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Abstract In this paper we introduce the concepts of fuzzy TL-uniform spaces by means of cover-

ings, where T stands for any continuous triangular norm. We show that the structure of covering

TL-uniform spaces are isomorphic to fuzzy TL-uniform spaces as defined by Hashem and Morsi

(2006) [5]. In particular, we study the continuity of functions between covering TL-uniform spaces,

the I-topological space associated with a covering TL-uniform space. Also, we define the notions of

level covering uniformities for a covering TL-uniformity. Moreover, we deduce a number of func-

tors between categories of covering TL-uniform spaces, fuzzy TL-uniform spaces, covering uniform

spaces and uniform spaces.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In [5], Hashem and Morsi deduced the fuzzy TL-uniform
spaces, for each continuous triangular norm T. In this manu-
script, we introduce a new structure of covering TL-uniform

spaces that conforms well with fuzzy TL-uniform spaces and
with the I-topological spaces [7]. We deduce the notion of
C-uniformly maps and here we show that the class of all cov-

ering TL-uniform spaces together with C-uniformly maps as
arrows forms a concrete category. We study the level covering
uniformities for a covering TL-uniformity and conversely, we

show that every covering uniformity generates a covering
TL-uniformity. Also, we will make clear there are correlation
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and compatibility between the following structures: covering

TL-uniform spaces, fuzzy TL-uniform spaces, covering uni-
form spaces and uniform spaces.

We proceed as follows:

In Section 2, we present some basic definitions and ideas on
fuzzy sets, I-topological spaces, residuated implication and
fuzzy TL-uniform spaces.

In Section 3, we deduce some important definitions and re-
sults for the classes of fuzzy sets which will be used in the sequel.

In Section 4, we introduce the concepts of covering
TL-uniform spaces and the I-topology associated with a cover-

ing TL-uniformity, together with illustrative examples. We de-
fine and study the C-uniformly continuous functions between
covering TL-uniform spaces. Also, we show that there is an

isomorphism between category of covering TL-uniform spaces
and category of fuzzy TL-uniform spaces.

In Section 5, we introduce the notion of the a-levels for a cov-
ering TL-uniformity and we study the relationships between
them. Also, we define the functors between category of covering
TL-uniform spaces and category of covering uniform spaces.
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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2. Prerequisites

In this section, we will recall some definitions related to fuzzy
sets, residuated implication, fuzzy TL-uniform spaces and I-

topological spaces.
A triangular norm (cf. [12]) is a binary operation on the unit

interval I = [0,1] that is associative, symmetric, monotone in

each argument and has the neutral element 1.
For a continuous triangular norm T, the following binary

operation on I,

Ĵða; cÞ ¼ supfh 2 I : aTh 6 cg; a; c 2 I;

is called the residual implication of T[9].

Proposition 2.1. [11].For the residual implication Ĵ, we have

(i) Ĵð1; cÞ ¼ c, for every c 2 I;

(ii) Ĵ is antimonotone in the left argument and monotone in
the right argument.
A fuzzy set k in a universe set X, introduced by Zadeh in

[14], is a function k:X fi I. The collection of all fuzzy sets of
X is denoted by IX. The height of a fuzzy set k is the following
real number: hgtk = sup{k(x):x 2 X}.

If H is a subset of X, then we shall denote to its character-
istic function by the symbol 1H, said to be a crisp fuzzy subset
of X. We also denote the constant fuzzy set of X with value
a 2 I by a.

Given a fuzzy set k 2 IX and a real number a 2 I1 = [0,1[,
the strong a-cut of k is the following subset of X:
ka = {x 2 X:k(x) > a}.

For a given two fuzzy sets l, k 2 IX we denote by lTk the
following fuzzy set of X:

(lTk)(x) = l(x)Tk(x), x 2 X. The degree of containment of

l in k according to Ĵ defined as the real number in I [3], given by:

Ĵhl; ki ¼ inf
x2X
ðlðxÞ; kðxÞÞ ð1Þ

We follow Lowen’s definition of a fuzzy interior operator
on a set X [7]. This is an operator o:IX fi IX that satisfies

lo 6 l, (l § k)o = lo § ko for all l, k 2 IX and ao = a for
all a 2 I. We may define an I-topology in the usual way,
namely assuming a fuzzy set l to be open if and only if

lo = l. We denote this I-topology by s. The pair (X,s) is called
an I-topological space (cf.[2]).

A function f:(X, o) = (X,s) fi (Y, o0) = (Y,s0), between two
I-topological spaces, is said to be continuous, if f‹(l) 2 s,
for all l 2 s0, where (f‹(l))(x) = l(f(x)), for every x 2 X.

I-filters and I-filterbases were introduced by Lowen in [8]. An
I-filter in a universeX is a nonempty collectionI � IXwhich sat-

isfies: 0 R I;I is closed under finite meets and contains all the
fuzzy supersets of its individual members. An I-filterbase in X
is a nonempty collection ß � IX which satisfies: 0 R ß and the

meet of two members of ß contain a member of ß.

Definition 2.1. [10]. The T-saturation operator is the operator
�T which sends an I-filterbase ß in X to the following subset of
IX

��T ¼ l 2 IX :
_
c2I
ðcTlcÞ 6 l; where lc 2 � 8 c 2 I

( )
;

said to be the T-saturation of ß. An I-filterbase ß is called T-

saturated when ß�T = ß.
In [4], Höhle defines for every w,u 2 IX·X and k 2 IX:

The T-section of w over k by (wÆkæT)(x) = -
supz2X[k(z)Tw(z,x)], x 2 X.

The T-composition of w,u by (woTu)(x,y) = supz2X[u(x,z)
Tw(z,y)], x,y 2 X.

The symmetric of w by sw(x,y) = w(y, x), x, y 2 X.

Notice, it is easy to see that, for every w 2 IX·X and x,

y 2 X,

ðwh1yiTÞðxÞ ¼ wðy; xÞ: ð2Þ

The fuzzy TL-uniform spaces (TL-uniform spaces, for
short) were introduced by Hashem and Morsi, for more defini-

tions and properties, we can refer to [5].

Definition 2.2. [5].

