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 الكرویة الأجسامیة المتبقیة للعدید من تفسیر الشاذات التثاقل

هـذه الطریقـة تعتمـد علـى و الكرویـة  للأجسـامفـى هـذا البحـث طریقـة عكسـیة لتفسـیر العدیـد مـن الشـاذات التثاقلیـة المتبقیـة علـى طـول البروفیـل نقـدم  :الخلاصـة
مجـــال اللوغـــاریتمى الفــى  للأشـــكالومعـــاملات الســعة)  الأعمــاقیـــزة (هـــذه الطریقــة علـــى تحویــل متعـــدد للمعــاملات الممتعتمــد طریقــة التـــدرج المترافــق المـــنظم. 

یجعـل المعـاملات  ولاً أ ؛تطبیق العملیة العكسیة فـى النطـاق اللوغـاریتمى لـه العدیـد مـن الفوائـدو عن النطاق الفراغى للمعاملات نفسها.  لمعاملات النموذج فضلاً 
 أساسـاً التـى  فإنه یفرض الخـواص الإیجابیـة للنمـوذج ثالثاً و  یجعل المعاملات الحساسة متساویة ة، ثانیاً اللوغاریتمیة وحساسیتها (مصفوفة جیكوب) متقاربة ومتزن

المدفونـة وعـلاوة علـى  للأجسـامینت القیم الحقیقـة عشوائیة، فع أخطاءتحافظ على التقارب واستقرار الطریقة. وقد تم تطبیق الطریقة على بیانات نظریة لیس بها 
تـم عشـوائیة.  أخطـاءبیانـات نظریـة بهـا       المدفونـة بدقـة مقبولـة عنـدما اسـتخدمت  للأجسـامریقة مستقرة وتقوم بحساب المعـاملات العكسـیة ن الطأوجد  ،ذلك

یر هــذه الطریقـة نســتطیع اســتخدامها للاستكشــاف المعــدنى وعمــل تصــو وبنــاء علــى ذلــك، فمــن كوبـا لاستكشــاف الكــروم.  ىتطبیــق الطریقــة علــى مثــال حقلــ یضـاً أ
 ضحل وعمیق. أرضى

ABSTRACT: The present study developed an inversion scheme for the interpretation of multiple residual gravity 
anomalies measured along a profile by spherical bodies. It is based on the regularized conjugate gradient method. The 
scheme simultaneously inverts for the characteristic parameters (depths z’s and the amplitude coefficients A’s) of all 
approximative bodies in the logarithmic space of model parameters (log(z) and log(|A|)) rather than in the space of 
model parameters themselves (z and A). Carrying out the inversion in the logarithmic space of model parameters has a 
number of important benefits. First, it makes the logarithmic parameters and their corresponding sensitivities (terms of 
the Jacobian matrix) comparable and balanced. Second, it makes the sensitivity terms dimensionally the same. Third, it 
imposes the positive property of the model parameters, which essentially maintains the convergence and stability of the 
scheme. The developed scheme has been successfully verified on synthetic examples without noise; it recovered the true 
values of all inverse parameters of the underlying bodies. Furthermore, the scheme is stable and can estimate the 
inverse parameters of the buried target with acceptable accuracy when applied to data contaminated with noise. The 
validity of the scheme for practical applications has been illustrated on a field example from Cuba for chromite 
prospecting. The scheme can be applicable for mineral exploration and shallow and deep earth imaging. It can produce 
non-unique solution and is sensitive to the initial guess choice. 

INTRODUCTION
Interpretation of multiple residual gravity 

anomalies along a profile by several spherical bodies 
remains of interest in exploration geophysics (e.g., 
Abdelrahman et al., 1999; Essa, 2007; LaFehr and 
Nabighian, 2012; Hinze et al., 2013; Long and 
Kaufmann, 2013). This rationale can be acceptable in 
cases that the geological settings have isolated bodies. 
Therefore, fast quantitative interpretation methods based 
on geometrically simple idealized bodies in the 
restricted class of spheres can be used to determine the 
inverse parameters (that is, the depth z, and amplitude 
coefficient A of each body) of the buried causative 
bodies from the residual gravity data. 

Methods for the interpretation of a single residual 
gravity anomaly measured along a profile by some 
geometrically simple body have been developed (see for 
example Essa, 2014, 2012; Mehanee, 2014; Biswas, 
2015; Mehanee and Essa, 2015, and the references 
therein). 

