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ABSTRACT: The present study developed an inversion scheme for the interpretation of multiple residual gravity
anomalies measured along a profile by spherical bodies. It is based on the regularized conjugate gradient method. The
scheme simultaneously inverts for the characteristic parameters (depths z’s and the amplitude coefficients A’s) of all
approximative bodies in the logarithmic space of model parameters (log(z) and log(JA|)) rather than in the space of
model parameters themselves (z and A). Carrying out the inversion in the logarithmic space of model parameters has a
number of important benefits. First, it makes the logarithmic parameters and their corresponding sensitivities (terms of
the Jacobian matrix) comparable and balanced. Second, it makes the sensitivity terms dimensionally the same. Third, it
imposes the positive property of the model parameters, which essentially maintains the convergence and stability of the
scheme. The developed scheme has been successfully verified on synthetic examples without noise; it recovered the true
values of all inverse parameters of the underlying bodies. Furthermore, the scheme is stable and can estimate the
inverse parameters of the buried target with acceptable accuracy when applied to data contaminated with noise. The
validity of the scheme for practical applications has been illustrated on a field example from Cuba for chromite
prospecting. The scheme can be applicable for mineral exploration and shallow and deep earth imaging. It can produce
non-unique solution and is sensitive to the initial guess choice.

INTRODUCTION

Interpretation of multiple residual gravity
anomalies along a profile by several spherical bodies
remains of interest in exploration geophysics (e.g.,
Abdelrahman et al., 1999; Essa, 2007; LaFehr and
Nabighian, 2012; Hinze et al., 2013; Long and
Kaufmann, 2013). This rationale can be acceptable in
cases that the geological settings have isolated bodies.

The objective of this paper is to develop a scheme
for the interpretation of multiple residual gravity
anomalies measured along a profile by geometrically
simple bodies in the restricted class of spheres. The
scheme inverts the entire observed residual gravity data
(rather than just a few characteristic points out of this
observed data set) produced by some bodies embedded
in the subsurface. Besides, it simultaneously, rather than

Therefore, fast quantitative interpretation methods based
on geometrically simple idealized bodies in the
restricted class of spheres can be used to determine the
inverse parameters (that is, the depth z, and amplitude
coefficient A of each body) of the buried causative
bodies from the residual gravity data.

Methods for the interpretation of a single residual
gravity anomaly measured along a profile by some
geometrically simple body have been developed (see for
example Essa, 2014, 2012; Mehanee, 2014; Biswas,
2015; Mehanee and Essa, 2015, and the references
therein).

successively, estimate the inverse parameters (A’s and
z’s) of the causative bodies. The algorithm uses the
exact forward modeling formula, and employs
Tikhonov regularization (Tikhonov and Arsenin, 1977)
and the regularized conjugate gradient method in the
space of logarithms of the depths and amplitude
coefficients (log(z) and log(JAJ)of each interpretive
spherical body) in order to maintain the convergence of
the scheme.

This paper is structured as follows. First, we
briefly describe the for ward modeling problem (direct
solution). Second, the formulation of this particular
inverse problem, and its solution by the conjugate
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gradient method. Third, the accuracy of the developed
scheme is verified on numerical models without noise.
Fourth, the scheme is applied to noisy data. Finally, we
assess and discuss the applicability of the proposed
technique to a published field data example from
mineral exploration.

Formulation of the forward modeling solution:

The gravity anomaly (g) due to a number (M) of
spherical causative bodies (Figure 1) at a point along a
profile has a closed-form solution, and is given
(Mehanee, 2014) by

M Zm

3
m=1 ((x—Axm)2 +zﬁ1)A

where x (m) is the coordinate of the measurement
station, z (m) is the depth to the center of the body (the z
axis is chosen positive downward), and A (mGal.m?) is
the amplitude coefficient which is given by

)

i Tyor 3 where o (kg/ms) is the density contrast, y

(6.67384 x 10" m® kg'! s? is the universal
gravitational constant, and r (m) is the radius of the
body.
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Fig. (1): A sketch showing cross-sectional views,
geometries and parameters of two spherical bodies.

