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Abstract In this paper we introduce the concepts of fuzzy T'L-uniform spaces by means of cover-
ings, where 7T stands for any continuous triangular norm. We show that the structure of covering
TL-uniform spaces are isomorphic to fuzzy TL-uniform spaces as defined by Hashem and Morsi
(2006) [5]. In particular, we study the continuity of functions between covering 7T L-uniform spaces,
the I-topological space associated with a covering T'L-uniform space. Also, we define the notions of
level covering uniformities for a covering TL-uniformity. Moreover, we deduce a number of func-

tors between categories of covering 7'L-uniform spaces, fuzzy TL-uniform spaces, covering uniform

spaces and uniform spaces.
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1. Introduction

In [5], Hashem and Morsi deduced the fuzzy TL-uniform
spaces, for each continuous triangular norm 7. In this manu-
script, we introduce a new structure of covering 7'L-uniform
spaces that conforms well with fuzzy TL-uniform spaces and
with the I-topological spaces [7]. We deduce the notion of
C-uniformly maps and here we show that the class of all cov-
ering TL-uniform spaces together with C-uniformly maps as
arrows forms a concrete category. We study the level covering
uniformities for a covering 7'L-uniformity and conversely, we
show that every covering uniformity generates a covering
TL-uniformity. Also, we will make clear there are correlation
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and compatibility between the following structures: covering
TL-uniform spaces, fuzzy TL-uniform spaces, covering uni-
form spaces and uniform spaces.

We proceed as follows:

In Section 2, we present some basic definitions and ideas on
fuzzy sets, I-topological spaces, residuated implication and
fuzzy TL-uniform spaces.

In Section 3, we deduce some important definitions and re-
sults for the classes of fuzzy sets which will be used in the sequel.

In Section 4, we introduce the concepts of covering
TL-uniform spaces and the /-topology associated with a cover-
ing TL-uniformity, together with illustrative examples. We de-
fine and study the C-uniformly continuous functions between
covering TL-uniform spaces. Also, we show that there is an
isomorphism between category of covering TL-uniform spaces
and category of fuzzy TL-uniform spaces.

In Section 5, we introduce the notion of the a-levels for a cov-
ering TL-uniformity and we study the relationships between
them. Also, we define the functors between category of covering
TL-uniform spaces and category of covering uniform spaces.

1110-256X © 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.
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2. Prerequisites

In this section, we will recall some definitions related to fuzzy
sets, residuated implication, fuzzy TL-uniform spaces and /-
topological spaces.

A triangular norm (cf. [12]) is a binary operation on the unit
interval 7 = [0, 1] that is associative, symmetric, monotone in
each argument and has the neutral element 1.

For a continuous triangular norm 7, the following binary
operation on /,

J(o,p) =sup{@ €I:aTO0 <y}, a,y€ I

is called the residual implication of 779].
Proposition 2.1. [11].For the residual implication J, we have

(i) J(1,9) =y, for every y € I;
(i1) J is antimonotone in the left argument and monotone in
the right argument.

A fuzzy set 1 in a universe set X, introduced by Zadeh in
[14], is a function A:X — I. The collection of all fuzzy sets of
X is denoted by I*. The height of a fuzzy set 1 is the following
real number: igti = sup{A(x):x € X}.

If H is a subset of X, then we shall denote to its character-
istic function by the symbol 14, said to be a crisp fuzzy subset
of X. We also denote the constant fuzzy set of X with value
o€ lby a.

Given a fuzzy set A € I and a real number « € I; = [0, I[,
the strong o-cut of /4 is the following subset of X:
A= {x e X:Ax) > a}.

For a given two fuzzy sets pu, 4 € I we denote by uT4A the
following fuzzy set of X:

(uTA)(x) = w(x)TA(x), x € X. The degree of containment of
win Aaccording to J defined as the real number in 1[3], given by:

3w, 2) = inf(u(x),  2(x)) (1)

We follow Lowen’s definition of a fuzzy interior operator
on a set X [7]. This is an operator °:I* — I that satisfies
< (/N =u’ N\ A for all g, 1€ and ¢ = g for
all « € I. We may define an I-topology in the usual way,
namely assuming a fuzzy set pu to be open if and only if
1’ = u. We denote this I-topology by 7. The pair (X, 7) is called
an I-topological space (cf.[2]).

