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 متبقیة التثاقلیة ساب معاملات النموذج من الشاذة الح
 بطریقة التربیع الأدنى عكسىاللوغاریتم الباستخدام 

لتعیــین العمــق ومعامــل الشــكل ومعامــل الســعة للتركیــب الجیولــوجى   التربیــع الأدنــىطریقــة عكســیة جدیــدة باســتخدام طریقــة فــى هــذا البحــث نقــدم  :الخلاصـــة

مكـن تحویـل مشـكلة تعیـین العمـق الـى مشـكلة حـل معادلـة واحـدة غیـر أض النقط الممیزة على البروفیـل المدفون باستخدام الشاذات التثاقلیة المتبقیة. وبمعرفة بع
سـطوانة سـیة والأأسـطوانة الر الهندسـیة المنتظمـة مثـل الأ للأشـكالبمعرفة العمق، یمكن حساب معامل الشكل ومعامل السعة. هذه الطریقة تـم اسـتخدامها و خطیة 
مـن ى ثـال حقلـعلـى م یضـاً أو  كفاءتهـاخطـاء عشـوائیة لتوضـیح أخـرى لـیس بهـا أخطـاء عشـوائیة و أالطریقـة علـى بیانـات نظریـة بهـا  والكرة. وقد تم تطبیـق الأفقیة

 المحسوبة تتفق مع البیانات الحقیقیة. الأخرىن العمق والمعاملات أوجد  ،مریكیة. وفى كل الحالاتالولایات المتحدة الأ

ABSTRACT: A new inversion technique using a quick least-squares method is developed to estimate, successively, 
the depth, the shape factor and the amplitude coefficient of a buried structure using residual gravity anomalies. By 
defining the anomaly value at different points on the profile, the problem of depth estimation is transformed into a 
problem of solving a non-linear equation of the form z = f(z). Knowing the depth, the shape factor can be estimated and 
finally, the amplitude coefficient can be estimated. This technique is applicable for a class of geometrically simple 
anomalous bodies including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder and the sphere. 
The efficiency of this technique is demonstrated with gravity anomaly due to a theoretical model in each case with and 
without random errors. Finally, the applicability is illustrated using the residual gravity anomaly of Humble salt dome, 
Texas, USA. The interpreted depth and the other model parameters are in good agreement with the known actual 
values. 

INTRODUCTION
The problem in gravity exploration is the 

computation of the oretical anomalies caused by 
idealized models of known shapes. It is known that the 
gravity interpretation is non-unique where different 
subsurface causative targets may yield the same gravity 
anomaly. However, a priori information about the 
geometry of the causative target may lead to a unique 
solution (Roy et al. 2000; Aboud et al. 2004). 

Several methods have been used to interpret the 
residual gravity anomalies. Among these methods, the 
half-gmax rule (Nettleton, 1962; Telford et al., 1976), 
simple method (Essa, 2007), Fourier transformation 
(Sharma and Geldart, 1968), Euler deconvolution (Reid 
et al., 1990), Mellin transform (Babu et al,. 1991), 
Hilbert transform (Sundararajan et al. 1983), Hartley 
transform (Sundararajan and Rama Brahmam, 1998), 
least-squares minimization (Salem et al., 2003), and 
Walsh transform (Al-Garni, 2008). In the above-
mentioned methods, the geometry of causative target is 
assumed where the accuracy of the results depends on 
how close the assumed model from the real structure. 

Some recent approaches have been developed to 
estimate the shape factor of the causative targets of 
gravity anomaly. Among these approaches is Walsh 
transform (Shaw and Agarwal, 1990), analytic signal 
(Nandi et al., 1997), and non-linear least-squares 
minimization (Abdelrahman and Sharafeldin, 1995; 

Abdelrahman et al., 2001), and derivative of a 
numerical formula (Aboud et al., 2004). 

