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ABSTRACT: There are many approaches and concepts for the exploration and development of the hydrocarbon
reservoirs. In this study, the aim is predicting the gas volume which is a multiplication of the effective porosity with
hydrocarbon saturation. Predicting the gas volume away from the wells is a challenging task because of the non-
uniqueness in its relationship with the conventional seismic attributes. A conjunction of a set of seismic attributes
obtained from multi-linear regression technique with the non-linearity of artificial neural networks techniques can be
utilized to develop effective workflows to explore the reservoirs and evaluate hydrocarbon presence. Insufficient wells
in the studied area led us to develop lithology classification workflow to increase the reliability of predicting gas
volume probability cube over the studied area. Within the studied area, which covers around 660 square km, reservoirs
are mainly Pliocene slope channel system and consist of a succession of sandstones and mudstones organized into a
composite upward finning profile. The matching in the presence of gas volume in the sand classes comes up with a
possibility of prospect evaluation at each location inside the 3D seismic coverage. Results suggest that the application
of the proposed neural network method leads to reliable inferences and has a positive impact on the exploration or
development over the area of study.

INTRODUCTION

Hydrocarbon exploration of the deep-water
Tertiary basins in the studied area have three problems:
(1) reducing the risk of finding productive sands, (2)
delineating the boundaries of these gas-bearing
sandstone reservoirs and (3) well wrap-up the Pliocene
development plan before/and success the exploration of

properties. The applicability of the Gas Volume
predicted using this method is found to be quite
effective for further reservoir characterization and
production planning operations. We applied this
approach to the 3D seismic-amplitude data sets of the
offshore Nile Delta, Egypt. Results show that, the

the un-drilled Messinian system, which is more differ
than the Pliocene concept. Neural-network analysis can
perform an effective role to derive a non-linear
relationship between the seismic data and its various
seismic attributes with the target gas volume (Russell et
al, 2001). This method can circumvent the general
nonlinearity among the seismic-log relationships and,
do not require a deterministic model algorithm. Neural
networks are adaptive systems, which can map the input
seismic attributes directly into corresponding output log

probabilistic neural network estimation of reservoir
properties has proven to be effective in significantly
improving the accuracy and vertical resolution in the
interpretation of the reservoir (Carmen, 2015).

The studied area:

The West Delta Deep Marine (WDDM)
concession lies 50-100 km offshore in the deep water of
the present-day Nile Delta, covering 1850 km? of the
northwestern margin of the Nile cone, in water depths
ranging between 500 and 1500 m (Figure 1).
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Figure (1): (a) A map showing the location of West Delta Deep Marine concession,
modified from Google Earth, and (b) The studied area location map.

The study are attains around 660square km and
covers most of the WDDM’s important fields; from
West to East: Sequoia, Sapphire, Scarab, Saffron and
Serpent fields. In 2010, the U.S. Geological Survey
(USGS) estimated means of 1.8 billion barrels of
recoverable oil, 223 trillion cubic feet of recoverable
gas, and 6 billion barrels of natural gas liquids in the
Nile Delta basin (Kirschbaum, 2010).

The reservoir consists of a succession of
sandstones and mudstones organized into a composite
upward-finning profile. Sand bodies include e laterally
amalgamated channels, sinuous pattern, channels with
frontal splays and leveed channels, and are interpreted
to be the products of deep-water gravity-flow processes.
Above a major basal incision surface, the reservoir is
highly sand prone and made up of Ilaterally
amalgamated channels. The medial section of the
reservoir is more a gradational and exhibits laterally
isolated and sinuous channels. Within the upper part of
the reservoir, and channels are smaller, straighter and
built of individual channels, associated with frontal
splay elements and less common leveed channels. The

main channel system is buried by a prograding slope
succession, that includes lobate sand-sheet elements
(Nigel et al., 2009).

The major structures within the WDDM
concession are the northeast-southwest trending Rosetta
fault, the east northeast-west northwest trending Nile
Delta offshore anticline (NDOA) and the rotated fault
blocks to the Northeast (Abdel Aal et al., 2001). All
have been active at various periods during the Pliocene
and Pleistocene, but have not had a major impact on the
depositional geometries of the Upper Pliocene channels,
which can be traced in the map and seismic sections,
without significant thickening or change in the
sedimentation style across these features (Samuel et al.,
2003).

