It can easy see that the PMF (3.4) can
be a unimodal or a decreasing function which is an advantage for the GGoD compared with the GoD
which has only decreasing shape. Possible shapes of the HRF (3.6) are presented in Figure 2 and it has
more shapes than the GGoD which has only constant HRF.
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Figure 1. Plots of the PMF of the GGoD.
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Figure 2. Plots of the HRF of the GGoD.

3.1. Moments

Let X be a random variable follows the GGoD, then its moment generating function is determined
by using Equations (2.3) and (3.5) as follows

M@) =1+ - 1) Z FA(X), (3.7)
x=0

x+1

where A(x) = [1-¢(1-y"1)|
By using the relationship between moment generating function and moments, we have the moments
of the GGoD as follows

r

d
Hr = M@)o, (338)
<

Now, we will determine the first four moments of the GGoD, respectively, as follows

d N XZ Z Ve —_ C
M@ = ;A(m [x(¢f = 1) + €],y = ;Am,

2

d C XZ v Z v4 N
M@ = Z:; A)e™ [ + 2xe* + x2(e* = )] .o = Z:; AX)Qx + 1),

C;J—;M(Z) = 2 A(x)e*|e* + 3xe* + 3276 + x*(e* = 1) .3 = 2 A@)[1+3x+34,

d4 N Xz | 2z z 2.2 3z 40,2 N 2 3
M@ = ;A(x)e |eF + 4xe* + 627" + 4x’et + x¥ (e - )| = ;A(x)[l +4x+ 627 + 42|

By using the first four moments of the GGoD, we can obtain its variance (02), coefficients of
skewness (81) and kurtosis (8;), respectively, by the following relations

(3 = Bpapy + 2(u1))? _ Ha— duspy + 6o (ur)* = 3yt
o - 7 (2 — ()2 ‘

o’ = M2 — (111)2,,31 =
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The index of dispersion (/D) and the coefficient of variation (CV) of the GGoD are
ID=—,CV=—.

From Table 1, we conclude that

e The mean is a measure of central tendency that indicates the average value of the data. As ¢
increases, the mean tends to decrease for a given y. This behavior is consistent with the trend of
decreasing values of mean as the shape parameter { becomes larger, resulting in a more skewed
distribution.

e Variance quantifies the spread or dispersion of the data points around the mean. Similar to the
mean, as { increases, the variance tends to decrease for a given y. Lower values of { lead to larger
variances, indicating greater variability in the data.

e Skewness measures the asymmetry of the data distribution. As ( increases, the coefficient of
skewness generally decreases. A larger { tends to make the distribution more symmetric, reducing
the skewness.

o Kurtosis measures the ’tailedness” of the distribution. As ¢ increases, the coefficient of kurtosis
tends to decrease. Higher values of £ lead to distributions with lighter tails, indicating fewer
extreme values compared to a normal distribution.

e The index of dispersion measures the relationship between the mean and variance of the distribu-

tion. As ¢ increases, the index of dispersion tends to decrease. This indicates that the variance
decreases at a faster rate than the mean as { increases, implying a reduction in variability relative
to the mean.
The ability of the GGoD to cover situations of over-dispersion, equi-dispersion, and under-
dispersion, as demonstrated by the varied index of dispersion values in Table 1, underscores
its versatility in modeling different types of data distributions. This property makes the GGoD a
valuable tool for capturing a wide range of dispersion patterns, which is of significance in various
statistical analyses and applications.

e The coefficient of variation is the ratio of the standard deviation to the mean and is a measure of
relative variability. As { increases, the coefficient of variation tends to decrease. Larger values of
{ lead to distributions with lower relative variability compared to the mean.

In summary, the statistical measures presented in Table 1 demonstrate consistent trends as the shape
parameter { varies. As { increases, the distribution becomes less skewed, has lighter tails, reduced
dispersion relative to the mean, and lower relative variability. These trends reflect the impact of the
{ parameter on shaping the characteristics of the data generated by the GGoD. Additionally, for fixed
values of £, as the y parameter varies, these measures also change, reflecting the sensitivity of the
GGoD model to changes in the shape parameter 7.
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4. Estimation of the GGoD parameters

We’ll explore the utilization of various estimation methods namely, maximum likelihood estimation
method (MLEM), moment estimation method (MEM), and proportion estimation method (PEM) as
approaches for determining estimators of GGoD.