In this study, a quick least-squares inversion 
technique based on nonlinear equation z = f(z) to 
analyze gravity anomalies due to simple structures 
developed to estimate the model parameters (the depth, 
the shape factor and the amplitude coefficient).By 
defining the anomaly value at different points on the 
profile, the problem of depth estimation is transformed 
into a problem of solving a non-linear equation of the 
form z = f(z).The accuracy of the result obtained by this 
procedure depends upon the accuracy to which the 
residual anomaly can be separated from the Bouguer 
anomaly. The methodology is illustrated with 
theoretical models, in each case with and without 
random errors, and tested by the gravity anomaly of the 
Humble salt dome, Texas, USA. 

THE METHOD 
The general mathematical expression of the 

gravity anomaly (g) produced by simple geometric-
shaped bodies (a sphere, a horizontal cylinder and a 
semi-infinite vertical cylinder) at any point P along the 
x-axis of an arbitrary structure in a Cartesian coordinate 
system (Abdelrahman et al., 1989) is given by: 
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In equation (1), z is the depth, q is the shape 

factor, e.g., the shape factors for the semi-infinite 
vertical cylinder (3D),horizontal cylinder (2D), and 
sphere (3D) are 0.5, 1.0, and1.5, respectively. Also, the 
shape factor for the finite vertical cylinder is 
approximately 1 (Abdelrahman and El-Araby, 1993). 
The shape factor (q) approaches zero as the structure 
becomes a nearly horizontal bed, and approaches 1.5 as 
the structure becomes a perfect sphere (point mass).xi is 
the position coordinate, s is the density contrast, G is 
the universal gravitational constant, and R is the radius. 

At the origin (xi = 0), the equation (1) gives the 
following relationship: 

)2(.)0( 2 mqzgK −=  

Using equation (1), we obtain the following 
normalized equation at xi = ± N and xi =± M where N = 
1, 2, 3, … and M = 1, 2, 3,……  
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The equation (1) can be rewritten using equations 
(2) and (5) as follows 
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The unknown depth (z) in equation (6) can be 
obtained by minimizing  
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where L(xi) denotes the observed gravity anomaly 

at xi. 
Minimization of φ(z) in the least-squares sense, 

i.e., 0=∂
∂

z
)z(ϕ , leads to the following equation: 
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Equation (8) can be solved for z using the iterative 
fixed point method (Mustoe and Barry, 1998) and its 
iteration form can expressed as 

)10(,)( if zfz =  

where zf and zi are the final and the initial depths, 
the iterative process executed when ezz if ≤− , where 
e is a small predetermined real number close to zero. 
Any initial supposition for z works well because there is 
only one global minimum, i.e., no limitation or optimal 
range are required for the initial guess of the depth 
parameter. 

Once, the depth (z) is known, the shape factor (q) 
can be estimated from the equation (5). Finally, 
knowing the depth (z) and the shape factor (q), the 
amplitude coefficient (K) can be estimated from 
equation (2).  

For each N and M value, we compute the values 
of the model parameters (z, q and K) from equations (8), 
(5) and (2), respectively. Theoretically, the anomaly 
values at the origin and any two N and M distances are 
just enough to determine the model parameters. 
However, in practice, it is recommended to use all 
possible combinations of N and M values to determine 
the most appropriate source parameters solutions from 
all gravity data. We then measure the goodness of fit 
between the observed and computed gravity data for 
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each set of solutions. The simplest way to compare two 
gravity profiles is to compute the standard error (µ) 
between the observed values and the values computed 
from estimated values of z, q and A. The model 
parameters which give the least root-mean-sum-squares 
differences are the best. In this way, we can select the 
best-fit source parameters solutions from all gravity 
data. 

The standard error (µ) is used in this paper as 
statistical preference criteria in order to compare the 
observed and calculated values. This µ is given by the 
following mathematical relationship: 
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where g(xi) is the observed gravity values and 

gc(xi) is the calculated gravity values.  