Lithology Characterization
Prediction:

and Gas Volume

Four exploratory wells are used from the channel-
fill sandstone reservoirs. All the wells are vertical and
have a full suite of wire line logs over the reservoir
interval. Figure (2) shows an example of the well logs
and reservoir stratigraphy at Scarab-2 well.
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Figure (2): Stratigraphy and representative well logs of El Wastani Formation
at the Scarab-2 well location.

The seismic amplitude data, which is used in this
study, consist of full offset stack with a recorded
duration of 6 second and sampled at 4 ms. No seismic
data conditioning required prior the workflow. Special
conditioning steps were applied to the well logs,
including reconciling sonic logs with check-shot data
and re-sampling well logs at the seismic scale.

Neural network (NN) is a mathematical algorithm,
which can be trained to solve a problem, which would
normally require human intervention (Haykin, 1999).
The main advantage of the NN, over most traditional
estimation methods, is their ability to determine a
nonlinear relationship between seismic properties and
well log properties. This can be done by generating
seismic attributes, that are physically related to the
reservoir properties and combining these attributes to
predict the petrophysical properties of the reservoir
(Hampson et al., 2001). The combination of the
attributes can be done using either multi-linear
regression or neural network analysis. Once we have
derived a relationship between the attributes and the
petrophysical parameters, these log properties can be
extrapolated through the seismic volume.

The procedure involves four main steps:

1. The first step involves well data conditioning to
make the well data consistent with the seismic data
and preserve the relationships between them and
prepare the target well logs to supervise the
learning of the neural network.

2. In the second step, we find the best set of attributes,
which will predict a given reservoir parameter,

using the technique of multi-linear regression. The
regression is applied between the training values at
the wells and the seismic attributes with the lowest
prediction error.

3. In the third step, the order and number of attributes
are found, using multi-linear regression, are input to
a neural network algorithm for further training.

4. In the fourth step, the cross-validation, in which we
remove wells from the training stage and then
“blindly” predict these wells in the validation stage.

In this study, as can be seen in Figure (3), this
procedure had been applied with two different
workflows; the first one consists of the seismic and well
logs to derive the gas volumes, and the second one is to
derive lithology cubes. The lithology log is a calculation
from volume of clay log (Vc) and water saturation log
(Sw), according to the petrophysical cut-offs Table).
Another calculated log is the gas log, which is
hydrocarbon saturation times of effective Porosity
(Amit, 2012).

In the linear mode, the transform consists of a series
of weights, which are derived by least-squares
minimization. In the non-linear mode, a neural network is
trained, using the selected attributes as inputs. As
illustrated before in Figure (3), the multi-attribute linear
regression is an essential step to find out the best set of
attributes, which can be used by the neural network or
otherwise, it can stand alone to produce the desired log
volume.
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Table (1): Lithology log cut-offs for the volume
of clay and water saturation.

Class no. | Class name Ve Sw
1 Gas Sand 0-35 0-70
2 Shaly sand 35-60 0-70
3 Water sand 0-60 60-100
4 Shale 70-100 0-100
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Figure (3): A flow diagram showing the first detailed
neural network workflow for the Gas volume and
lithology Cube.

To find the combinations of attributes, which are
useful for predicting the target log, we use a process
called step-wise regression (Russell, 2004): through
finding the single best attribute by trial and error and
calculating the prediction error then the best attribute is
the one with the lowest prediction error. The second
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step is finding the best pair of attributes, assuming that
the first member is a previously chosen attribute. The
best set of attributes for the multi-attribute analysis
consists of 4 attributes derived from the seismic trace
for gas volume log and 6 attributes for lithology log.
Some of these attributes were excluded, as they cause
incoherent errors and patches in the output volumes.
Figure (4) shows the Gas Volume log of Saffron-1 well
versus the seismic attributes. Note, an attribute such as
the instantaneous phase (zigzag curve, far right) may
cause serious errors due to its "nervous™ nature.

Another important parameter is the convolutional
operator, which is used to overcome the fact that, the
frequency content of the target log is typically much
larger than the frequency content of the seismic
attributes. So, simply the cross plot regression is
extended to include the neighboring samples. Each
target sample is predicted using a weighted average of a
group of samples on each attribute.