(i) A TL-uniform base on a set X is a subset
t � IX·X which fulfills the following properties:
(TLUB1) t is an I-filterbase;

(TLUB2) For all w 2 t and x 2 X, we have
w(x,x) = 1;

(TLUB3) For all w 2 t and c 2 I1, there is wc 2 t
such that cTwc 6 sw;

(TLUB4) For all w 2 t and c 2 I1, there is wc 2 t
such that c T(wc oTwc) 6 w.
(ii) A TL-uniformity on X is a T-saturated TL-uni-
form base on X.

(iii) If X is a TL-uniformity on X, then we shall say
that t is a basis for X if t is an I-filterbase and
t�T = X.It follows that for a TL-uniformity X
on a set X and all w 2 X, we find that sw 2 X.

The pair (X, X) consisting of a set X and a TL-
uniformity X on X is called TL-uniform space.

Definition 2.3. [5]. Let (X,X) and (Y,-) be TL-uniform spaces
and f: X fi Y be a function. We say that f is uniformly
continuous if for every u 2 - there is w 2 X such that
w 6 (f · f)‹(u). Equivalent for every u 2 -, (f · f)‹(u) 2 X.

We denote by TL-US the category of TL-uniform spaces
and as morphisms are uniformly continuous functions between

these spaces.

Proposition 2.2. [5].If (X, X) is a TL-uniform space, then the
fuzzy interior operator o of an I-topological space (X, s(X))

is given by:

koðxÞ ¼ sup
u2X

Ĵhuh1xiT; ki; k 2 IX; x 2 X:

Now, we give the following lemma, which is needed in the sequel.

Lemma 2.1. If t is a TL-uniform base on a set X and u 2 t, then
for every c 2 I1, there is w 2 t such that cTw 6 c
T(w ¤ sw) 6 u.
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Proof. Let u 2 t and c 2 I1. Then there is uc 2 t such that

cTuc 6 su: ð3Þ

Since t is an I-filterbase, then there is w 2 t such that

w 6 u § uc, that is w 6 u and sw 6 suc.
Consequently, by (3), we have cTsw 6 cTsuc = s(c

Tuc) 6 u.

This clearly, implies that

cTw 6 cTðw
_

swÞ ¼ ðcTwÞ
_
ðcTswÞ 6 ðcTuÞ

_
u ¼ u:

This winds up the proof. h
3. Definitions and general properties

In this section, we give some additional properties for the clas-
ses of fuzzy sets, which needed in the following sections. In or-
der to avoid complicated notations, we will write F(X) for the

family of all subsets of IX.

Definition 3.1. For the subsets R;I � IX, we say that:

(i) R is a fuzzy covering of X, if ð
W

l2RlÞ ¼ 1.The set of all

fuzzy covering of X will be denoted Fc(X).
(ii) R is coarser than I and write R� I, if for every k 2 R

there is m 2 I such that k 6 m.

Definition 3.2. If R � F(X), we define

½R� ¼ fR � IX : there is I 2 R with I� Rg;

R^ ¼ f
W
c2I
ðcTRcÞ : Rc 2 Rg;

where, cTR ¼ fðcTkÞ 2 IX : k 2 R}.

Also, the T-saturation R�T of R by: R�T = [R�].

A collection R is called T-saturated when R�T = R.

Lemma 3.1. For every R, £ � F(X), we have

(i) If R ˝ £, then [R] ˝ [£], R� ˝ £� and R�T ˝ £�T;

(ii) R ˝ [R] ˝ R�T;
(iii) [[R]] = [R];
(iv) [R]� ˝ [R�];
(v) (R�)� ˝ [R�];

(vi) (R�T)�T = R�T;
(vii) If R ˝ [£], then R�T ˝ £�T.

Proof. The assertions (i), (ii) and (iii) are immediately from
definitions.

(iv) Let R 2 ½R�^. Then there are two families

fIc : c 2 I1g � ½R� and fI0c : c 2 I1g � R; for which

R ¼
W

c2I1ðcTIcÞ and I0c � Ic.

Hence, the element I ¼
W

c2I1ðcTI0cÞ in R� satisfies I�W
c2I1ðcTIcÞ ¼ R, which implies that R 2 ½R^�, that is [R]� ˝

[R�].
(v) If R 2 ðR^Þ^, then R ¼
W

c2I1ðcTRc), where Rc 2 R^,
for all c 2 I1.

In turn, there is a family fRh
c : h 2 I1g � R such that

Rc ¼
W

h2I1 ðhTRh
c). So, R ¼

W
c2I1ðcTRcÞ ¼

W
c2I1 ½

W
h2I1

ðcThTRh
cÞ� ¼

W
a¼cThðaTRh

cÞ ¼
W

a2I1ðaTIaÞ, where Ia ¼W
a¼cTh2I1R

h
c and clearly Ia 2 ½R�.

Consequently, R 2 ½R�^, thus by (iv), we get R 2 ½R^],
which proves our assertion.

ðviÞ ðR�TÞ�T ¼ ½½R^�^�
# ½½ðR^Þ^��; by ðivÞ
¼ ½ðR^Þ^�; by ðiiiÞ
# ½½R^��; by ðvÞ
¼ ½R^�; by ðiiiÞ
¼ R�T

# ðR�TÞ�T; by ðiiÞ:

Thus the equality holds.

(vii) Suppose that R ˝ [£], hence by (iv) then (iii), we have

R�T ¼ ½R^�# ½½£�^�# ½½£^�� ¼ ½£^� ¼ £�T:

Which rendering the proof. h

Proposition 3.1

(i) If R 2 F c(X), I 2 F (X) and R� I, then I 2 F c(X).
(ii) If Rc 2 F c(X), for every c 2 I1, then soW

c2IðcTRcÞ 2 F c(X).

The proof follows immediately from definitions.

Definition 3.3

(i) Let k 2 I X ;R � IX , we define the star k�ðRÞ of k with

respect to R as k�ðRÞ 2 IX , by:

k�ðRÞ ¼ sup
m2R
½hgtðkTmÞTm�; that is ðk�ðRÞÞðxÞ

¼ sup
z2X;m2R

½kðzÞTmðzÞTmðxÞ�; 8 x 2 X:

(ii) The star R� of R � IX is defined by: R� ¼ fk�ðRÞ :
k 2 Rg.
Lemma 3.2. For every R;I � IX, we have the following:

(i) If R� I, then k�ðRÞ 6 k�ðIÞ, for all k 2 IX;

(ii) If R� I, then R� � I�;
(iii) If k, m 2 IX with k 6 m, then k�ðRÞ 6 m�ðRÞ;
(iv) ðcT RÞ� ¼ ðcT cT cÞTR�; 8c 2 I .
Proof.