1. Formulation of the inverse problem and its
proposed solution

In this paper, we seek to solve the discrete
nonlinear inverse problem described by the operator
equation

G(pr)=9, . (2)

where G is the forward modeling operator acting on p to
produce some predicted (computed) residual gravity
data at a finite number (N)of observation points along a

profile, p is the set of model parameters we seek (in our
case these are depths z’s and amplitude coefficients
A’s), and g, is a finite set of the measured (observed)
residual gravity data obtained along this profile.

The conventional method of solving ill-posed
inverse problems is based on the minimization of the
Tikhonov parametric functional (Tikhonov et al., 1998;
Tarantola, 2005; Mehanee and Essa, 2015):

P(p) = ¢(p) + a S(p), (3)

where @(p) is the data misfit functional determined
as a square norm of difference between the observed
(measured) and predicted (computed) data, S(p) is a
stabilizing functional, the stabilizer, and a is the
regularization parameter (Reginska, 1996).

The parametric (objective) functional subject to
minimization is then:

P(p, 20) = (G(P) = 9o )" (G(p) = Go ) + . p' p=min,
(4)

where T is the transposition operator. Mehanee
(2014) reported that the minimization problem
presented in (4) is difficult to solve in the space of the
model parameters, as the iterative scheme is unable to
converge, when the regularized conjugate gradient
method was used. Therefore, the inverse problem (2) is
solved in the logarithmic space of the model parameters
(log(|A4]), log(z1), ..., log(|Aw [), log(zwm ))-

The use of the logarithmic model parameters in
inversion has the benefit of making the Frechet
(Jacobian) derivatives dimensionally the same, which is
a good strategy for balancing the Jacobian terms.
Furthermore, the inversion in the logarithmic space of
the model parameters forces and guarantees the
positivity of the model parameters we seek. Therefore,
the new logarithmed space objective functional takes
the form:

‘¥ aH;HZ —mi (5)

w(p.9,)=[G(r) - g,
where p = [log(z1) 10g(JA1]).... log(zm) log(Am)]" and

6(;) = G(p). The new nonlinear minimization

problem (5) is solved iteratively by the regularized
conjugate gradient (CG) method (Zhdanov, 2002;
Mehanee, 2014).

2. Numerical models:

We first examine the accuracy of the developed
gravity inversion scheme on two noise free examples.
After that, the scheme is applied to noisy data.

2.1. Model 1: noise free example:

The gravity response of two spherical bodies (z; =
4 m, A; = 300 mGal.m? z, = 4 m, and A, = 300
mGal.m?) is computed at the earth’s surface. Using an
initial guess of (z; =1 m, Al =20 mGal.m? z, =1m,
and A, =20 mGal.m?) (Table 1), the inversion scheme
was applied to this profile. The model parameters
recovered from inversion and the true model parameters
are tabulated in table 1. This table shows that the
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developed scheme has successfully recovered the actual
model parameters of the anomalous bodies.

Table (1): Model 1 (noise free data). The initial model
parameters used in inversion, the true model
parameters, and the model parameters recovered
from inversion.

Model parameter | Initial | True |Inversion results
1 (m) 1 4 4

A; (mGal.m? | 20 300 300
z, (M) 1 4 4

A, (mGal.m?) | 20 300 300

Figure 2 shows that the observed data and the
predicted response (that is calculated from the solution
retrieved from inversion) are coincident with each other.
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Fig. (2): Model 1 (noise free data): inversion results.
The observed and predicated data are coincident
with each other. The inversion scheme recovered the
actual model parameters (see table 1).

The behavior of the normalized misfit in percentage

||g(p) - go”

|9,

functional subject to minimization are shown in Figure
3. This figure demonstrates that the inverse scheme is
convergent and stable.

