Egyptian Geophysical Society
EGS Journal, Vol. 14, No. 1, 9-15 (2016)

MODEL PARAMETERS ESTIMATION FROM RESIDUAL GRAVITY
ANOMALY USING A LEAST-SQUARES INVERSION ALGORITHM

K.S. Essa, S.A. Mehanee and M. Elhussein
Geophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.

41818 A8 al) LAY (e G:\JA:J‘ EDlales Glua
AN a ) ARy phay Sl aly )l oll) aladinly
asdsndl Sl Aaadl Jalaoy JSEH Jalaas Ghonll (il ) ol Aiyha sty saas e Ayl Guaid) aa b aai 1 AadAd)
e saaly Aobee Ja A5 ) Gardl e A5 Jysat oSl Qg e 8hpeall il (amy A peayy el LGN LAY aladiuly ()l
Dl sl s Lyl A3l glandy) Jie Ladiinall dpnigl) QI Lgaladin o3 Aaplall o3 Aaaal) Jalaay JSAI Jalae Gl Sy ¢Banll Ayrayg dylad

Ge lin QUi e Ly Lgie WS o gl dlsdie o Unal Ley uld (6)aly 4pdie o Unal Lgy 4k culily e daphall (3 23 285 15,05 468
Agggal) ULl ae (355 Ay el (A Eebeally Gasll o ams eVl U8 b5 A3 aY) sasiall sl

ABSTRACT: A new inversion technique using a quick least-squares method is developed to estimate, successively,
the depth, the shape factor and the amplitude coefficient of a buried structure using residual gravity anomalies. By
defining the anomaly value at different points on the profile, the problem of depth estimation is transformed into a
problem of solving a non-linear equation of the form z = f(z). Knowing the depth, the shape factor can be estimated and
finally, the amplitude coefficient can be estimated. This technique is applicable for a class of geometrically simple
anomalous bodies including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder and the sphere.
The efficiency of this technique is demonstrated with gravity anomaly due to a theoretical model in each case with and
without random errors. Finally, the applicability is illustrated using the residual gravity anomaly of Humble salt dome,
Texas, USA. The interpreted depth and the other model parameters are in good agreement with the known actual

values.

INTRODUCTION

The problem in gravity exploration is the
computation of the oretical anomalies caused by
idealized models of known shapes. It is known that the
gravity interpretation is non-unique where different
subsurface causative targets may yield the same gravity
anomaly. However, a priori information about the
geometry of the causative target may lead to a unique
solution (Roy et al. 2000; Aboud et al. 2004).

Several methods have been used to interpret the
residual gravity anomalies. Among these methods, the
half-g..x rule (Nettleton, 1962; Telford et al., 1976),
simple method (Essa, 2007), Fourier transformation
(Sharma and Geldart, 1968), Euler deconvolution (Reid
et al., 1990), Mellin transform (Babu et al,. 1991),
Hilbert transform (Sundararajan et al. 1983), Hartley
transform (Sundararajan and Rama Brahmam, 1998),
least-squares minimization (Salem et al., 2003), and
Walsh transform (Al-Garni, 2008). In the above-
mentioned methods, the geometry of causative target is
assumed where the accuracy of the results depends on
how close the assumed model from the real structure.

Some recent approaches have been developed to
estimate the shape factor of the causative targets of
gravity anomaly. Among these approaches is Walsh
transform (Shaw and Agarwal, 1990), analytic signal
(Nandi et al., 1997), and non-linear least-squares
minimization (Abdelrahman and Sharafeldin, 1995;

Abdelrahman et al., 2001), and derivative of a
numerical formula (Aboud et al., 2004).

In this study, a quick least-squares inversion
technique based on nonlinear equation z = f(z) to
analyze gravity anomalies due to simple structures
developed to estimate the model parameters (the depth,
the shape factor and the amplitude coefficient).By
defining the anomaly value at different points on the
profile, the problem of depth estimation is transformed
into a problem of solving a non-linear equation of the
form z = f(z). The accuracy of the result obtained by this
procedure depends upon the accuracy to which the
residual anomaly can be separated from the Bouguer
anomaly. The methodology is illustrated with
theoretical models, in each case with and without
random errors, and tested by the gravity anomaly of the
Humble salt dome, Texas, USA.