SYNTHETIC EXAMPLES 
The newly introduced gravity inversion algorithm 

tested on several synthetic datasets of a semi-infinite 
vertical cylinder (3D), an infinitely long horizontal 
cylinder (2D), and a sphere (3D)causative body. In 
order to assess and analyze this algorithm better, we will 
examine in the following: 
The effect of random noise in the data: 

The residual gravity anomaly of a semi-infinite 
vertical cylinder model (K = 200 mGal, z = 2 km, q =  
 
 

0.5) was used. Equations (8), (5) and (2) were applied to 
there sidual anomaly profiles, yielding the model 
parameters; the depth, the shape factor and the 
amplitude coefficient, respectively, solutions for all 
possible N and M points. The computed model 
parameters for the model are summarized in Table1, 
respectively.  

Table 1 shows the standard error (µ) are equal 
zero for all model parameters (z, q, A) when using 
synthetic data without random noise for all combination 
of N and M. Otherwise, The standard error (µ) has 
different values when using synthetic data with  10% 
random noise which has been added to the synthetic 
data. The best fit model parameter (z = 1.81 km, q = 
0.47, A = 181.66 mGal) was taken at the lowest µ which 
is used as a criterion for estimating the best fit model 
parameters.  

Also, the gravity synthetic datasets of a horizontal 
cylinder (K = 800 mGal*km, q = 1.0, profile length = 
30 km, N = 5 km, M = 8 km) was generated and 
inverted for various depths of burial at the Earth’s 
subsurface. The obtained noise-free datasets have been 
inverted using equations (8), (5), and (2), and the 
suggested algorithm has recovered almost the true value 
of each gravity parameter (z, q, K) of the anomalous 
bodies. Each of the gravity datasets has been 
contaminated with 10%random noise, and then inverted. 
The maximum absolute errors in the inverted 
parameters (z, q, K; respectively) are found to be 
3.2%,1.3%, and 5.8%, respectively (figure 1).  

Table (1). Numerical results of the present method applied to the semi-infinite vertical cylinder  
synthetic example (q = 0.5,z = 2 km, K = 100 mGal, profile length = 20 km,  

sampling interval = 1 km) without and with 10% random noise. 

N 
(km) 

M 
(km) 

Using synthetic data Using data with 10% random errors 
z 

(km) 
q 
 

K 
(mGal) 

µ 
(mGal) 

z 
(km) 

q 
 

K 
(mGal) 

µ 
(mGal) 

1.00 2.00 2.00 0.50 200.00 0.00 0.13 0.14 59.47 14.04 

1.00 3.00 2.00 0.50 200.00 0.00 0.49 0.21 76.19 9.52 

1.00 4.00 2.00 0.50 200.00 0.00 0.86 0.28 94.48 6.24 

1.00 5.00 2.00 0.50 200.00 0.00 1.77 0.47 176.08 1.19 

2.00 3.00 2.00 0.50 200.00 0.00 1.49 0.41 142.89 2.27 

2.00 4.00 2.00 0.50 200.00 0.00 1.70 0.45 166.25 1.41 

2.00 5.00 2.00 0.50 200.00 0.00 2.56 0.64 346.19 2.74 

3.00 4.00 2.00 0.50 200.00 0.00 1.81 0.47 181.66 1.11 

3.00 5.00 2.00 0.50 200.00 0.00 2.71 0.68 401.66 3.21 

4.00 5.00 2.00 0.50 200.00 0.00 3.68 0.94 1198.43 5.71 
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Fig. (1): Error response in model parameters 

estimates when using synthetic with 10% random 
errors. Abscissa: model depth. Ordinate:  

% of error in model parameters. 
These results show that the suggested method is 

stable with respect to the noise added, and can recover 
the gravity model parameters with an acceptable 
accuracy when applied to noisy data. 
Effect of errors in T and g(0): 