(defined as X 100% )and the objective

In order to get some insights and understand better
the reason beyond the good convergence of the log-
space algorithm, we have computed the column
sensitivities (perturbation of data with respect to model
parameters; Fréchet (Jacobian) matrix) from the initial

guesses used in inversion. Figure 4 shows the
sensitivities (absolute values) pertinent to the model
parameters of the two investigated spheres. This figure
shows that the four sensitivity column vectors are
comparable in terms of magnitude range which is
reflected on the scheme’s convergence.
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Fig. (3): Model 1 (noise free data): Behavior of the
normalized misfit and objective functional
subject to minimization.
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Fig. (4): Model 1 (noise free data): Sensitivity
of the model parameters.

2.2. Model 2: noise free example:

The gravity response of two spherical bodies (z; =
10 m, A; = -50 mGal.m? z, = 10 m, and A, = 50
mGal.m?) is computed at the earth’s surface. The
inversion scheme was applied to this profile using an
initial guess of (z; =1 m, A; =-20 mGal.m?, z, =1 m,
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and A, = 20 mGal.m?) (Table 2). Table 2 lists the model
parameters recovered from inversion and the true model
parameters. It is seen from this table that the developed
scheme is successful in recovering the actual model
parameters of the anomalous bodies.

Table (2): Model 2 (noise free data). The initial model
parameters used in inversion, the true model
parameters, and the model parameters recovered
from inversion.

Model . Inversion
Initial | True
parameter results
z1 (m) 1 10 10
A; (mGal.m?) | -20 -50 -50
z, (M) 1 5 5
A, (mGal.m?) 20 50 50

Figure 5 shows that the observed data and the
computed response are in good match with each other.
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Figure (5): Model 2 (noise free data): inversion
results. The observed and predicated data are
coincident with each other. The inversion scheme
recovered the actual model parameters (see Table 2).

Figure 6 illustrates the progress of the normalized
misfit in percentage and the objective functional to be
minimized. This figure clearly demonstrates that the
inverse scheme is convergent and stable.
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Fig. (6): Model 2 (noise free data): Behavior of the
normalized misfit % and objective functional subject
to minimization.

Figure 7 shows the sensitivities (absolute values)
pertinent to the model parameters of the two
investigated spheres. This figure shows that the four
sensitivity column vectors are comparable in terms of
magnitude range which is reflected on the scheme’s
convergence.
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Fig. (7) : Model 2 (noise free data): Sensitivity of the
model parameters.
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2.3. Model 3: noisy example:

The gravity response of two spherical bodies (z; =
20 m, A; = -75 mGal.m? z, = 50 m, and A, = -400
mGal.m?) is computed at the earth’s surface. This
response is then contaminated by 10% noise. The noisy
data subject to inversion is shown in Figure 8. Using an
initial guess of (z; =1m, A; =-5 mGal.m?, z, =3 m,
and A, = -1000 mGal.m? (Table 3), the inversion
scheme was applied to this profile. The iterative process
of the scheme terminated when the embedded noise
level is reached. The model parameters recovered from
inversion (z; =20 m, A, = -78 mGal.m? z, =3 m, and
A, = 1000 mGal.m?) and the true model parameters are
presented in Table 3. This table shows that the
developed scheme has accurately recovered the model
parameters of the anomalous bodies.

Table (3): Model 3 (noisy data). The initial model
parameters used in inversion, the true model
parameters, and the model parameters
recovered from inversion.

Model . Inversion
Initial | True
parameter results
z; (M) 1 20 20
A; (mGal.m?) -5 -75 -78
z, (M) 3 50 53
A, (mGal.m?) | -1000 | -400 -448

Figure 8 illustrates that the observed data and the
predicted response (that is calculated from the solution
generated from inversion) are in good match.
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Fig. (8): Model 3 (noisy data): inversion results (see
Table 3). The observed and predicated data are
shown in solid and open circles.