THE METHOD

The general mathematical expression of the
gravity anomaly (g) produced by simple geometric-
shaped bodies (a sphere, a horizontal cylinder and a
semi-infinite vertical cylinder) at any point P along the
x-axis of an arbitrary structure in a Cartesian coordinate
system (Abdelrahman et al., 1989) is given by:
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In equation (1), z is the depth, g is the shape
factor, e.g., the shape factors for the semi-infinite
vertical cylinder (3D),horizontal cylinder (2D), and
sphere (3D) are 0.5, 1.0, and1.5, respectively. Also, the
shape factor for the finite vertical cylinder is
approximately 1 (Abdelrahman and El-Araby, 1993).
The shape factor (q) approaches zero as the structure
becomes a nearly horizontal bed, and approaches 1.5 as
the structure becomes a perfect sphere (point mass).x; is
the position coordinate, o is the density contrast, G is
the universal gravitational constant, and R is the radius.

At the origin (x; = 0), the equation (1) gives the
following relationship:

K =g(0)z**". (2)

Using equation (1), we obtain the following
normalized equation at x; =+ N and x; = M where N =
1,2,3 ...andM=1,23,......

g(iN)=K(ﬁJ , ©)
g(ﬂvl)=+<[ﬁ} , (4)

Let T= [ﬂ] , then from equation (3)
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The equation (1) can be rewritten using equations
(2) and (5) as follows
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The unknown depth (z) in equation (6) can be
obtained by minimizing
2
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where L(x;) denotes the observed gravity anomaly
at x;.

Minimization of ¢(z) in the least-squares sense,
i.e., 6([’(2%2 =0, leads to the following equation:
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Equation (8) can be solved for z using the iterative
fixed point method (Mustoe and Barry, 1998) and its
iteration form can expressed as

2, =f(z), @0)

where z; and z; are the final and the initial depths,
the iterative process executed when|z¢ —z;| <e, where

e is a small predetermined real number close to zero.
Any initial supposition for z works well because there is
only one global minimum, i.e., no limitation or optimal
range are required for the initial guess of the depth
parameter.

Once, the depth (z) is known, the shape factor (q)
can be estimated from the equation (5). Finally,
knowing the depth (z) and the shape factor (g), the
amplitude coefficient (K) can be estimated from
equation (2).

For each N and M value, we compute the values
of the model parameters (z, g and K) from equations (8),
(5) and (2), respectively. Theoretically, the anomaly
values at the origin and any two N and M distances are
just enough to determine the model parameters.
However, in practice, it is recommended to use all
possible combinations of N and M values to determine
the most appropriate source parameters solutions from
all gravity data. We then measure the goodness of fit
between the observed and computed gravity data for
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each set of solutions. The simplest way to compare two
gravity profiles is to compute the standard error (L)
between the observed values and the values computed
from estimated values of z, g and A. The model
parameters which give the least root-mean-sum-squares
differences are the best. In this way, we can select the
best-fit source parameters solutions from all gravity
data.

The standard error (W) is used in this paper as
statistical preference criteria in order to compare the
observed and calculated values. This [ is given by the
following mathematical relationship:

\/El[gm)—gc(xn]Z
o N , (13)

where g(x;) is the observed gravity values and
gc(X;) is the calculated gravity values.

SYNTHETIC EXAMPLES

The newly introduced gravity inversion algorithm
tested on several synthetic datasets of a semi-infinite
vertical cylinder (3D), an infinitely long horizontal
cylinder (2D), and a sphere (3D)causative body. In
order to assess and analyze this algorithm better, we will
examine in the following:

The effect of random noise in the data:

The residual gravity anomaly of a semi-infinite
vertical cylinder model (K = 200 mGal, z = 2 km, q =

0.5) was used. Equations (8), (5) and (2) were applied to
there sidual anomaly profiles, yielding the model
parameters; the depth, the shape factor and the
amplitude coefficient, respectively, solutions for all
possible N and M points. The computed model
parameters for the model are summarized in Tablel,
respectively.

Table 1 shows the standard error () are equal
zero for all model parameters (z, g, A) when using
synthetic data without random noise for all combination
of N and M. Otherwise, The standard error (1) has
different values when using synthetic data with 10%
random noise which has been added to the synthetic
data. The best fit model parameter (z = 1.81 km, q =
0.47, A = 181.66 mGal) was taken at the lowest p which
is used as a criterion for estimating the best fit model
parameters.

Also, the gravity synthetic datasets of a horizontal
cylinder (K = 800 mGal*km, g = 1.0, profile length =
30 km, N = 5 km, M = 8 km) was generated and
inverted for various depths of burial at the Earth’s
subsurface. The obtained noise-free datasets have been
inverted using equations (8), (5), and (2), and the
suggested algorithm has recovered almost the true value
of each gravity parameter (z, g, K) of the anomalous
bodies. Each of the gravity datasets has been
contaminated with 10%random noise, and then inverted.
The maximum absolute errors in the inverted
parameters (z, q, K; respectively) are found to be
3.2%,1.3%, and 5.8%, respectively (figure 1).