The log-likelihood function of PMF (3.4) is

log(L) = Z tog{[1 =21 =y = [1= 2 (1= )]}, “.1)

now, we will equating the first derivative of Equation (4.1) with respect to GGoD’s parameters (£, y)
to zero as follows

dlog(L) _ < -
(:ai :;{[l—w—w] 1=y

(=7 ey [ cl =)
et | B C Il | WS I (Rl |

-1

Py =L (0= Y = [ =21 =y ) -0, 4.2)
al (L) 4 X; X; Xit Xi+ -1
s =;{[1—§<1—y')] ~[1-¢(r-y™)

ey -ca -y =y [1=¢ (1=
_ {xl?yxl- [1 _ {(1 _ yxt'“)]xi = 20Xyt [1 - 5(1 - 7xi+l)]Xi) =0. (4.3)

For estimating the GGoD unknown parameters & and ¥ by MEM, we should solve the following
two equations with respect to our parameters.

[0e]

LS Sl o o

i —y ) 2 Z(x ~Dt-z(1-y)]" =0. 4.5)

=1 x=1

:IH

Consider a random sample from the GGoD which has two parameters (£, y), then, we will two
indicators as follows

1, i=0
Io(x) = * (4.6)
0, otherwise,
By = X In(x).
1 i = 1
Lix)=13" * 4.7)
0, otherwise,
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By = XL, Li(x).
From Equations (3.4), (4.6), and (4.7), we have the following two equations
B
PX =0)={(1-y)=—. (4.8)
2 B
PX=1=1-|y-1)¢+1] +(y-1 == (4.9)
n

By solving Equations (4.8) and (4.9) with respect to parameters ¢ and y, then, we have the estimated
parameters £ and 9 by PEM.

5. Numerical simulation for the GGoD

This section tests the behavior for the estimators of the GGoD by using simulated data sets. We
produce distinct random samples (with a total of N = 2000 samples) from the GGoD, employing
various sample sizes (50, 150,300,500). This is accomplished by initiating the generation process
with different parameter values (£ = 0.5,0.25,0.75,0.9,0.3,0.5 and y = 0.75,0.4,0.3,0.2,0.95,0.5).
After each generation we determine AVEs along with |BIAS|, MS E, and MRE, which are calculated
as follows

N N
[ 1 —_ 1 —
AVEs = — ®, [BIAS| = — D - D,
s NZ |BIAS| N;) |

S I e TP
SE:NZ((I)—(I)),MRE:NZIG)—q)l/(D,@:(5,7)-

i=1 i=1
Finally, these numerical results are presented in Tables 2 and 3, we conclude that
e The estimators £ and ¥ has the consistency property.

e |BIAS|, MS E, and MRE exhibit a declining trend as the sample size progressively grows.
e All estimation methods behaves well for all parameters values.
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6. Real data analysis

The objective of this section is to investigate how effectively the GGoD can be employed to fit real-
world datasets. The analyzed data set consists of n = 116 observations which represents daily ozone
concentrations that were collected in New York during May—September, 1973. It was presented by
Ferreira et al. [1], it is studied by Jayakumar et al. [2]. A non-parametric plot of the analyzed real data
set are displayed in Figure 3.
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Figure 3. Non-parametric plot of ozone real data set.

Employing real-world datasets showcases the adaptability of the GGoD when compared to var-
1ous established distributions, such as GoD, discrete half-logistic distribution [7] (DHLD), discrete
Lindley distribution [8] (DLD), discrete gamma distribution [9] (DGD), discrete complementary
Weibull-geometric distribution [2] (DCWGD), discrete Weibull distribution [10] (DWD), discrete
three-parameter Burr type XII distribution [14] (D3PBD), discrete complementary exponential ge-
ometric distribution [2] (DCEGD), discrete Lomax distribution [14] (DLoD), exponentiated dis-
crete Weibull distribution [4] (EDWD), discrete Ramos-Louzada distribution [11] (DRLD), discrete
Weibull-geometric distribution [3] (DWGD), discrete mixture of gamma and exponential distribution
[13] (DMGED), and discrete rayleigh distribution [12] (DRD). We used MLEM to determine the esti-
mated parameters of all distributions. For best model selection, we used well-known statistics such as
Alc, CAICa Blc, HQlc, KSS, with its p—Value PKSS'

Table 4 presents parameters estimates (standard error) and other measures for the ozone real data
set that was investigated. In contrast to all other competing distributions, the GGoD closely matches
the modeled dataset. This is evident from the small values across all measures related to the GGoD, as
depicted in Table 4, except for the Pggg value, which stands out with the highest value.