The behavior of the normalized misfit in
percentage and the objective functional subject to
minimization are shown in Figure 9. This figure
demonstrates that the inverse scheme is convergent and
stable.
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Fig. (9): Model 3 (noisy data): Behavior of the
normalized misfit and objective functional
subject to minimization.

5. Field data example:

Hammer et al. (1945) measured gravity data in the
Camaguey area, Cuba for chromite prospecting. Figure
10 shows the residual gravity anomalies measured over
known chromite bodies. Using two different initial
guesses, the inversion scheme was applied to this
profile. Figures 10 and 11 depict the inversion results
and the convergence of the minimization retrieved from
Initial guess 1. A normalized misfit of 22.7 % was
reached. Using a density contrast of 1500 kg/m® to the
chromite ore (Hammer et al., 1945) and using the depth
to the centre (z;) and the amplitude coefficient (A;)
inferred from inversion, the depth to the top (z;) and the
radius (r) of Body 1, respectively, are 3.24 m and
2.24m. Those of Body 2 are z, =3 mand r=3.9 m. The
corresponding inversion results (obtained at a
normalized misfit of 22.7 %) and convergence
recovered from Initial guess 2 are illustrated in Figures
12 and 13. Using the aforementioned density contrast,
the depth to the top and the radius of Body 1,
respectively, are 1.95 m and 1.87 m. Those of Body 2
arez,=2.88mand r=3.96 m.

Assuming a density of 4000 kg/m? to the chromite
body (Hammer et al., 1945), the total mass of the two
above-mentioned approximative bodies is about 1149 -
1182 tons. Note that prominent part of this total mass is
due to Body 2 (that is nearly 1000 tons). The depth to
the top, estimated based on uniform spherical body, by
Hammer et al. (1945) from this residual gravity profile



for a chromite ore mass of 1000 tons is about 3 m (see
Table 1l of their paper), which is in good agreement
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with the depth estimated by scheme developed here.
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Fig. (10): Field data example: inversion results from
initial guess 1. The observed and predicated data are
shown in solid and open circles, respectively.
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Fig. (11): Field data example: Behavior of the
normalized misfit and objective functional subject
to minimization obtained from initial guess 1.
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Fig. (12): Field data example: inversion results from
initial guess 2. The observed and predicated data are
shown in solid and open circles, respectively.
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Fig. (13): Field data example: Behavior of the
normalized misfit and objective functional subject to
minimization generated from Initial guess 2.

SUMMARY AND CONCLUSIONS

We developed a scheme, based on the regularized
conjugate gradient method, for the interpretation of
multiple residual gravity anomalies measured along a
profile by spherical bodies. The scheme simultaneously
determines the characteristic parameters (depths z’s, and
the amplitude coefficients A’s) of all approximative
bodies in the logarithmic space of model parameters
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(log(z) and log(JA]) for each body) rather than in the
space of model parameters themselves (z and A for each
body).

The developed approach uses the exact closed-
form modeling formula, free of any vertical or
horizontal numerical derivatives of the measured gravity
data, and it simultaneously, rather than successively,
recovers the approximative model parameters of the
buried anomalous structures. In addition, this approach
does not do or involve any averaging for a model
parameter(s) during or after the iterative process.
Furthermore, the sensitivity (Fréchet) matrix of this
approach is evaluated analytically. This technique fits
the residual gravity data measured along a profile by
some geometrically simple anomalous bodies in the
restricted class of spheres..

The developed scheme has been successfully
verified on synthetic examples without noise; it
recovered the true values of all inverse parameters of
the underlying bodies. Furthermore, the scheme is found
stable and can estimate the inverse parameters of the
buried target with acceptable accuracy when applied to
data contaminated with noise.

The wvalidity of this method for practical
applications has been illustrated on a field example
from Cuba for chromite prospecting. The method can be
applicable for mineral exploration, and shallow and
deep earth imaging. The obtained inverse parameters
should be interpreted in an integrated manner with the
known geological and geophysical information. Finally,
we note that the method can produce non-unique
solution, and is sensitive to the initial guess.
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