Table (1). Numerical results of the present method applied to the semi-infinite vertical cylinder
synthetic example (g = 0.5,z =2 km, K = 100 mGal, profile length = 20 km,
sampling interval = 1 km) without and with 10% random noise.

Using synthetic data

Using data with 10% random errors

z q K

(km) (k) (km) (mGal)

(mGal) | (km) (mGal) | (mGal)

u z q K u

1.00 2.00 2.00 0.50 200.00

0.00 0.13 0.14 59.47 14.04

1.00 3.00 2.00 0.50 200.00

0.00 0.49 0.21 76.19 9.52

1.00 4.00 2.00 0.50 200.00

0.00 0.86 0.28 94.48 6.24

1.00 5.00 2.00 0.50 200.00

0.00 1.77 0.47 176.08 1.19

2.00 3.00 2.00 0.50 200.00

0.00 1.49 0.41 142.89 2.27

2.00 4.00 2.00 0.50 200.00

0.00 1.70 0.45 166.25 1.41

2.00 5.00 2.00 0.50 200.00

0.00 2.56 0.64 346.19 2.74

3.00 4.00 2.00 0.50 200.00

0.00 1.81 0.47 181.66 1.11

3.00 5.00 2.00 0.50 200.00

0.00 2.71 0.68 401.66 3.21

4.00 5.00 2.00 0.50 200.00

0.00 3.68 0.94 1198.43 571
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other model parameters:
| A=800mGal *km
q=10
N=5km:M=8km
- profile length =30 km

i

% of error in model parameters

-4 T T T T T
2 3 5
Depth (km)
Fig. (1): Error response in model parameters
estimates when using synthetic with 10% random
errors. Abscissa: model depth. Ordinate:
% of error in model parameters.

These results show that the suggested method is
stable with respect to the noise added, and can recover
the gravity model parameters with an acceptable
accuracy when applied to noisy data.

Effect of errors in T and g(0):

In studying the error response of the present
algorithm, synthetic example of a semi-infinite vertical
cylinder model (g = 0.5, z = 3 km, K = 200mGal, N = 4
km, M = 9 km, and profile length = 60 km) were
considered in which errors of +1%,+2%, ..., +5% were
supposed in both T and g(0). Following the same
interpretation method, values of the three model
parameters (z, g, K) were computed and the percentage of
errors in the model parameters were mapped in case using
synthetic data without random noise (Figs. 2-4) and in case
using synthetic data with random noise (Figs. 5-7).
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Fig. (2): A map showing error response in depth
parameter estimates for synthetic data (q = 0.5, z=3
km, K =200 mGal). Abscissa: percent error in T.
Ordinate: percent error in g(0). C.1. = 1%.
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Fig. (3): A map showing error response in shape
factor parameter estimates for synthetic data (q =
0.5, z=3 km, K = 200 mGal). Abscissa: percent error
in T. Ordinate: percent error in g(0). C.1. = 1%.
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Fig. (4): A map showing error response in amplitude
coefficient estimates for synthetic data (q = 0.5, z=3
km, K =200 mGal). Abscissa: percent error in T.
Ordinate: percent error in g(0). C.1. = 1%.
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Figures 2 and 4 show that the maximum error in
depth is about 13% when both T and g(0) have errors of
5% and -5%. The maximum error in shape factor is
about 11% when T and g(0) have 5% and -5% errors,
respectively (Figs. 3 and5). On the other hand, the
maximum error in amplitude coefficient (K) is about
190% when T and g(0) have 23% and-5% errors,
respectively (Figs. 5 and 7). Finally, when T or g(0) is
kept undisturbed, the percentage of error in model
parameters is slightly smaller or greater than the
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imposed error. This demonstrates that the proposed
method will give reliable model parameters solution
even when both T and g(0) are not correct and noisy.
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Fig. (5): A map showing error response in depth
parameter estimates for noisy synthetic data (q = 0.5,
z=3 km, K = 200 mGal). Abscissa: percent error in
T. Ordinate: percent error in g(0). C.1. = 1%.
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Fig. (6): A map showing error response in shape
factor parameter estimates for noisy synthetic data
(q=0.5, z=3 km, K = 200 mGal). Abscissa:
percent error in T. Ordinate: percent error
in g(0). C.I. = 1%.
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FIELD EXAMPLE

A residual gravity field anomaly taken from USA
has been interpreted using the proposed technique in
order to examine its applicability and stability.