(i) Let k 2 IX ;R� I and x 2 X. Then

ðk�ðRÞÞðxÞ ¼ sup
z2X;m2R

½kðzÞTmðzÞTmðxÞ�

6 sup
z2X;l2I

½kðzÞTlðzÞTlðxÞ�; by hypothesis

¼ ðk�ðIÞÞðxÞ:
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(ii) Follows from (i).

(iii) Obviously holds.
(iv) Can be proved as follows

ðcTRÞ� ¼ fm�ðcTRÞ : m2 cTRg
¼fðcTkÞ�ðcTRÞ : k2Rg
¼f sup

#2cTR

½hgt ðcTkT#ÞT#�g

¼ fsup
l2R
½hgt ððcTkÞTðcTlÞÞTðcTlÞ�g

¼ fsup
l2R
½ðcTcTcÞT hgt ðkTlÞTl�g; by continuity of T

¼ðcTcTcÞfsup
l2R
½hgt ðkTlÞTl�g

¼ ðcTcTcÞTR�:

Which completes the proof. h
Lemma 3.3. For every R � IX, the following are equivalent

statements:

(i) k 6 k�ðRÞ, for all k 2 IX;

(ii) hgt k= hgt k�ðRÞ, for all k 2 IX;
(iii) R 2 F c(X);
(iv) R� 2 F c(X).

Proof. (i)) (ii): Let R � IX and k 2 IX, with k 6 k�ðRÞ. Then

hgt k 6 hgt k�ðRÞ ¼ sup
x2X
ðk�ðRÞÞðxÞ

¼ sup
x2X
f sup
z2X;m2R

½kðzÞTmðzÞTmðxÞ�g

6 sup
z2X;m2R

½kðzÞTmðzÞ�; clear

6 sup
z2X

kðzÞ

¼ hgt k:

Which holds the equality.
(ii) ) (iii): If R R FcðXÞ, then there are xo 2 X and c 2 I1

such that (
W

m2Rm)(xo) < c < 1, and therefore

hgt½ð1xoÞ
�ðRÞ� ¼ sup

x2X
½ð1xoÞ

�ðRÞ�ðxÞ

¼ sup
x2X
f sup
z2X;m2R

½ð1xoÞðzÞTmðzÞTmðxÞ�g

¼ sup
x2X
fsup

m2R
½ð1xoÞðxoÞTmðxoÞTmðxÞ�g

¼ sup
x2X
fsup

m2R
½mðxoÞTmðxÞg

6 sup
m2R
½mðxoÞ�

< c < 1

¼ hgt ð1xoÞ:

Which contradiction with (ii).

(iii) ) (iv): Obviously hold from (i).

(iv) ) (i): Let R� 2 FcðXÞ, k 2 IX and x 2 X. Then there is

m 2 R such that (m�ðRÞÞðxÞ > c; 8 c 2 I1. Therefore,
sup
l2R
ðlðxÞÞP sup

z2X;l2R
½mðzÞTlðzÞTlðxÞ� ¼ ðm�ðRÞÞðxÞ > c:

By choosing l0 2 R for which l0(x) > c, we obtain

ðk�ðRÞÞðxÞ ¼ sup
z2X;m2R

½kðzÞTmðzÞTmðxÞ�

P kðxÞTl0ðxÞTl0ðxÞ
P kðxÞTcTc:

By the arbitrariness of c and x, we get k�ðRÞP k, which ren-

dering (i).
This completes the proof. h

In order to obtain simple expressions for some of the func-
tors we encounter, it will be convenient to reformulate some of
the foregoing definitions and properties.

Definition 3.4

(i) Let w 2 IX·X and define r(w) � IX by: r(w) =
(wÆ1xæT)x2X, where wÆ1xæT is the T-section of w over

1x.If t � IX·X, we define r(t) � IX by: r(t) =
{r(w):w 2 t} � F(X).

(ii) If R � IX , we define CðRÞ 2 IX�X by: (CðR))ðx; yÞ ¼
supm2R½mðxÞT mðyÞ�, x, y 2 X; and if R � F(X), we define
C(R) by: CðRÞ ¼ fCðRÞ : R 2 Rg � IX�X .
Lemma 3.4. For every R;I 2 Fc(X), we have the following:

(i) cTrðCðRÞÞ � R�; 8c 2 I1;
(ii) cTR� rðCðRÞÞ; 8c 2 I1;
(iii) If w 2 IX·X, then C(r(w)) = woTsw;
(iv) (CðR ))(x, x) = 1, " x 2 X;
(v) CðcT RÞ ¼ cT cTCðRÞ; 8 c 2 I1;
(vi) If R� I, then CðRÞ 6 CðI);
(vii) If w,u 2 IX·X, for which w 6 u, then r(w)� r(u).

Proof

(i) Let k 2 ½cT rðCðR))], where c 2 I1. Then there is xo 2 X
such that k ¼ ½cT CðRÞh1xoiT ]. Also by hypothesis, there

is lo 2 R for which lo(xo) = 1.Hence, for every y 2 X,
we have

kðyÞ¼ ½cTCðRÞh1xo iT�ðyÞ
¼ cTsup

z2X
½ð1xoÞðzÞTðCðRÞÞðz;yÞ�

¼ cTðCðRÞÞðxo;yÞ
¼ cTsup

m2R
½mðxoÞTmðyÞ�

6loðxoÞTsup
m2R
½mðxoÞTmðyÞ�

¼ sup
m2R
½loðxoÞTmðxoÞTmðyÞ�

6 sup
x2X;m2R

½loðxÞTmðxÞTmðyÞ�

¼ ðl�oðRÞÞðyÞ:

This shows the existence of an element l�oðRÞ of R� which
greater or equal to k.

(ii) As the same manner of (i).
(iii) Let w 2 IX·X. Then, for every (x,y) 2 X · X, we have
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ðCðrðwÞÞÞðx; yÞ ¼ sup
m2rðwÞ

½mðxÞTmðyÞ�

¼ sup
z2X
½wh1ziTðxÞTðwh1ziTÞðyÞ�; by definition

¼ sup
z2X
½wðz; xÞTwðz; yÞ�; by ð2Þ

¼ sup
z2X
½swðx; zÞTwðz; yÞ�

¼ ðwoTswÞðx; yÞ:

which proves the required equality.The proofs of other parts
are trivially hold. h
4. Covering TL-uniform spaces

In this section, the covering TL-uniform spaces are introduce

and some of their properties are given, together with illustra-
tive examples. Also, the C-uniformly continuous functions
are define. Moreover, an isomorphism between category of

TL-uniform spaces and category of TL-uniform spaces is
holds.