This process is equivalent to applying the method
to a series of shifted attributes (Hampson et al., 2001).
The minimum validation error occurs when a 5point
operator is used with 7 attributes. Any other
combination results a larger validation error. Figure (5)
shows the validation error plot for gas volume log for all
the wells. By using this plot, we can determine the best
number of attributes and the operator length for each
log. Table (2) shows the outcome of the step-wise
regression attained, using a 5-point convolution
operator. The numbers of the attributes and operator
lengths for each target log are calculated and ready to be
used by the neural network analysis. These attributes
can be used alone without the neural network to produce
the reservoir parameters volume.
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Figure (4): Gas volume log for Saffron-1 well versus examples of seismic attributes,
the red lines are showing the reservoir zone.
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Figure (5): Validation error plot for the different operator lengths. The minimum
Validation Error occurs when a 5 point operator (Cyan curve) is used with 7 attributes.

Table (2): Step-wise regression results. The minimum Validation Error occurs
with the seventh attribute (Filter 25/30-35/40).

I Final Attribute I Training Error I “alidation Error -
Aomplitude Envelope 0. 125832 0. 141597
Cuadrature Trace 0. 109750 0131915
Apparent Polarity 0102012 0. 125947
Integrated Absolute Amplitude 0.092307 0.1243855
Instantaneous Phase 0085238 0122187
Drerivative Instantansous Amplitude 0. 055351 0. 121530

e e
Filter SS/80-55/7T 0 0. 054051 O 121409
Cosine Instantanecus Phase 0.053073 0. 122543
Second Derivative Instantaneous Amplitude 0.092555 . 124155
Fiter 45/50-55450 0.082345 O 1ZTF12E5
Second Derivative o.091911 D AZ9T7TTZ2
Integrate 0.03 2550 0. 1285233
Drerivative 0.088348 O AZ92ZTT
Aomplitude Weighted Cosine Phase 0.022337 0.131045
Fiter 35/40-45450 0.087Z293 0133458
Fiter 15/20-25/30 0085017 0. 137040
Aoverage Freguency 0.034544 01389373
Drominant Freguesncy 0.083085 0141542
LAomplitude Weighted Phase 0.022757T 0. 147055
Instantaneous Freguency 0.081372 0. 154542
Rawe Seizmic 0. 050900 01857418
Filter o 104151 0. 1832585
Aomplitude Weighted Fregusnocy 0.0327 72 0. 19592300
Time 0091508 0223357
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Table (3): show the full results of the Neural Netwok for each target log.

Target Log Neural Network
correlation 0.939
training

MLEN error 0.055
(Predicting) correlation 0.338

validation
error 0.200

Gas volume log
correlation 0.951
training

PNN error 0.048
(Predicting) correlation 0.427

validation
error 0.143
MLEN training ) o 0.274

(Classification) fractional classification error
] validation 0.58
Lithology log
training 0.240
PPN . e .
(Classification) — fractional classification error
validation 0.471
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Figure (6): The application of the Probabilistic Neural Network. The classified lithology
logs (in blue) and the predicted ones (in red), using all the wells in the training.
The average fractional classification error for all the wells is 0.24.
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Figure (7): The validation of the Probabilistic Neural Network.The classified lithology

logs (in blue) and the classified ones (in red), using all the wells in the training.
The average fractional classification error for all wells is 0.47.
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Figure (8): The application of the Probabilistic Neural Network. The calculated
Gas volume log (in blue) and the predicted ones (in red), using all the wells in
the training. The normalized correlation coefficient for all the wells is 0.95.
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Figure (9): The validation of the Probabilistic Neural Network. The calculated Gas
volume log (in blue) and the predicted ones (in red), using all the wells in the training.
The normalized correlation coefficient for all the wells is 0.42.
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Figure (10): Inline of post-stack seismic cube through saffron-1 well.



LITHOLOGY CHARACTERIZATION...

View 2 Color Data: Nhicomputed_lithology 22-14nine 4271 Lithology
Inserted Color Data: Lithology =
Xine 3934 3942 3950 3958 3966 3974 3982 3990 3958 4006 4014 4022 4030 4038 4046 4054 4059 4067 4075 4083 4091 4099 4107 4115 4123 4131 4139 4147 4155 4163 ot
Wel fﬁun} M
| ! | I ] | | P [

[ 3
Time (ms) + m
Enine: 4271 Xine: 4080 Time {ms): 2851 Color Amp: 5

155010

TS8R0

Figure (11): Inline of classes of lithology cube through Saffron-1 well.
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Figure (12): Inline of gas volume cube through saffron-1 well.
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Figure 14: (a) The seismic xline 2630 and (b) the line on “gas lithology”.
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Figure (15): 2D map view for “gas lithology” and highlights the main WDDM fields.