Humble salt dome:

The residual gravity anomaly profile over the
Humble salt dome, Texas, USA (Nettleton, 1976) was
digitized at an interval of 0.427 km (Fig. 8).
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Fig. (8): The residual gravity anomaly (dashes lines)
over the Humble salt dome, Texas, USA and the
estimated response(black circles) computed from the
present inversion method.
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Table (2): Numerical results of the field example.

N M z K K
(km) (km) (km) q (mGal) | (mGal)
0.43 0.85 0.13 0.11 -8.45 2.804
0.43 1.28 0.53 0.20 -10.61 2.173
0.43 1.71 1.41 0.36 -17.42 1.337
0.43 2.14 4.02 1.07 -267.23 21.596
0.43 2.56 481 1.37 -206.93 0.028
0.43 2.99 4.88 1.39 -230.65 0.018
0.43 3.42 4.90 1.40 -239.32 0.015
0.43 3.84 4.92 1.41 -243.93 0.014
0.43 4.27 4.93 1.41 -247.52 0.012
0.85 1.28 1.58 0.40 -12.38 3.022
0.85 1.71 3.60 0.93 -146.68 0.319
0.85 2.14 4.76 1.35 -909.33 27.216
0.85 2.56 4.87 1.39 -227.87 0.019
0.85 2.99 491 1.40 -239.37 0.014
0.85 3.42 4.92 1.41 -244.03 0.013
0.85 3.84 4.92 1.41 -246.90 0.013
0.85 4.27 4.93 1.41 -248.81 0.012
1.28 1.71 4.74 1.34 -184.10 0.041
1.28 2.14 4.88 1.39 -228.03 0.018
1.28 2.56 491 1.40 -239.66 0.014
1.28 2.99 4.92 1.41 -244.74 0.013
1.28 3.42 4.93 1.41 -247.71 0.012
1.28 3.84 4.93 1.41 -249.59 0.012
1.28 4.27 4.94 1.41 -251.37 0.011
1.71 2.14 491 1.40 -239.82 0.015
1.71 2.56 4.92 1.41 -245.28 0.013
1.71 2.99 4.93 1.41 -248.34 0.012
1.71 3.42 4.93 1.41 -250.22 0.012
1.71 3.84 4.94 1.42 -251.95 0.011
1.71 4.27 4.94 1.42 -252.85 0.010
2.14 2.56 4.93 1.41 -249.40 0.011
2.14 2.99 4.94 1.41 -251.39 0.011
2.14 3.42 4.94 1.42 -252.02 0.011
2.14 3.84 4.94 1.42 -252.95 0.011
2.14 4.27 4.94 1.42 -253.37 0.011
2.56 2.99 4.94 1.42 -252.60 0.010
2.56 3.42 4.94 1.42 -253.61 0.010
2.56 3.84 4.94 1.42 -254.08 0.010
2.56 4.27 4.94 1.42 -254.22 0.010
2.99 3.42 4.94 1.42 -254.40 0.009
2.99 3.84 4.94 1.42 -254.62 0.010
2.99 4.27 4.95 1.42 -255.40 0.008
3.42 3.84 4.94 1.42 -254.79 0.010
3.42 4.27 4.95 1.42 -255.47 0.009
3.84 4.27 4.95 1.42 -255.34 0.010
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Equations (8), (5) and (2) were used to determine the
depth, the shape factor and the amplitude coefficient
parameters, respectively, using all possible combination
of N- and M-values. Then we computed the standard
error (u) between the observed values and the values
computed from estimated parameters z, q and K for
each N and M value. The results are shown in Table 2
for the cases of N and M values where the p difference
between the modeled and observed data is 0.008mGal.

The results are summarized in Table 2. Table 2
shows the optimum set is given at N = 2.99km and M =
4.27km. The best-fit-model parameters are z = 4.95km,
g = 1.42 and K = -255.4 mGal (Fig. 8). The obtained
depth agrees very well with the results obtained from
drilling and seismic information (4.97 km; Nettleton,
1976).

CONCLUSION

The problem of estimating the appropriate depth,
shape factor and amplitude coefficient of a buried
structure from the residual gravity data of a short or a
long profile length can be solved using the present
algorithm. A simple and rapid inversion approach is
formulated to use the anomaly values at two pairs of
measured data points(xN and +M). The repetition of the
method using all possible combinations of such pairs of
measured points will lead to the best-fitting model. This
happens when these two pairs of points contain the least
amount of noise in the entire set of measured data. The
advantages of this method over previous graphical and
numerical techniques used to interpret gravity data are:
(1) all the three model parameters can be obtained from
all observed data, (2) the method is automatic, and (3)
the method is works well even when gravity data was
noisy.
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