Definition 4.1

(i) A covering TL-uniform base on a set X is a
subset H � Fc(X) which fulfills the following
properties:
(CTLUB1) For all R;I 2 H, there is £ 2 H
such that £� R and £� I;

(CTLUB2) For all R 2 H and c 2 I1, there is
£ 2 H such that (cT £�Þ � R.
(ii) A covering TL-uniformity on a set X is a T-

saturated covering TL-uniform base on X.
(iii) If K is a covering TL-uniformity on X, then

we say that H � F cðX Þ is a basis for K if

H�T ¼ K.
(iv) A covering TL-uniform space is a couple

(X,K), where X is a set and K is a covering

TL-uniformity on X.

Definition 4.2. Let (X,K) and (Y,K0) be covering TL-uniform
spaces and f: X fi Y be a function. We say that f is C-uni-

formly continuous (C-uniformly maps) if for each R0 2 K0
there is R 2 K such that R # f ðR0Þ. Where

f ðR0Þ ¼ ff ðkÞ : k 2 R0g:

The composite of two C-uniformly continuous functions f:
(X,KÞ ! (Y,K0) and g: (Y,K0Þ ! (Y,K00) is again C-uniformly

continuous, since for every R00 2 K00, we have

ðf o gÞ ðR00Þ ¼ f ðg ðR00ÞÞ
� f ðR0Þ; for some R0 2 K0

� R; for some R 2 K:

Also, for a covering TL-uniform space (X,K), it is easy to see
that the identity map

IdX: (X,KÞ ! ðX;K) is C-uniformly continuous function.
Corollary 4.1. It is clear by above result that the class of all cov-

ering TL-uniform spaces together with C-uniformly maps as
arrows forms a concrete category.

We denote by CTL-US the category of covering
TL-uniform spaces and as morphisms are C-uniformly con-
tinuous functions between these spaces.

First, we show that there is an isomorphism between
category of TL-uniform spaces and category of covering

TL-uniform spaces. We make use of the constructions and
notations introduced above.

Theorem 4.1. If t is a TL-uniform base on a set X, then r(t) is a
covering TL-uniform base on X.

Proof. To prove (CTLUB1), let u,u0 2 t. Then by (TLUB1),
we can find w 2 t such that w 6 u § u0, it follows for every
x 2 X that,

wh1xiT 6 uh1xiT
^

u0h1xiT: So rðwÞ � rðuÞ and rðwÞ

� rðu0Þ:

(CTLUB2) Let u 2 t and c 2 I1. By continuity of T, we can get
h 2 I1 for which c = hThThThThTh. Then by applying

(TLUB4) twice, we can find / 2 t such that

ðhThThÞTð/oT / oT / oT /Þ 6 u; thus clearly

ðhThThÞTð/ oT / oT /Þ 6 u;
ð4Þ

Also, by Lemma 2.1, there is w 2 t such that (hT
w) 6 [hT(w ¤ sw)] 6 /.

Now, by putting w0 = (w ¤ sw) and consider an arbitrary
element

k = {cT [(wÆ1x æT)*(r(w))]} of c (T(r(w))*, we have for every
y 2 X,

kðyÞ ¼ fcT ½ðwh1xiTÞ
�ðrðwÞÞ�gðyÞ

¼ c Tsup
z;r2X
½ðwh1xiTÞðrÞT ðwh1ziTÞðrÞ ðTðwh1ziTÞðyÞ�

¼ cTsup
z;r2X
½wðx; rÞTwðz; rÞT wðz; yÞ�; by ð2Þ

¼ c T sup
z;r2X
½wðx; rÞTswðr; zÞTwðz; yÞ�

¼ c T ½w oT ðsw oT wÞ�ðx; yÞ
6 c T ðw0 oT w0 oTw

0Þðx; yÞ
¼ ðhThThTÞ½ðhT w0Þ oTðhT w0Þ oTðhT w0Þ�ðx; yÞ
6 ðhThThTÞ ð/ oT / oT /Þðx; yÞ
6 uðx; yÞ; by ð4Þ
¼ ðuh1xiTÞðyÞ; by ð2Þ again:

Which shows the existence of a member uÆ1xæT of r(u), which
greater or equal to k, therefore c(T (r (w))*� r(u).

Which proves (CTLUB2) and completes the proof. h

Theorem 4.2. If H is a covering TL-uniform base on a set X,
then CðHÞ is a TL-uniform base on X.

Proof. To prove (TLUB1), let R;I 2 H. Then by (CTLUB1),
there is £ 2 H such that £� R and £� I.
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Hence, from Lemma 3.4 (vi), it follows that C(£)
� CðRÞ

V
CðI).

(TLUB2) Follows immediately from the fact that every

R 2 H is a fuzzy covering of X.

(TLUB3) Obviously holds, because every CðR) is

symmetric.

(TLUB4) Let R 2 H and c 2 I1. Then by continuity of T,

we can get h 2 I1 for which c = (h Th). Thus by (CTLUB2), we
can find I 2 H such that (hTI�) � R, this meaning that, for
every k 2 I there is # 2 R such that

½hT k�ðIÞ� 6 #: ð5Þ

Now, for every x, y2X, we have

½cT ðCðIÞ oT CðIÞÞ�ðx;yÞ¼ c Tsup
z2X
½ðCðIÞðx;zÞT CðIÞÞðz;yÞ�g

¼ c T sup
z2X
f½sup

k2I
ðkðxÞ TkðzÞÞ�T ½sup

m2I
ðmðzÞ T mðyÞÞ�g

¼ c T sup
z2X
fsup

k;m2I
½kðxÞ T kðzÞT mðzÞ T mðyÞ�g

¼ c Tsup
k2I

kðxÞT sup
z2X;m2I

½kðzÞ T mðzÞ T mðyÞ�g

¼ ðh ThÞ Tsup
k2I
f½kðxÞT ðk�ðIÞÞðyÞ�g

6 ðh ThÞ Tsup
k2I
½ðk�ðIÞÞðxÞT ðk�ðIÞÞðyÞ�; by Lemma 3:3 ðiÞ

¼ sup
k2I
f½ðhT ðk�ðIÞÞðxÞ�T½ðhðT ðk�ðIÞÞðyÞ�g

6 sup
#2R
½#ðxÞT #ðyÞ�; by ð5Þ

¼ ðCðRÞÞðx;yÞ;

that is, cT½CðIÞ oTCðIÞ� 6 CðRÞ.
Which completes the proof that CðHÞ is a TL-uniform base

on X.

