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ABSTRACT: The shallow refraction seismic technique is broadly used to determine the elastic moduli and true
depths of the underlying layers by calculating the true velocities of seismic waves travelling through these strata, which
are critical to engineering investigations. At dipping interfaces, computing the true seismic velocity is so difficult until
the harmonic mean velocity approximation of the apparent velocities is used to figure out the true velocity. However,

the harmonic approximation fails to determine the true velocity of the dipping interfaces when the dipping angles of the
interfaces are equal or greater than the critical angles.

This study presents a new generalized algorithm to compute the harmonic mean velocity of any dipping interface using
a new formula aiming at providing us with a good estimation for the true velocity of these inclined interfaces. This does
not only maintain the error percentage between the calculated harmonic mean velocity and the true velocity, but it also
succeeds in determining the harmonic mean velocity even when the dipping angles of the dipping interfaces are equal
or greater than the critical angles. The trials experienced on the provided synthetic and real seismic data, representing
most realistic earth models, establish that the harmonic velocities estimated using the generalized algorithm to fit the
actual model velocities with a fair measure of error percentage, can be remained below 0.7% within synthetic data and
1.5% within real case studies.

INTRODUCTION

Seismic refraction theory is a cornerstone in
shallow geophysical investigations. As a consequence,
its basics and limitations have been intensively
discussed in many previous studies (e.g., Ewing, et. al.,
1939; Slotnick, 1959; Grant & West, 1965; Griffiths &
King, 1965; Musgrave, 1967; Dobrin, 1976; Telford,
1976; Parasnis, 1979; Mooney, 1981; and Sjdgren,
1984). Determination of the true velocity of inclined
layers occupies a major part of these studies. Many
authors proposed different ways to estimate the true
seismic velocity of the inclined layers. Most of these
studies suggest using of harmonic mean velocity, for the
second interface only (Redpath, 1973; Sjogren, 1984;
Parasnis, 1986), while some authors suggest using the
arithmetic average of the apparent velocities of the layer
(Telford, et. al., 1990).

Seisa (1991) introduced an approach to calculate
the harmonic mean velocity of the second layer by using

the double distance existed between the shot point and
the point at which the forward and reverse slopes of the
second layer are intersected, divided by the time
difference between the intercept time and the reciprocal
time of the second layer. Thereby, it is significantly
evident that Seisa (1991) used a special case to calculate
the harmonic velocity, by which the interpreter has to
measure the distance between two certain points (shot
point and intersection point). Thus, this simple approach
presented a limited choice (i.e. a case of one dipping
layer with one form), which is a special case in the
present study. Accordingly, the current investigation
introduces a generalized algorithm that can fit to several
cases, and provides determination of the true velocity,
not only for the first inclined refractor, but also for the
other underlyingones centering on different distance-
time ratios.
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Figure (1): Traveltime graph of a dipping layer: A) calculation of the harmonic velocity
when the intersection point lies inside the used distance (AX), B) the intersection to
the right of the measurements, and C) the intersection to the left.

Methodology:

a) Computing the harmonic velocity using
distance-time difference ratio for the dipping
interfaces:

Consider two segments of a travel time graph of a
reversed refraction spread that represents the up and
down-dip of the apparent velocities of a dipping
interface of any layer (n) beneath the ground surface, as
shown in equation (1).

In all different cases (A, B, and C) illustrated in
Figure 1:

2 — 17 _ -'::'Ir:—‘-q: +itpa—tr.
tand. = +/, = .
L @
tang, = 1:.-1‘ — ~.re-_. e
. @)
Where:
!

un: Up-dip apparent velocity of the interface (n),

Vin: Down-dip apparent velocity of the interface (n),

r1: Arrival time at point (x,) of the forward shot of the
interface (n),

ta1: Arrival time at point (x;) of the reverse shot of the
interface (n),

L£2: Arrival time at point (x;) of the forward shot of the
interface (n), and

Ea2: Arrival time at point (x;) of the reverse shot of the
interface (n),

By summation of equations (1) and (2), then:

g =T (tpa—tp )+ (tpa—tg At




CALCULATING THE TRUE SEISMIC VELOCITY ... 167

Since the harmonic velocity (Vi Jof the interface
(n)is: “én*"un Then:
I';.__“I = :;,l
“ @