A function £(X,°) = (X,7) = (¥,”) = (Y,7), between two
I-topological spaces, is said to be continuous, if /() €1,
for all u € 7, where (f(u))(x) = u(f(x)), for every x € X.

Iilters and I-filterbases were introduced by Lowen in [8]. An
[filter in a universe X is a nonempty collection 3 C * which sat-
isfies: 0 ¢ 3, 3 is closed under finite meets and contains all the
fuzzy supersets of its individual members. An I-filterbase in X
is a nonempty collection B c I¥ which satisfies: 0 ¢ B and the
meet of two members of 3 contain a member of B.

Definition 2.1. [10]. The T-saturation operator is the operator
~T which sends an /-filterbase  in X to the following subset of
e

8T — {H e lX: \/(ZTM,) < u, where i, €8 Ve I},

yel

said to be the T-saturation of B. An I-filterbase B is called 7-
saturated when B~7 = 0.
In [4], Hohle defines for every i, € I and 4 € I":

The T-section of A by (WA p(x) = -
sup.ex[A(2)TY(z,x)], x € X.

over

The T-composition of Y, by (Yor¢)(x,y) = sup.cx[o(x,z)
Ty(z.y)], x,y € X.

The symmetric of y by @ (x,y) = ¥(y,x), x, y € X.

IX><X

Notice, it is easy to see that, for every y € and x,

yeX,

W (L) 7)(x) = ¥(y, x). 2)

The fuzzy TL-uniform spaces (7TL-uniform spaces, for
short) were introduced by Hashem and Morsi, for more defini-
tions and properties, we can refer to [5].

Definition 2.2. [5].

(i) A TL-uniform base on a set X is a subset
v < ¥ which fulfills the following properties:

(TLUBLI) v is an I-filterbase;

(TLUB2) For all Yy €v and x€ X, we have
W(x»x) = 1’

(TLUB3) Forally €vandy € I, thereis Y, € v
such that yTr, < a;

(TLUB4) Forally €vandy € I, thereis ¢, € v
such that y T(y, opf,) < Y.

(i) A TL-uniformity on X is a 7T-saturated TL-uni-
form base on X.

(i) If Q is a TL-uniformity on X, then we shall say
that v is a basis for Q if v is an I-filterbase and
v~T = Q.It follows that for a TL-uniformity Q
on a set X and all Y € Q, we find that g € Q.
The pair (X, Q) consisting of a set X' and a TL-
uniformity 2 on X is called 7L-uniform space.

Definition 2.3. [5]. Let (X, Q) and (Y, @) be T'L-uniform spaces
and /i X— Y be a function. We say that f is uniformly
continuous if for every ¢ € w there is Y € Q such that
¥ < (f %) (). Equivalent for every ¢ € @, (fx ) () € Q.

We denote by TL-US the category of TL-uniform spaces
and as morphisms are uniformly continuous functions between
these spaces.

Proposition 2.2. [5].If (X, Q) is a TL-uniform space, then the
fuzzy interior operator ° of an I-topological space (X, ©(Q))
is given by:

2°(x) =sup(p(1,),,2), Ael' xeX.

peQ
Now, we give the following lemma, which is needed in the sequel.
Lemma 2.1. If'v is a TL-uniform base on a set X and ¢ € v, then

for every yel;, there is WYyev such that Ty <7y
Ty \/ W) <o
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Proof. Let ¢ € v and y € /. Then there is ¢, € v such that
1To, < s¢. 3)

Since v is an [-filterbase, then there is { € v such that

v <o /\ ¢, that is Y < ¢ and 3 < ;.
Consequently, by (3), we have

To,) < o.
This clearly, implies that

2Tah < T, = (1

y T <TO \/ W) = GTY) \/ TW) < 0Te) \/ ¢ = 0.

This winds up the proof. [

3. Definitions and general properties

In this section, we give some additional properties for the clas-
ses of fuzzy sets, which needed in the following sections. In or-
der to avoid complicated notations, we will write F(X) for the
family of all subsets of I*.