Proposition 4.1

(i) If H � F c(X) satisfies (CTLUB1) and H�T is a covering
TL-uniformity on X, then H is a covering TL-uniform

base (and a basis for H�T).
(ii) IfH � F c (X) and [H] is a covering TL-uniformity on X,

then H is a covering TL-uniform base (and a basis for
[H]).

Proof

(i) For the condition (CTLUB2), let R 2 H#H�T and
c 2 I1. Then by continuity of T, we can find h 2 I1 for
which c = (hThThTh) and by hypothesis, there is
I 2 H�T such that (hT I�)� R.Also, there is a family

fI� : � 2 I1g such that [
W
�2Ið�T I�Þ� � I.In particular,

it follows that (hTIhÞ � I, so (hT IhÞ� � I�. Hence
ðcTI�hÞ ¼ ½ðhThThThÞTI�h�
¼ ½hTðhTI�hÞ�; by Lemma 3:2 ðivÞ
� ðhT I�Þ
� R:
(ii) Let R;I 2 H# [H]. Then there is £ 2 ½H� satisfies
£� R and £� I.Consequently there is £0 2 H for

which £0 � £.Thus H satisfies (CTLUB1).Now, by
hypothesis and Lemma 3.1, we have
½H�¼ ½H��T¼ ½½H�^�# ½½H^�� ¼ ½H^�¼H�T # ½H��T¼ ½H�:

It follows that H�T ¼ ½H� is a covering TL-uniformity and
then we can apply (i) to reach our assertion.
Proposition 4.2. If H is a covering TL-uniform base on a set X
and ! � Fc(X) satisfies ! � ½H� and H � ½!�, then ! is also a
covering TL-uniform base on X.

Proof. Let R;I 2 !, since ! � ½H�. Then there exist

R0;I0 2 H such that R0 � R and I0 � I.

Since H is a covering TL-uniform base, then there is .0 2 H
such that

.0 � R0 and .0 � I0.

We can in turn, since H � ½!�, then there is . 2 ! such that

. .0.

Hence .� R and .� I,

which proves that ! satisfies (CTLUB1).

(CTLUB2) Follows from Proposition 4.1 (i), since by
Lemma 3.1 (vii), !�T ¼ H�T and by hypothesis we have, H�T
is a covering TL-uniformity on X. h

Proposition 4.3. If H is a covering TL-uniform base on a set X,
then rðCðHÞÞ is a basis for H�T, that is (rðCðHÞÞÞ�T ¼ H�T.

Proof. That rðCðHÞÞ) is a covering TL-uniform base, follows
from Theorems 4.1 and 4.2.

Now, from Lemma 3.4 (ii), it follows that
(cTRÞ � rðCðRÞÞ, for every R 2 H; c 2 I1, so that

rðCðRÞÞ 2 H�T, hence rðCðHÞÞ#H�T and thus, by Lemma
3.1 (i), (vi), we get (rðCðHÞÞÞ�T #H�T.

On the other hand, for every R 2 H and c = (h Th) 2 I1, we
get an element Rc 2 H such that [h TðRcÞ�� � R.

By Lemma 2.4 (i), it follows that, [hTrðCðRcÞÞ� � R�c .

Consequently,
[cTrðCðRcÞÞ� ¼ fhT½hTrðCðRcÞÞ�g � ½hTðRcÞ�� � R,

this implies that f
W

c2I1 ½cTrðCðRcÞÞ�g � R, thus
R 2 ðrðCðHÞÞÞ�T.

Hence H# ðrðCðHÞÞÞ�T. Which proves our assertion.

Proposition 4.4. If tis a TL-uniform base on a set X, then C
(r(t)) is a basis for t�T, that is (C(r(t)))�T = t�T.

Proof. We already know from Theorems 4.1 and 4.2, that

C(r(t)) is a TL-uniform base.

Let u 2 t and c 2 I1, by continuity of T, we can get h 2 I1
for which c = (hThTh). Then there is uh 2 t such that

½hTðuh oT uhÞ� 6 u: ð6Þ

By Lemma 2.1, there is wc 2 t with ðhTwcÞ 6 ½hTðwcW
swcÞ� 6 uh.

It follows that
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cTCðrðwcÞÞ ¼ cTðwc oTswcÞ; by Lemma 3:4 ðiiiÞ
¼ ðhThThÞTðwc oTswcÞ
6 ðhThThÞT½ðwc

_
swcÞ oT ðwc

_
swcÞ�

¼ hT½hTðwc

_
swcÞ� oT½hTðwc

_
swcÞ�g

¼ hTðuh oT uhÞ
6 u; by ð6Þ

Consequently,
W

c2I1 ½cTCðrðwcÞÞ� 6 u, so t � (C(r(t)))�T.
Hence, by Lemma 3.1, t�T � (C(r(t)))�T.

On the other hand, for every u 2 t, we have from Lemma
3.4 (iii), that

CðrðuÞÞ ¼ ðu oTsuÞP u:

Therefore, C(r(u)) 2 [t],. hence by Lemma 3.1 (vii), we have
(C(r(t)))�T � t�T.

This winds up the proof.

Lemma 4.1. If t � IX·X and H � Fc(X), then
r(t�T) = (r(t))�T and (CðHÞÞ�T # CðH�T). Moreover, if H
is a T-saturated, then CðH�TÞ ¼ ðCðHÞÞ�T.