Equation (4) can be applied for any dipping

interface("™) to calculate the harmonic velocity (V)

=54

by computing the distance-time difference ratio (=),
for any two successive points along the travel time
curve divided by the time difference. This ratio enables
the interpreter to choose any point on the travel time
curve; especially at geophone's locations, to exclude any
error could come from the distance interpolation
between geophone locations.

b) Relation between the true and harmonic velocity
of dipping interfaces:

Depending on the well-known equations initially
inferred by Ewing et al., (1939), that later modified by
Adachi (1945), and considering Figure (2), the

reciprocal of the apparent velocity ("-:'r'-) of the dipping

sin(B.q

interface (n) at the down-dip is: ' Yén ... (5),
Adachi (1954),

While the reciprocal of the apparent velocity (*'==)
of the inclined layer (n) at up-dip is:

sin(@.p) _

rr

1 TEm L (6), Adachi (1954),
where:

@, and B, The incident angles in the dipping

interface numbered (i) of down-dip and up-dip
respectively, that totally make the ray-path refracted at
the dipping interface number (%), i.e. if = 1 &"=4,
then*14 is the incident angle in the layer number (l)
that totally makes the ray-path refracted at the dipping
interface number (4);

Vi Velocity of the first layer;

Equations (5) and(6) can be modified, when the

ground surface is inclined by the dip angle (““1 %) into:

sinifB.q) — 1

ieesws Thn i (7)
gsin(a.q) 1

Geosw,  Van L (8)

In the following, equations (7 & 8) can be used to
derive the relation between the harmonic velocity and
the true velocity.

1. Relation between the true and harmonic velocity
of the second interface:

Using the symbols in Figure (2) and equations
(7&8), the harmonic velocity of the second layer

= )
(where: ™ = “)can be calculated, as follows:

Since the down-dip slope (l”’L &z) of the inclined
layer number (2) is:

1 sin(f;3)
Vds Vycosw, )
Where:

sin(Byz) = sin(By; + (w; + wy))

Moreover, the up-dip slope (l;'l.“.:) of the same
layer is:

1 sin{ayz)
Uz V; coswy (10)
where:

I:L"J: Ty _:' J .

Summation of equations (9 &10) leads to:

sin(ay,;) = sin(Ay, -

sin{loas #lawet we) +min{less ={wet wa)

de ¥la Vo COF G
= )

where: 412 = Bya = lcyy = critical angle.

By simplifying the equatin, then the harmonic

velocity (I fz) of the second inclined layer equals:

where: v is the true velocity of the second layer.

2. Relation between the true and harmonic velocity
of the third layer:

Using equations (7& 8), the harmonic velocity of
the third layer can be calculated as follows:

Since the down-dip slope of the third inclined

layer (I'I‘J‘E) is:
o siniBy
Vag V.cosw, e (12),
where:
sin(fy3) = sin(Byz + (wy + wy))

Also, since the up-dip slope of the third inclined
1

layer ("-'-~E ) is:
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Figure (2): Travel time graph of four segments and their related layered model.

sin{ayy)

Ve W

T T 13)

where:

sin(ay;) = sin(Ay; = (w; + @)

By the summation of equations 12 and 13:

sin{d,; —(wo+ w,))+sin(B; +{ewtw,))

V., cosw,

Vag+Vug _

'L:rﬂ,al.'rua
(sin(A4, 5 )+sin(B, 5 Nixcos(aw, + w4 )]+
“[(cos(Ay 5 )—cos(By g N=sin(w, + w4 )]

Vycosiwy
.where, the term

[(cos(Ay3) — cos (By3)) * sin (w, +
can be simplified into:

[(Sin(flﬁj +sin(By; ) * tan (@J]
Aug— Bug . )
g = — =t B '
, and while " ( 2 ) an(w; = w;) then:

Va, +Vi,
Va Vuy

w,)]

.
Hg

[sin{d,; ) + sin(By; 1] » +

. - [tan (w. + coy) =
coslew, + o) - - -

[sin(4,z ) +sin(8,2 )] -‘

sinles. + )]