In studying the error response of the present 
algorithm, synthetic example of a semi-infinite vertical 
cylinder model (q = 0.5, z = 3 km, K = 200mGal, N = 4 
km, M = 9 km, and profile length = 60 km) were 
considered in which errors of ±1%,±2%, …, ±5% were 
supposed in both T and g(0). Following the same 
interpretation method, values of the three model 
parameters (z, q, K) were computed and the percentage of 
errors in the model parameters were mapped in case using 
synthetic data without random noise (Figs. 2-4) and in case 
using synthetic data with random noise (Figs. 5-7). 
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Fig. (2): A map showing error response in depth 

parameter estimates for synthetic data (q = 0.5, z=3 
km, K = 200 mGal). Abscissa: percent error in T. 

Ordinate: percent error in g(0). C.I. = 1%. 
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Fig. (3): A map showing error response in shape 

factor parameter estimates for synthetic data (q = 
0.5, z=3 km, K = 200 mGal). Abscissa: percent error 

in T. Ordinate: percent error in g(0). C.I. = 1%. 
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Fig. (4): A map showing error response in amplitude 
coefficient estimates for synthetic data (q = 0.5, z=3 
km, K = 200 mGal). Abscissa: percent error in T. 

Ordinate: percent error in g(0). C.I. = 1%. 

Figures 2 and 4 show that the maximum error in 
depth is about 13% when both T and g(0) have errors of 
5% and -5%. The maximum error in shape factor is 
about 11% when T and g(0) have 5% and -5% errors, 
respectively (Figs. 3 and5). On the other hand, the 
maximum error in amplitude coefficient (K) is about 
190% when T and g(0) have 23% and-5% errors, 
respectively (Figs. 5 and 7). Finally, when T or g(0) is 
kept undisturbed, the percentage of error in model 
parameters is slightly smaller or greater than the 
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imposed error. This demonstrates that the proposed 
method will give reliable model parameters solution 
even when both T and g(0) are not correct and noisy. 
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Fig. (5): A map showing error response in depth 

parameter estimates for noisy synthetic data (q = 0.5, 
z=3 km, K = 200 mGal). Abscissa: percent error in 

T. Ordinate: percent error in g(0). C.I. = 1%. 
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Fig. (6): A map showing error response in shape 

factor parameter estimates for noisy synthetic data 
(q = 0.5, z=3 km, K = 200 mGal). Abscissa:  
percent error in T. Ordinate: percent error  

in g(0). C.I. = 1%. 
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Fig. (7): A map showing error response in amplitude 
coefficient estimates for noisy synthetic data (q = 0.5, 
z=3 km, K = 200 mGal). Abscissa: percent error in 

T. Ordinate: percent error in g(0). C.I. = 1%. 

FIELD EXAMPLE 
A residual gravity field anomaly taken from USA 

has been interpreted using the proposed technique in 
order to examine its applicability and stability. 
Humble salt dome: 

The residual gravity anomaly profile over the 
Humble salt dome, Texas, USA (Nettleton, 1976) was 
digitized at an interval of 0.427 km (Fig. 8).  
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Fig. (8): The residual gravity anomaly (dashes lines) 

over the Humble salt dome, Texas, USA and the 
estimated response(black circles) computed from the 

present inversion method. 

 
 



K.S. Essa et al. 14 

Table (2): Numerical results of the field example. 

N 
(km) 

M 
(km) 