Proof. First, we show that r(t�T) = (r(t))�T, as follows. Let
l 2 IX, we have

l 2 rðt�TÞ
iff 9 w 2 t�T such that l ¼ rðwÞ
iff 9 wc 2 t such that w P

W
c2I1
ðcT wcÞ; l ¼ rðwÞ

iff 9 wc 2 t; xo 2 X such that w P
W

c2I1
ðcTwcÞ; l ¼ wh1xoiT

iff 9 wc 2 t; xo 2 X such that l P ½
W

c2I1
ðcTwcÞ�h1xoiT

iff 9 wc 2 t; xo 2 X such that l P
W

c2I1
½cTwch1xoiT�

iff 9 wc 2 t; xo 2 X and kc ¼ wch1xo iT such thatl P
W

c2I1
ðcTkcÞ

iff 9 wc 2 t and kc ¼ rðwcÞ such that l P
W

c2I1
ðcT kcÞ

iff 9 kc 2 rðtÞ such that l P
W

c2I1
ðcT kcÞ

iff l 2 rðtÞÞ�T:

Second, as the same steps of the first part and using Lemma 3.4
(v), we can show that (CðHÞÞ�T # CðH�T).

Moreover, if H is a T-saturated, then by Lemma 3.1 (ii), we

have

CðH�TÞ# ðCðH�TÞÞ�T ¼ ðCðHÞÞ�T:

Hence, we get the required equality and completes the proof.
h

The preceding results entails the following proposition

Proposition 4.5

(i) If X is a TL-uniformity on a set X, then C(r(X)) = X.
(ii) If H is a covering TL-uniformity on X, then

rðCðHÞÞ ¼ H.
Theorem 4.3

(i) If the function f: (X,X) fi (Y,X0) between TL-uniform
spaces, is uniformly continuous, then f:

(X,r(X)) fi (Y,r(X0)) is C-uniformly continuous.
(ii) If the function f: (X,K) fi (Y,K0) between covering TL-

uniform spaces, is C-uniformly continuous, then f:
(X,CðK)) fi (Y,CðK0)) is uniformly continuous.

Proof

(i) Let f: (X,X) fi (Y,X0) be uniformly continuous and con-
sider an arbitrary element R0 2 rðX0), then there is
u0 2 X0 such that R0 ¼ ðu0h1yiT Þy2Y .Now, for every x,
z 2 X, we have

ðf ðu0h1fðxÞiTÞÞðzÞ ¼ ðu0h1fðxÞiTÞðfðzÞÞ
¼ u0ðfðxÞ; fðzÞÞ; by ð2Þ
¼ ½ðf� fÞ ðu0Þ�ðx; zÞ
¼ ½ððf� fÞ ðu0ÞÞh1xiT�ðzÞ; byð2Þagain

If we take R ¼ ðððf� fÞ ðu0ÞÞh1xiTÞx2X, we get by hypothesis

that R 2 rðX) andf ðR0Þ ¼ f ððu0h1yiTÞy2Y)

� ðf ðu0h1fðxÞiTÞx2X; for range f# Y

¼ ðððf� fÞ ðu0ÞÞh1xiTÞx2X
¼ R:

This proves that f: (X,r(X)) fi (Y,r(X0)) is C-uniformly
continuous.

(ii) Let f: (X,KÞ ! ðY ;K0) be C-uniformly continuous and
w0 2 CðK0). Then there is R0 2 K0 for which
w0 ¼ CðR0).Hence, for every x, y 2 X, we have

½ðf� fÞ ðw0Þ�ðx; yÞ ¼ ½ðf� fÞ ðCðR0ÞÞ�ðx; yÞ
¼ ðCðR0ÞÞðfðxÞ; fðyÞÞ
¼ sup

k2R0
½kðfðxÞÞTkðfðyÞÞ�

¼ sup
k2R0
½ðf ðkÞÞðxÞTðf ðkÞÞðyÞ�

¼ sup
m2f ðR0 Þ

½mðxÞTmðyÞ�

P sup
l2R
½lðxÞTlðyÞ�; by hypothesis

¼ ðCðRÞÞðx; yÞ
¼ wðx; yÞ; for some w 2 CðKÞ:

This shows the existences of an element w in CðK) satisfies
w 6 (f · f)‹(w0).Which proves the uniformly continuous of f:

(X,CðK)) fi (Y,CðK0)).Rendering (ii) and completes the
proof. h

Now, we see how a covering TL-uniformity can generate an
I-topology. The formula of fuzzy interior operator, conse-

quently I-topology associated with a covering TL-uniformity,
in particularly simple, through the TL-uniformity which de-
fined by covering TL-uniformity, as is shown in the next result.

Theorem 4.4. If (X, K) is a covering TL-uniform space, then the
fuzzy interior operator which defines the I-topology sðK) is given
by:
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koðxÞ ¼ sup
R2K

ĴhðCðRÞÞh1xiTÞ; ki; k 2 IX; x 2 X:

Proof. By Theorem 4.2, we have CðKÞ is a TL-uniformity, it
follows from Proposition 2.2, that for every k 2 IX and x 2 X,

koðxÞ ¼ sup
u2CðKÞ

Ĵhuh1xiT; ki ¼ sup
R2K

ĴhðCðRÞÞh1xiT; ki:

which renders the proof. h

By conjunction of Theorem 4.3 (ii) and [5. Theorem 3.10],
we arrive to

Theorem 4.5. Let (X,K) and (Y,K0) be covering TL-uniform
spaces and f: X fi Y is C-uniformly continuous, then f is
continuous with respect to the I-topologies associated with K and

K0, respectively.

Example 1. Let (X,6) be a directed set, define
Hr = {x 2 X:x > r} for every r 2 X, and Ir ¼ 1Hr

W
{{1x}:

x 6 r}. It is easy to verify that

H ¼ fIr : r 2 Xg is a covering TL-uniform base on X.

Obviously, H � FcðXÞ, to verify that (CTLUB1) holds, let
Ir1 ;Ir2 2 H and take r> r1 > r2. Therefore Ir 2 H, which
satisfies Ir � Ir1 and Ir � Ir2 .