The Multi-Layer Feed Forward Neural Network
(MLFFN) and the Probabilistic Neural Network (PNN)
were applied to the target logs with the best attribute set
and operation parameter, after many trials with different
parameters of the Neural Network. It’s noticed that, the
Probabilistic Neural Network (PNN) is better for both
target logs; gas volume log and lithology log. This is
because, the PNN contains a copy of all the target data
within its operator, and hence the prediction results are
always higher than the case with linear regression.
Mathematically, this is analogous to kriging, in which
the derived maps will always honor the input well
information; in which the real measure of performance
is the cross-validation. Table (3) shows the full results
of the MLFN and PNN for each target log. The PNN
approach gave a better result in classification lithology
log and predicting gas volume.

Figure (6) shows the application of the
probabilistic neural network. The classified lithology
logs (in blue) and the predicted ones (in red) use all the
wells in the training are noticed. The fractional
classification error for all the wells is 0.24. Figure (7)
shows the validation of the probabilistic neural network.
The fractional classification error for all the wells is
0.47. These fractional error is reasonable in comparison
to Russell’s study (2004),Where he also applied an
example to porosity classification over Blackfoot
oilfield in Alberta, Canada. By using three wells, the
maximum distance between the two wells is 3000
meters and the fractional classification error in training
is 0.185 and the validation error is 0465. Our example
applied to regional fields, where the maximum distance
between two wells is 24900 meters and the results are
near to what he had found.

The same work flow was applied to predict the gas
volume log; the only difference is that, we are using the
predicting algorithm instead of the classification. Figure
(8) shows the application of the probabilistic neural
network. Note that, the calculated gas volume log (in
blue) and the predicted ones (in red), using all the wells
in the training. The normalized correlation coefficient
for all the wells is 0.951. Figure (9) shows the validation
of the probabilistic neural network. Note that, the
calculated gas volume log (in blue) and the predicted
ones (in red), using all the wells in the training. The
normalized correlation coefficient for all the wells is
0.42.

Now we have two trained neural networks; the
first one is the probabilistic neural network
classification, which used to classify the output
lithology log; the second is the probabilistic neural
network predicting-based, which used to predict the gas
volume. The two trained neural networks are ready to be
applied to the whole seismic volume to produce a
lithology cube and gas volume cube. Figure (10)
showsan inline post-stack seismic cube through Saffron-
1 well. Figure (11) shows an inline of classes of
lithology cube through Saffron-1 well. Figure (12)
shows an inline of gas volume cube through Saffron-1
well.

As a direct application of the resulted volumes, we
combine them together to get what we can call “Gas-
Lithology” volume. The combination process includes
filling the gas volume’s values in the gas-sand class,
which comes from the lithology classification volume.
The best case for validation is testing the results, using a
“blind” section. In our case, the shallow Sequoia field
wasn’t included in the study. Sapphier-1 well penetrated
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Sequoia field from 1438.5 to 1586.5 MD (from 1692.96
to 1851ms in the TWT),as shown in Figure (13.Note the
high values of resistivity log, which indicate gas sand.
Figure 1 (a) shows the x line 2630 on the seismic
volume, and (b) the same x line on the “Gas-Lithology”
volume. Figure (15) shows a 2D map for the “Gas-
Lithology” volume at EI-Wastani level. It high lights the
main WDDM fields.

CONCLUSION

The main aim of the paper is the lithology
characterization and Gas Volume Prediction by
characterizing the Pliocene gas sandstone reservoir.
We’ve found that, the best way to do that is using the
artificial neural network analysis with two different
workflows. The two workflows aim to predicting the
gas volume probability cube and the lithology
identification. Significant results come out of this
research article after its three main phases of the work:
data gathering, multi-layer feed forward neural network
and probabilistic neural network analysis.

The analysis of all the results helped us to study
the chance of success for many prospects. Another goal
of this research paper is achieved through exploring new
prospects and maturing the previous prospects. The
blind field validation give us a good confidence of the
results of this study. Two different neural networks
were tested, along with the results of the multi-attribute
transform. The results suggest that, the PNN is the best
one to use.

Further investigation about the validity of the
neural-network method is needed. The most limiting
factor of the PNN method is the need for, at least, three
wells for the training stage. The more well data
available, the more reliable and accurate the neural-
network results. Results suggest that the application of
the proposed neural network method leads to reliable
inferences and has a positive impact on the exploration
and development over the area of study.
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