The graphical representation in Figure 4 illustrates the behavior of the log-likelihood function con-
cerning the estimated parameters ¢ and % for the GGoD. Both figures display a unimodal shape, demon-
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strating maximum values at the estimated parameter values of £ and 9. This indicates the presence of a
global maximum for our estimated parameters. Additionally, utilizing the Nmaximize function within
Wolfram Mathematica software also corroborates this, as depicted in Figure 4, showcasing the pursuit
of a global maximum solution. Moreover, Figure 5 presents the probability-probability (PP) plots,
comparing the proposed model with other models under consideration. These plots further validate
and support the outcomes detailed in Table 4.

Table 4. Numerical analysis for the ozone real data set.

Model Asc CA;c Bic HQc KSS Pkss Par. (SEs)
GGoD 1086.6 1086.71 1092.11 1088.84 0.0630321 0.746052 £ = 0.0258219 (0.00277097)
% = 0.947396 (0.0172907)
DHLD 1095.17 1095.21 1097.93 1096.29 0.105444 0.151564 A = 0.0330171 (0.00255731)
GoD 1104.58 1104.62 1107.34 1105.7 0.150529 0.0104234 2 = 0.0231861 (0.00212767)
DLD 1231.7 1231.73 1234.45 1232.81 0.0993041 0.202762 & = 0.04746 (0.00311561)
DGD 1087.62 1087.73 1093.13 1089.86 0.0823368 0.411219 & = 1.76556 (0.213781)
B = 0.0414169 (0.00578978)
DWD 1090.26 1090.37 1095.77 1092.5 0.0845464  0.378272 & = 0.994731 (0.0021811)
B = 1.36338 (0.0968541)
DRLD 1104.56 1104.59 1107.31 1105.67 0.150522 0.0104282 2 = 41.582 (3.95895)
DRD 1104.58 1104.62 1107.34 1105.7 0.150529 0.0104234 2 = 0.976814 (0.00212767)
DMGED 1096.52 1096.56 1099.28 1097.64 0.116122  0.0875726 & = 0.982179 (0.00144476)
D3PBD 1091.41 1091.62 1099.67 1094.76 0.0785799  0.470909 & = 106.422 (117.002)
B = 0.0138368 (0.0755321)
& = 1.54381 (0.246673)
DLoD 1110.49 1110.6 1116. 1112.73 0.162173 0.00447856 & = 510.979 (174.008)
B =2.76847 x 107° (0.0000113515)
DWGD 1091.55 1091.76 1099.81 1094.9 0.0712661 0.597703 & = 1.37059 (0.21253)
B =0.278118 (0.511739)
& = 0.995683 (0.00531994)
EDWD 1088.48 1088.69 1096.74 1091.83 0.0655601  0.701051 & = 0.774117 (0.235471)
B =3.2203 (2.23417)
& = 0.896784 (0.120087)
DCWGD 1087.83 1088.05 1096.09 1091.19 0.0652087 0.707371 & = 1.79708 (0.0372976)
B = 4.57645 (0.350449)
& = 0.999633 (0.0000322492)
DCWED 1096.01 1096.12 1101.52 1098.25 0.0868787 0.345345 3= 0.361554 (0.0436103)
& = 0.963053 (0.00913524)
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Figure 4. Plot of the log-likelihood function with the estimated parameters of the GGoD for
the ozone real data set.
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Figure 5. P-P plot of the GGoD and other compared models for the ozone real data set.

7. Conclusion

In conclusion, our study introduces a new family of discrete distributions and investigates its sta-
tistical properties. Specifically, we focus on the generalized Geometric distribution as a special model
within this family and explore its key statistical characteristics. Our findings highlight the performance
of the proposed estimators for the parameters of the generalized Geometric distribution. These estima-
tors exhibit reliable and accurate performance across various scenarios. Through extensive simulations
and real-world data analysis, we demonstrate the effectiveness and competitiveness of the new family
in comparison to existing models.

There are various ways to expand the research presented in this article. One approach is to apply
the generalized Geometric distribution to analyze and model data in other fields, such as reliability
engineering, medicine, economics, survival analyses, and life testing. Another direction could involve
examining Bayesian estimation of the distribution’s parameters using complete and various types of
censored samples under different loss functions. Additionally, a potential area of study is exploring a

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 1-16



15

bivariate extension of the generalized Geometric distribution.
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