(CTLUB2) Let Ir 2 H and c 2 I1, we can choose t > r, for
which It 2 H and It � Ir. Then, for every k 2 It, x 2 X, we

have

½cTk�ðItÞ�ðxÞ 6 ðk�ðItÞÞðxÞ
¼ sup

z2X;m2It

½kðzÞTmðzÞTmðxÞ�

6 sup
z2X;l2Ir

½kðzÞTlðzÞTlðxÞ�; clear

¼ sup
l2Ir

½kðxÞTlðxÞTlðxÞ�

¼ kðxÞ
6 k0ðxÞ; for some k0 2 Ir; since It � Ir:

This shows that, [cT(ItÞ�� � Ir.
In particular, if X is any set, then H ¼ ff1xg : x 2 Xg is a

covering TL-uniform base on X, which generated the discrete

I-topology on X, since we can show that each fuzzy set is open,
as follows:

For every k 2 IX and x 2 X, we have

koðxÞ ¼ sup
R2H

ĴhðCðRÞÞh1xiT; ki

¼ ĴhðCðHÞÞh1xiT; ki
¼ inf

y2X
ĴðððCðHÞÞh1xiTÞÞðyÞ; kðyÞÞ; by ð1Þ

¼ inf
y2X

ĴðððCðHÞÞðx; yÞ; kðyÞÞ; by ð2Þ

¼ inf
y2X

Ĵðsup
z2X
ðð1zÞðxÞTð1zÞðyÞÞ; kðyÞÞ

¼ Ĵðð1xÞðxÞTð1xÞðxÞ; kðxÞÞ; by Proposition 2:1 ðiiÞ
¼ Ĵð1; kðxÞÞ;
¼ kðxÞ; by Proposition 2:1 ðiÞ:

That is, ko = k.
Example 2. If X is a nonempty set, then the singleton H ¼ f1g
is a covering TL-uniform base on X, which induces the indis-
crete I-topology, because the open sets are exactly the constant
fuzzy sets. Since as the same steps in Example 1, it is easy to see

that for every k 2 IX, we have ko = a, for some a 2 I.

Now, if we define the map r�:TL-US fi CTL-US by setting

r�(X,X) = (X,r(X)) and r�(f) = f, we get r� is a well defined
functor.

Also, if we define the map C�: CTL-US fi TL-US by
setting C�(X,K) = (X,CðK)) and C�(f) = f, we get C� is well
defined functor.
5. The a-levels of a covering TL-uniformity

In this section, we introduce the concepts of a-level covering
uniformities for a covering TL-uniformity and we study the
relationships between them. Also, we study the correspond-

ing functors between category of covering TL-uniform
spaces and category of covering uniform spaces. We denote
by US (CUS) the category of uniform spaces (covering uni-

form spaces).
The functors P�: US fi CUS and Q�: CUS fi US are de-

fined in [13] as follows:

(i) if (X,UÞ 2 j US Œ, the image object is (X,PðU)), where
PðU) is the unique covering uniformity on X, having a
basis
PðBÞ ¼ fðVhxiÞx2X : V

2 Bg; whenever B is any basis for U:
(ii) if (X,CÞ 2 j CUS Œ, the image object is (X,QðC)), where
QðC) is the unique uniformity on X, having a basis[

QðEÞ ¼ f

H2K
ðH�HÞ : K

2 Eg; whenever E is any basis for C;
both functors P� and Q� leaving morphisms unchanged.

The functors ı�u;a:TL-US fi US and x�u : US fi TL-US are

defined in [5] as follows:

(i) if (X,X) 2 ŒTL-USŒ and a 2 I1, the image object is

(X, ıu,a(X)), where
ıu;aðXÞ ¼ fwJðb;aÞ#X� X : w 2 X and b 2�a; 1�g;

is a uniformity on X, called the a-level uniformity of X;

(ii) if (X,UÞ 2 jUSŒ, the image object is (X,xuðU)), where
xuðUÞ ¼ fw 2 IX�X : wc 2 U; 8 c 2 I1g;
is a TL-uniformity on X.In the following, we introduce the no-
tions of a-level covering uniformities for a covering TL-unifor-

mity and we study the relationships between these structures.
Definition 5.1

(i) For a covering TL-uniform baseH on a set X and a 2 I1,

we define
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ıc;aðHÞ ¼ fRJðb;aÞ : R 2 H and b 2�a; 1�g;

called the a-level covering uniformity of H, where

RJðb;aÞ ¼ fkJðb;aÞ#X : k 2 Rg:

(ii) For a covering uniform base E on a set X and a 2 I, we
define
1

xc;aðEÞ ¼ fxc;aðKÞ : K 2 Eg;

where xc,a(K) = {(1	a ¤ 1H) 2 IX:H 2 K}.

Next, we show that ıc;aðH) is a covering uniform base and
xc;aðE) is a covering TL-uniform base on X.

It is not difficult to prove directly that we can obtain the
desired functors with the help of the above, quite natural,
definitions. However, given a covering TL-uniform base H, we
already know an associated TL-uniform base CðH), so a

uniform base ıu;aðCðH)) and in turn a basis Pðıu;aðCðH))) for a
covering uniformity and it is to be expected that this last basis
should be equivalent to ıc;aðH). Analogous considerations can

be made about the transition in the other direction. In order to
prove all the desired results, it appears to be necessary to study
the functors can be derived from Definition 5.1.

Theorem 5.1. If H is a covering TL-uniform base on a set X and

a 2 I1, then both ıc;aðH) and Pðıu;aðCðH))) are basis for the
same covering uniformity C on X.

Proof. We already know that Pðıu;aðCðH))) is a basis for a cov-
ering uniformity C on X, moreover, as H � FcðXÞ, that every
element of ıc;aðH) is a covering of the set X. Thus, it is sufficient
to prove that each element of ıc;aðH) (resp. Pðıu;aðCðH)))) is
refined by an element of Pðıu;aðCðH))) (resp. ıc;aðH)).

In order to do, we first take an arbitrary element RJðb;aÞ in
ıc;aðH), where b2]a, 1]. Now, by continuity of T and Propo-
sition 2.1 (ii), we can find c, h 2 I1, such that

cTĴðhTb; aÞTĴðhTb; aÞ > Ĵðb; a).

Consider the element (CðRÞÞJðhTb;aÞh xoæ in

((CðRÞÞJðhTb;aÞhxiÞx2X.

Choosing mo 2 R such that

moðxoÞP ½moðxoÞTmoðyÞ� > ĴðhTb; aÞ: ð7Þ

For every y 2 ðCðRÞÞJðhTb;aÞhxo æ, we can get m 2 R such that

mðxoÞ TmðyÞP ĴðhTb; aÞ: ð8Þ

Moreover, by (CTLUB2), we can find k 2 R for which
[cTm�oðRÞ� 6 k. Hence

kðyÞP cðyÞTf sup
z2X;l2R

½moðzÞTlðzÞTlðy�g;

P c T½moðxoÞTmðxoÞTmðy�
P c TĴðhTb; aÞ TĴðhTb; aÞ; by ð7Þ; ð8Þ
> Ĵðb; aÞ;

that is, y 2kJ(b,a).
Which implies that ðCðRÞÞJðhTb;aÞh xoæ ˝ kJ(b,a), and there-

fore RJðb;aÞ is refined by ((CðRÞÞJðhTb;aÞhxæ)x2X in Pðıu;aðCðH))).