The objective of this paper is to develop a scheme 
for the interpretation of multiple residual gravity 
anomalies measured along a profile by geometrically 
simple bodies in the restricted class of spheres. The 
scheme inverts the entire observed residual gravity data 
(rather than just a few characteristic points out of this 
observed data set) produced by some bodies embedded 
in the subsurface. Besides, it simultaneously, rather than 
successively, estimate the inverse parameters (A’s and 
z’s) of the causative bodies. The algorithm uses the 
exact forward modeling formula, and employs 
Tikhonov regularization (Tikhonov and Arsenin, 1977) 
and the regularized conjugate gradient method in the 
space of logarithms of the depths and amplitude 
coefficients (log(z) and log(|A|)of each interpretive 
spherical body) in order to maintain the convergence of 
the scheme. 

This paper is structured as follows. First, we 
briefly describe the for ward modeling problem (direct 
solution). Second, the formulation of this particular 
inverse problem, and its solution by the conjugate 



S.A. Mehanee et al. 2 

( )
( )z)xx(

zAAzAz,xg
M

m
mm

m
mM,M, . . . . . . ,,

1 2
322

11 ∑
= +∆−

=

gradient method. Third, the accuracy of the developed 
scheme is verified on numerical models without noise. 
Fourth, the scheme is applied to noisy data. Finally, we 
assess and discuss the applicability of the proposed 
technique to a published field data example from 
mineral exploration. 
Formulation of the forward modeling solution: 

The gravity anomaly (g) due to a number (M) of 
spherical causative bodies (Figure 1) at a point along a 
profile has a closed-form solution, and is given 
(Mehanee, 2014) by 
       

           (1) 
 
where x (m) is the coordinate of the measurement 
station, z (m) is the depth to the center of the body (the z 
axis is chosen positive downward), and A (mGal.m2) is 
the amplitude coefficient which is given by 

3

3
4

rπγσ where σ (kg/m3) is the density contrast, γ 

(6.67384 × 10−11 m3 kg−1 s−2) is the universal 
gravitational constant, and r (m) is the radius of the 
body. 

 
Fig. (1): A sketch showing cross-sectional views, 

geometries and parameters of two spherical bodies. 

1. Formulation of the inverse problem and its 
proposed solution 
In this paper, we seek to solve the discrete 

nonlinear inverse problem described by the operator 
equation 

)2(,)( ogG =ρ  

where G is the forward modeling operator acting on ρ to 
produce some predicted (computed) residual gravity 
data at a finite number (N)of observation points along a 

profile, ρ is the set of model parameters we seek (in our 
case these are depths z’s and amplitude coefficients 
A’s), and go is a finite set of the measured (observed) 
residual gravity data obtained along this profile. 

The conventional method of solving ill-posed 
inverse problems is based on the minimization of the 
Tikhonov parametric functional (Tikhonov et al., 1998; 
Tarantola, 2005; Mehanee and Essa, 2015): 

P(ρ) = φ(ρ) + α S(ρ),                                          (3) 
where φ(ρ) is the data misfit functional determined 

as a square norm of difference between the observed 
(measured) and predicted (computed) data, S(ρ) is a 
stabilizing functional, the stabilizer, and α is the 
regularization parameter (Reginska, 1996). 

The parametric (objective) functional subject to 
minimization is then: 
P(ρ, go) = (G(ρ) – go )T (G(ρ) – go ) + α ρT ρ = min,    
(4) 

where T is the transposition operator. Mehanee 
(2014) reported that the minimization problem 
presented in (4) is difficult to solve in the space of the 
model parameters, as the iterative scheme is unable to 
converge, when the regularized conjugate gradient 
method was used. Therefore, the inverse problem (2) is 
solved in the logarithmic space of the model parameters 
(log(|A1|), log(z1), ...., log(|AM |), log(zM )). 

The use of the logarithmic model parameters in 
inversion has the benefit of making the Frechet 
(Jacobian) derivatives dimensionally the same, which is 
a good strategy for balancing the Jacobian terms. 
Furthermore, the inversion in the logarithmic space of 
the model parameters forces and guarantees the 
positivity of the model parameters we seek. Therefore, 
the new logarithmed space objective functional takes 
the form: 

min)(),(
22
=+−= ραρρψ oo gGg   (5) 

where ρ = [log(z1)  log(|A1|).... log(zM) log(|AM|)]T and 
)(ρG  = G(ρ). The new nonlinear minimization 

problem (5) is solved iteratively by the regularized 
conjugate gradient (CG) method (Zhdanov, 2002; 
Mehanee, 2014). 
2. Numerical models: 

We first examine the accuracy of the developed 
gravity inversion scheme on two noise free examples. 
After that, the scheme is applied to noisy data. 
2.1. Model 1: noise free example: 

The gravity response of two spherical bodies (z1 = 
4 m, A1 = 300 mGal.m2, z2 = 4 m, and A2 = 300 
mGal.m2) is computed at the earth’s surface. Using an 
initial guess of (z1  = 1 m, A1  = 20 mGal.m2, z2  = 1 m, 
and A2  = 20 mGal.m2) (Table 1), the inversion scheme 
was applied to this profile. The model parameters 
recovered from inversion and the true model parameters 
are tabulated in table 1. This table shows that the 
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developed scheme has successfully recovered the actual 
model parameters of the anomalous bodies.  