Vi cos w,

cos(ws + wy) +
[sin(A,; ) +sin(By; )] |[tan(w, + @,) *
sin(w; + @,)]

V cos wy

[sin{4,, )+sin(B,, ]]

V. cosw, = coslwa+ aw, )

T ()
where:

'

¥
sin(By;) = 1_:‘ * sin(leyg + (w3 — @,))

sin(A,;3) = _. * sin(lc,y — (wy — r,u:))'

After the substitution of the values of

sin(B,3) and sin(4,3) j, equation (14):
The harmonic velocity ([ fz) can be:

Vi

’ ’
Vocosw,y=cos (w4 twy)

i cos(aig— ao)

where: (V2) is the velocity of the third layer.

3. Relation between the true and harmonic velocity
of the fourth layer:

Using equations (7& 8), the harmonic velocity of
the third layer can be calculated as follows:

The down-dip slope of the fourth inclined layer
1

dsyis:
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1 sin(fy,)

Ina.'

Vicoswy ... (16)

where:
sin(B,,) = sin(By, + (w, + w,))

While, the up-dip slope of the fourth inclined layer
1

number (" ®4) is:

: sinia,,

Yu, T, cosw,

e (17)
where:
sin(ay,) =sin(4,. — (w, + @,))

By the summation of equations (16 & 17):
1 1

Va, Y

Ej]".l:_.E'i' -+ If.r_-_,: -+ Luij;' -+ S'i.]'l[_;li‘ - El’.u: =+ l’.'_p-_l_]]

V cos ey
Then:
[[(sin(By, ) + sin{d,, )] = coslay + o)) +
Ve, #10, __ [fcos(B,, ) — cos (4, 1 simlaa; + wy ]
Ve, W, - W cos ey
ginlB, MHeinld.,
WV, core, s comu,+ w,
Since:
sin(By,) = > *sin(By, + (w; — @;))
sin(4,,) = 2 #sin(4,, —(w; — w,))
z Th
en:
_— SIN( By + (g = wall]+
My " ) _ _ J— 4
_‘...'_:" - i 5iN(A-g A LJ:I_I] coswa- Wy
v, V, cos ey = cof{wa+ wy)

[(sin(B2;) + sin (424))

" Vacos wy * cos(w, + wy) * cos(lwy — w,)
By the simplification and substitution of the

values of SinlAs.) andsin(B;.), 45 the previous
steps, then:

33 — (wy — wy))

sin (4,.) = I— « sin(lc

JE

sin (B,.) =

¥ Sin{:ff-_:__ T [:Ll_r__ - LUS))

(17
Also, the harmonic velocity * s jllof the fourth
layer will be:

v Vi s cofays coslwnt wylwoos{wy— wy
e cosl oyt wg)

... (18)

l

where: "+ is the true velocity of the fourth layer.

4. The general form:

Using the equations (11), (15), and (18), a general
equation can be derived to determine the relation

between the harmonic velocity (T' “n)and the true
velocity of the layer (n)is:

r n—2 i )
Vrn*Ili=g cos(@i+y — w;)

Vkﬁ: coslwn— wp_yq)
where:

(V2 ) is the true velocity of the layer (n), when
(£=0) then the value of "“’©/equals Zero.
c) Relation betweenthe true veIocity(I'T-:) of any

dippinginterface (n)and the harmonic velocity

(r-':.". :'computed using the distance-time

difference ratio:
From equations (4) and (19), the harmonic

velocity (I'-'*. n) of the layer “n” is:

r

20X Vo =I5y coslw; 31 — w)

at COS\y, — Wy_q)

Therefore, the true velocity (V,) of the layer(n)

s _ 24X COS iy = Wy —1q.
Vip = - —

ar  [IToq coslwiey — wy) ...(20)

Equation (20) clarifies the general relation
between the true velocity and the harmonic velocity of
any layer, which can be used to compute the true
velocity using the distance-time difference ratio.