Conversely, let (((CðRÞÞJðb;aÞhx iÞx2X 2 Pðıu;aðCðH))) and
lJðb;aÞ 2 ıc;aðR) for some l 2 R; b 2�a, 1].
Then choosing xo 2 lJ(b,a), since R is a fuzzy covering of X,

we have

ðCðRÞÞðxo; xoÞ ¼ 1; by Lemma 3:4 ðivÞ
> Ĵðb; aÞ; 8 b 2�a; 1�:

Hence, ðxo; xoÞ 2 ðCðRÞÞJðb;aÞ, that is xo 2 ðCðRÞÞJðb;aÞhxoæ,
therefore

lJðb;aÞ# ðCðRÞÞJðb;aÞhxoi:

Which proves that (((CðRÞÞJðb;aÞh xæ)x2X is refined by the ele-

ment RJðb;aÞ in ıc;aðH).

Proposition 5.1. If B is a uniform base on a set X and a 2 I,
thenxu;aðBÞ ¼ fð1	 a

W
1UÞ 2 IX�X : U 2 Bg; is a

TL	 uniform base onX:

Proof. (TLUB1) Obviously xu;aðB) is an I-filterbase, because
0 R xu;aðB), also
½1	 a

W
1UÞ�

V
½1	 a

W
1V� ¼ ½1	 a

W
1ðU\VÞ�; 8 U;V 2

B P 1	 a
W
1W; for someW 2 B withW #U \ V:(T-

LUB2) For every (1	 a
W
1UÞ 2 xu;aðB) and x 2 X, we have

(x,x) 2 U and hence ½1	 a
W
1U�ðx; xÞ ¼ 1:Now, for every

(1	 a
W
1UÞ 2 xu;aðB) and c 2 I1, we can get W 2 B with

(W o W) ˝sU which implies, for every x, y 2 X, that

fcT½ð1	 a
_

1WÞoTð1	 a
_

1WÞ�gðx; yÞ

¼ cTsup
z2X
½ð1	 a

_
1WÞðx; zÞTð1	 a

_
1WÞðz; yÞ�

¼ cTsup
z2X
f1	 a

_
½1Wðx; zÞT1Wðz; yÞ�g

6 sup
z2X
f1	 a

_
½1Wðx; zÞ

^
1Wðz; yÞ�g

6 ½1	 a
_
s

1U�ðx; yÞ

¼ s½1	 a
_

1U�ðx; yÞ

This obviously, rendering both (TLUB3) and (TLUB4).
Which completes the proof. h

Theorem 5.2. If E is a covering uniform base on a set X and
a 2 I, then both xc;aðEÞ and rðxu;aðQðE))) are basis for the

same covering TL-uniformity K on X.

Proof. We already know that rðxu;aðQðE))) is a basis for a
covering TL-uniformity K, moreover xc;aðEÞ � Fc(X) is trivial.

From above definitions, we can write for simply

rðxu;aðQðEÞÞÞ ¼ fððgðKÞÞh1xiTÞx2X : K 2 Eg;

where g(K) = ¤H2K(1 	 a ¤ 1H·H).
Now, suppose that K 2 E and M 2 K, by choosing xo 2M,

we have, for every y 2 X,

ð1	 a
_

1MÞðyÞ ¼ ð1	 a
_

1M�MÞðxo; yÞ; because 1MðxoÞ ¼
¼ ðð1	 a

_
1M�MÞh1xoiTÞðyÞ; by ð2Þ

6 ð½
_
H2K
ð1	 a

_
1H�HÞ�h1xoiTÞðyÞ:
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This shows the existence of an element [
W

H2K
ð1	 a

W
1H�HÞ�h1xoiT of ((g(K))Æ1xæT)x2X which greater or

equal to ð1	 a
W
1M).

Therefore, xc,a(K)� ((g(K))Æ1xæT)x2X, from which it fol-

lows that rðxu;aðQðEÞÞÞ# xc;aðEÞ.

On the other hand, let K 2 E and xo 2 X. Now if any y 2 X,

we get ð½
W

H2Kð1	 a
W
1H�HÞ�h1xoiTÞðyÞ ¼ 1; i:e:;

ðby ð2ÞÞ; ½
W

H2Kð1	 a
W
1H�HÞ�ðxo; yÞ ¼ 1;

then; there is M 2 K in such a way that fxo; yg#M:

Consequently (1	 a
W
1MÞðyÞP ð1MÞðyÞ ¼ 1, which shows

the existence of an element (1 	 a ¤ 1M) of xc,a(K) which

greater or equal to [
W

H2Kð1	 a
W
1H�HÞ�h1xoiT.

Therefore ((g(K))Æ1xæT)x2X� xc,a(K), from which it follows

that xc;aðKÞ# rðxu;aðQðE))).

Hence, the theorem is follows from Proposition 4.2. h

Now, if a 2 I1, and we define the map ı�c;a:CTL-US fi CUS by
setting ı�c;a(X,KÞ ¼ (X, ıc;aðK)) and ı�c;aðfÞ ¼ f, we get ı�c;a is well

defined functor.
Also, if a 2 I, and we define the map x�c;a: CUS fi CTL-US

by setting x�c;a ðX; CÞ ¼ ðX;xc;aðC)) and x�c;a (f) = f, we get x�c;a
is well defined functor.

Proposition 5.2. For the functors defined above, we get the
following relations:

(i) For all a 2 I1, we have ı�c;a ¼ P�oı�u;aoC� and
ı�u;a ¼ Q

�oı�c;aor�;consequently, Q� o ı�c;a ¼ ı�u;a o C�

and ı�c;a o r� ¼ P� o ı�u;a.
(ii) For all a 2 I, we have x�c;a ¼ r� o x�u;a o Q� and

x�u;a ¼ C� o x�c;a o P�;therefore C� o x�c;a ¼ x�u;a o Q�
and r� o x�u;a ¼ x�c;a o P�.The proof follows
immediately.
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