Table (1): Model 1 (noise free data). The initial model 
parameters used in inversion, the true model 

parameters, and the model parameters recovered 
 from inversion. 

Model parameter Initial True Inversion results 

z1 (m) 1 4 4 

A1  (mGal.m2) 20 300 300 

z2 (m) 1 4 4 

A2  (mGal.m2) 20 300 300 

Figure 2 shows that the observed data and the 
predicted response (that is calculated from the solution 
retrieved from inversion) are coincident with each other.  

 
Fig. (2): Model 1 (noise free data): inversion results. 

The observed and predicated data are coincident 
with each other. The inversion scheme recovered the 

actual model parameters (see table 1). 
 

The behavior of the normalized misfit in percentage 

(defined as %100
)(

x
g

gg

o

o−ρ
)and the objective 

functional subject to minimization are shown in Figure 
3. This figure demonstrates that the inverse scheme is 
convergent and stable. 

In order to get some insights and understand better 
the reason beyond the good convergence of the log-
space algorithm, we have computed the column 
sensitivities (perturbation of data with respect to model 
parameters; Fréchet (Jacobian) matrix) from the initial 

guesses used in inversion. Figure 4 shows the 
sensitivities (absolute values) pertinent to the model 
parameters of the two investigated spheres. This figure 
shows that the four sensitivity column vectors are 
comparable in terms of magnitude range which is 
reflected on the scheme’s convergence. 

  
Fig. (3): Model 1 (noise free data): Behavior of the 

normalized misfit and objective functional  
subject to minimization. 

 

 
Fig. (4): Model 1 (noise free data): Sensitivity  

of the model parameters. 

2.2. Model 2: noise free example: 
The gravity response of two spherical bodies (z1 = 

10 m, A1 = -50 mGal.m2, z2 = 10 m, and A2 = 50 
mGal.m2) is computed at the earth’s surface. The 
inversion scheme was applied to this profile using an 
initial guess of (z1 = 1 m, A1 = -20 mGal.m2, z2 = 1 m, 
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and A2 = 20 mGal.m2) (Table 2). Table 2 lists the model 
parameters recovered from inversion and the true model 
parameters. It is seen from this table that the developed 
scheme is successful in recovering the actual model 
parameters of the anomalous bodies.  

Table (2): Model 2 (noise free data). The initial model 
parameters used in inversion, the true model 

parameters, and the model parameters recovered  
from inversion. 

Model 
parameter Initial True Inversion 

results 

z1 (m) 1 10 10 

A1  (mGal.m2) -20 -50 -50 

z2 (m) 1 5 5 

A2  (mGal.m2) 20 50 50 

 
Figure 5 shows that the observed data and the 

computed response are in good match with each other.  

 
Figure (5): Model 2 (noise free data): inversion 
results. The observed and predicated data are 

coincident with each other. The inversion scheme 
recovered the actual model parameters (see Table 2). 

Figure 6 illustrates the progress of the normalized 
misfit in percentage and the objective functional to be 
minimized. This figure clearly demonstrates that the 
inverse scheme is convergent and stable. 

 
Fig. (6): Model 2 (noise free data): Behavior of the 

normalized misfit % and objective functional subject 
to minimization. 

Figure 7 shows the sensitivities (absolute values) 
pertinent to the model parameters of the two 
investigated spheres. This figure shows that the four 
sensitivity column vectors are comparable in terms of 
magnitude range which is reflected on the scheme’s 
convergence. 

 
Fig. (7) : Model 2 (noise free data): Sensitivity of the 

model parameters. 
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2.3. Model 3: noisy example: 
The gravity response of two spherical bodies (z1 = 

20 m, A1 = -75 mGal.m2, z2 = 50 m, and A2 = -400 
mGal.m2) is computed at the earth’s surface. This 
response is then contaminated by 10% noise. The noisy 
data subject to inversion is shown in Figure 8. Using an 
initial guess of (z1 = 1 m, A1 = -5 mGal.m2, z2 = 3 m, 
and A2 = -1000 mGal.m2) (Table 3), the inversion 
scheme was applied to this profile. The iterative process 
of the scheme terminated when the embedded noise 
level is reached. The model parameters recovered from 
inversion (z1 = 20 m, A1 = -78 mGal.m2, z2 = 3 m, and 
A2 = 1000 mGal.m2) and the true model parameters are 
presented in Table 3. This table shows that the 
developed scheme has accurately recovered the model 
parameters of the anomalous bodies. 

Table (3): Model 3 (noisy data). The initial model 
parameters used in inversion, the true model 

parameters, and the model parameters  
recovered from inversion. 