z 
(km) q K 

(mGal) 
µ 

(mGal) 
0.43 0.85 0.13 0.11 -8.45 2.804 
0.43 1.28 0.53 0.20 -10.61 2.173 
0.43 1.71 1.41 0.36 -17.42 1.337 
0.43 2.14 4.02 1.07 -267.23 21.596 
0.43 2.56 4.81 1.37 -206.93 0.028 
0.43 2.99 4.88 1.39 -230.65 0.018 
0.43 3.42 4.90 1.40 -239.32 0.015 
0.43 3.84 4.92 1.41 -243.93 0.014 
0.43 4.27 4.93 1.41 -247.52 0.012 
0.85 1.28 1.58 0.40 -12.38 3.022 
0.85 1.71 3.60 0.93 -146.68 0.319 
0.85 2.14 4.76 1.35 -909.33 27.216 
0.85 2.56 4.87 1.39 -227.87 0.019 
0.85 2.99 4.91 1.40 -239.37 0.014 
0.85 3.42 4.92 1.41 -244.03 0.013 
0.85 3.84 4.92 1.41 -246.90 0.013 
0.85 4.27 4.93 1.41 -248.81 0.012 
1.28 1.71 4.74 1.34 -184.10 0.041 
1.28 2.14 4.88 1.39 -228.03 0.018 
1.28 2.56 4.91 1.40 -239.66 0.014 
1.28 2.99 4.92 1.41 -244.74 0.013 
1.28 3.42 4.93 1.41 -247.71 0.012 
1.28 3.84 4.93 1.41 -249.59 0.012 
1.28 4.27 4.94 1.41 -251.37 0.011 
1.71 2.14 4.91 1.40 -239.82 0.015 
1.71 2.56 4.92 1.41 -245.28 0.013 
1.71 2.99 4.93 1.41 -248.34 0.012 
1.71 3.42 4.93 1.41 -250.22 0.012 
1.71 3.84 4.94 1.42 -251.95 0.011 
1.71 4.27 4.94 1.42 -252.85 0.010 
2.14 2.56 4.93 1.41 -249.40 0.011 
2.14 2.99 4.94 1.41 -251.39 0.011 
2.14 3.42 4.94 1.42 -252.02 0.011 
2.14 3.84 4.94 1.42 -252.95 0.011 
2.14 4.27 4.94 1.42 -253.37 0.011 
2.56 2.99 4.94 1.42 -252.60 0.010 
2.56 3.42 4.94 1.42 -253.61 0.010 
2.56 3.84 4.94 1.42 -254.08 0.010 
2.56 4.27 4.94 1.42 -254.22 0.010 
2.99 3.42 4.94 1.42 -254.40 0.009 
2.99 3.84 4.94 1.42 -254.62 0.010 
2.99 4.27 4.95 1.42 -255.40 0.008 
3.42 3.84 4.94 1.42 -254.79 0.010 
3.42 4.27 4.95 1.42 -255.47 0.009 
3.84 4.27 4.95 1.42 -255.34 0.010 
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Equations (8), (5) and (2) were used to determine the 
depth, the shape factor and the amplitude coefficient 
parameters, respectively, using all possible combination 
of N- and M-values. Then we computed the standard 
error (µ) between the observed values and the values 
computed from estimated parameters z, q and K for 
each N and M value. The results are shown in Table 2 
for the cases of N and M values where the µ difference 
between the modeled and observed data is 0.008mGal. 

The results are summarized in Table 2. Table 2 
shows the optimum set is given at N = 2.99km and M = 
4.27km. The best-fit-model parameters are z = 4.95km, 
q = 1.42 and K = -255.4 mGal (Fig. 8). The obtained 
depth agrees very well with the results obtained from 
drilling and seismic information (4.97 km; Nettleton, 
1976).  

CONCLUSION 
The problem of estimating the appropriate depth, 

shape factor and amplitude coefficient of a buried 
structure from the residual gravity data of a short or a 
long profile length can be solved using the present 
algorithm. A simple and rapid inversion approach is 
formulated to use the anomaly values at two pairs of 
measured data points(±N and ±M). The repetition of the 
method using all possible combinations of such pairs of 
measured points will lead to the best-fitting model. This 
happens when these two pairs of points contain the least 
amount of noise in the entire set of measured data. The 
advantages of this method over previous graphical and 
numerical techniques used to interpret gravity data are: 
(1) all the three model parameters can be obtained from 
all observed data, (2) the method is automatic, and (3) 
the method is works well even when gravity data was 
noisy. 
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