Synthetic data and case studies

Five synthetic models and two case studies of
different locations had been used to validate the new
formula. All the synthetic models are produced using
IXRefraX program (Interpex, 2010). The first three
models, figures (3, 4, & 5) show that, using the
proposed distance-time difference ratio construction to

obtain the harmonic velocity (I hr) values are more
successful than using the statistical harmonic mean of

the apparent velocities ('[ hs), that fail to obtain the
harmonic velocity at dipping interfaces, that have dip
amounts equal to or greater than the critical angle, i.e.
model 2 and model 3. Also, it is remarkably noticeable
that the error percentage between the harmonic velocity
and the true velocity is less than 0.7% (table 1).

The second two synthetic models, figures (6 &7)
are representing the most realistic earth models that
have low to moderate dip amounts. These two models

illustrate harmonic velocity ('[ #r) values close to those
velocity values with error percent 0.5% (Table 1). While
the new algorithm enables us to determine the harmonic
velocity of all interfaces, the traditional method
computed only for the fourth model.
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Table (1): Results of the synthetic and real case sties showing the differences
between deferent type of velocity and error percentage.

=
=
g

Blevation (m

Rlevation (mf

Harmonic Velocity Harmonic Velocity
True Velocity v 28X V.. — 2V, Vo, Dipping amount
hy = Tap hs —de TV,
error % error %

Madel -1

W2 2000 1986.75 0.66 1959 89 0.01 10
Maodel -2

ve 2000 1999.82 0.01 error 14.5
Model -3

w2 2000 2000.5 0.01 error 23.5
Model -4

w2 1500 1503.06 0.15 1493.72 0.42 3.4

w3 2500 2510.06 0.4 2509.78 0.39 5.7

wid 3500 3515.01 0.43 351493 0.43 29
Maodel -5

w2 1000 1000.08 0.01 error 11.3

v3 2000 1999.4 0.03 error 16.7
Case - 1

w2 1665 1683 11 1660 0.3 18
Case -2

w2 1136 1152 1.4 1167 2.7 0.14

V3 3155 3187 1 3152 0.1 019

T 3 T T T T T T Vaas 2265 mys| 105

1836 my/s

24X
= 1503.06; v, 5 = 2510.06; V,,,, = 3515.01
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Figure (6): Synthetic travel time graph for four-layered model.
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Figure (9): Travel-time graph and the obtained geo-seismic model of WadiNogros case study.
The first case study is located at Asylum Lake, SUMMARY AND CONCLUSIONS
near Kalamazoo, MI, USA. This location is a

geophysical test site belonging to Western Michigan
University. These data were collected using 24 vertical
geophones with 3 m interval, and two end shots with3 m
offset. The investigated area consist of two layers: the
first represents dry glacial deposits and the second is a
saturated glacial deposits consists mainly of sands. As
shown in Figure (8), the harmonicvelocity (V) value
(1683 m/s) is close to the true velocity value (1665 m/s)
obtained by the used program with error percent of
1.1% (Table 1).

The second case study is locatedin Wadi Nugros
area, at the central Eastern Desert, Egypt. This data
were collected using 24 vertical geophones with 5 m
interval, and two end shots with 2.5 m offset. The
investigated area consists of three layers: the first one is
represents unconsolidated alluvial deposits and the
second layeris a saturated alluvial deposit consisting
mainly of sands, silt and gravels, while the third layer is
represents the basement rocks. As shown in Figure (9),
the harmonic velocities of layer 2 and 3 have values of
(1152; 3187 m/s)close to the true velocity values(1136;
3155 m/s) obtained by the program, with error percent
less than 1.5% (table 1).

This research presents new generalized algorithm
to calculate the harmonic velocity of the dipping
interfaces, using the distance-time difference ratio. The
previous approaches failed to compute it at certain
cases, when the dipping angles of the interfaces are
equal or greater than the critical angles, while the new
formula succeeded to calculate it in such and all cases
with a minor amount of error. The synthetic data show
that, the error percentage below 0.7% of the dipping
amounts could be greater than the critical angle of the
dipping interface. Real case studies also show error
percent less than 1.5%. In addition, the study also
presents a novel algorithm, that enables the interpreter
to calculate the true velocity of the dipping interfaces
depending on the calculated harmonic velocity of the
proposed generalized form, but within reasonable
expectations of precision, the harmonic mean is till
more than adequate. In other words, corrections for dip,
which are cosine functions, are rarely necessary for
common realistic earth models.
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