Model 
parameter Initial True Inversion 

results 

z1 (m) 1 20 20 
A1  (mGal.m2) -5 -75 -78 

z2 (m) 3 50 53 
A2  (mGal.m2) -1000 -400 -448 

Figure 8 illustrates that the observed data and the 
predicted response (that is calculated from the solution 
generated from inversion) are in good match.  

 
Fig. (8): Model 3 (noisy data): inversion results (see 

Table 3). The observed and predicated data are 
shown in solid and open circles. 

The behavior of the normalized misfit in 
percentage and the objective functional subject to 
minimization are shown in Figure 9. This figure 
demonstrates that the inverse scheme is convergent and 
stable. 

 
Fig. (9): Model 3 (noisy data): Behavior of the 

normalized misfit and objective functional  
subject to minimization. 

5. Field data example: 
Hammer et al. (1945) measured gravity data in the 

Camaguey area, Cuba for chromite prospecting. Figure 
10 shows the residual gravity anomalies measured over 
known chromite bodies. Using two different initial 
guesses, the inversion scheme was applied to this 
profile. Figures 10 and 11 depict the inversion results 
and the convergence of the minimization retrieved from 
Initial guess 1. A normalized misfit of 22.7 % was 
reached. Using a density contrast of 1500 kg/m3 to the 
chromite ore (Hammer et al., 1945) and using the depth 
to the centre (z1) and the amplitude coefficient (A1) 
inferred from inversion, the depth to the top (zt) and the 
radius (r) of Body 1, respectively, are 3.24 m and 
2.24m. Those of Body 2 are zt = 3 m and r = 3.9 m. The 
corresponding inversion results (obtained at a 
normalized misfit of 22.7 %) and convergence 
recovered from Initial guess 2 are illustrated in Figures 
12 and 13. Using the aforementioned density contrast, 
the depth to the top and the radius of Body 1, 
respectively, are 1.95 m and 1.87 m. Those of Body 2 
are zt = 2.88 m and r = 3.96 m.  

Assuming a density of 4000 kg/m3 to the chromite 
body (Hammer et al., 1945), the total mass of the two 
above-mentioned approximative bodies is about 1149 - 
1182 tons. Note that prominent part of this total mass is 
due to Body 2 (that is nearly 1000 tons). The depth to 
the top, estimated based on uniform spherical body, by 
Hammer et al. (1945) from this residual gravity profile 
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for a chromite ore mass of 1000 tons is about 3 m (see 
Table II of their paper), which is in good agreement 
with the depth estimated by scheme developed here. 

 
Fig. (10): Field data example:  inversion results from 
initial guess 1. The observed and predicated data are 

shown in solid and open circles, respectively. 
 

 
Fig. (11): Field data example: Behavior of the 

normalized misfit and objective functional subject  
to minimization obtained from initial guess 1. 

 
Fig. (12): Field data example: inversion results from 
initial guess 2. The observed and predicated data are 

shown in solid and open circles, respectively. 

 
Fig. (13): Field data example: Behavior of the 

normalized misfit and objective functional subject to 
minimization generated from Initial guess 2. 

SUMMARY AND CONCLUSIONS 
We developed a scheme, based on the regularized 

conjugate gradient method, for the interpretation of 
multiple residual gravity anomalies measured along a 
profile by spherical bodies. The scheme simultaneously 
determines the characteristic parameters (depths z’s, and 
the amplitude coefficients A’s) of all approximative 
bodies in the logarithmic space of model parameters 
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(log(z) and log(|A|) for each body) rather than in the 
space of model parameters themselves (z and A for each 
body). 

The developed approach uses the exact closed-
form modeling formula, free of any vertical or 
horizontal numerical derivatives of the measured gravity 
data, and it simultaneously, rather than successively, 
recovers the approximative model parameters of the 
buried anomalous structures. In addition, this approach 
does not do or involve any averaging for a model 
parameter(s) during or after the iterative process. 
Furthermore, the sensitivity (Fréchet) matrix of this 
approach is evaluated analytically. This technique fits 
the residual gravity data measured along a profile by 
some geometrically simple anomalous bodies in the 
restricted class of spheres.. 

The developed scheme has been successfully 
verified on synthetic examples without noise; it 
recovered the true values of all inverse parameters of 
the underlying bodies. Furthermore, the scheme is found 
stable and can estimate the inverse parameters of the 
buried target with acceptable accuracy when applied to 
data contaminated with noise. 

The  validity  of  this  method  for  practical  
applications  has  been  illustrated on a field example 
from Cuba for chromite prospecting. The method can be 
applicable for mineral exploration, and shallow and 
deep earth imaging. The obtained inverse parameters 
should be interpreted in an integrated manner with the 
known geological and geophysical information. Finally, 
we note that the method can produce non-unique 
solution, and is sensitive to the initial guess. 
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