Definition 3.1. For the subsets R, S C I¥, we say that:

(i) Mis a fuzzy covering of X, if (\/ cquu) = 1.The set of all
fuzzy covering of X will be denoted F.(X).

(if) N is coarser than I and write R < 3, if for every 1 € R
there is v € 3 such that 2 < v.

Definition 3.2. If ¥ c F(X), we define
[Z] = {R C I : there is I € X with I < R};
h={V(uTR,) : R, € 2}
where, }ﬁ"‘ﬁ ={(yT2) e I : A € R}.
Also, the T-saturation X~7 of X by: 2~ = [2"].

A collection X is called T-saturated when 2~7 = X.
Lemma 3.1. For every X, £ Cc F(X), we have

Q) IfEck, then [2] c[£], 2 £ and 2~ T £~ 7;
(i) Tc/xjc

(i) [[2]] = [2];

(v) [Z]"c[2"];

W) (2)"c[2];

i) (2Tt =T

~vil) If 2 < [£], then 2~ T c£~T.

Proof. The assertions (i), (ii) and (iii) are immediately from
definitions.

(iv) Let R € [Z]". Then there are two families

{3,:ven}cz] and {J:yel}cCZ,
R=V,e,(07F,) and I <3,

for which

Hence, the element 3=\, (XTS:) in 2" satisfies I <
V,er, @T3;) = R, which implies that R € [27], that is [2]" c
[27].

(v) If R e (2")", then R =\/, (yTR,), where R, € X",
for all y € 1.

In turn, there is a family {ER? :0e 1} C X2 such that
m‘f = V6e11 (QT‘R;?) So, R= \/yell (ZT‘RY) = \/yell [\/Beh
(ZTQT‘R?)] = Va:m(lT‘Rg) = Ve, (@T3,),  where 3, =
Vaeyr0e1, ER;? and clearly 3, € [2].

Consequently, R € [2]", thus by (iv), we get R e [2/],
which proves our assertion.
(vi) ()" = [[2")"]

clz)), by (iv)
=[(2")", by (i)
], by ()
=[x, by (iii)
=T

c(=T, by (i)

Thus the equality holds.
(vii) Suppose that X c [£], hence by (iv) then (iii), we have

T =[ZClE ] = £ =T
Which rendering the proof. O
Proposition 3.1

D) IfReF(X),I€F(X)and R, then I € F.(X).
@) 1ff M, eF.(X), for every ye I, then so
Ve, 0TR,) € Fe(X).

The proof follows immediately from definitions.
Definition 3.3

(i) Let 2 €1X R CI*, we define the star A (R) of 4 with
respect to R as 2 (R) € I", by:
A7 (R) = sup[hgt(ATv)Tv], that is (A" (R))(x)
veR
= sup [A(z)Tv(z)Tv(x)],V x € X.
zeX,veR
(ii) The star R* of R CI¥ is defined by: R* = {1 (R):
/€ R}

Lemma 3.2. For every R, 3 C I*, we have the following:

(i) If R< 3, then 2*(R) < 2°(3), for all )€ I¥;
() RS, then R" < JF*;
(iii) If 2, v € I with 2 < v, then J*(R) < v'(R);
(iv) (y)TR)" = (yTyTy)TR", ¥y € 1.

Proof.

(i) Let A€ ¥, N <« Jand x € X. Then
(Z()(x) = sup [4(z)Tv(z) T()

zeXveR

< sup [A(z)Tu(z)Tu(x)], by hypothesis

zeX ued

= (@)
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(i1) Follows from (i).
(iii) Obviously holds.
(iv) Can be proved as follows
(yTR) ={v'(yTR) :ve yTR}
={(yTA)" (yTR): Le R}
={ sup [hgt (yTATI) TV}
ey -
= {suplhgt (TA)T(;Tw)) T(Tu)]}

HER
={sup[(yTyTy)T hgt (ATu)Ty]}, by continuity of T’
peR T T 7

= (szTz){sgg[hgt (ATw) Tul}

= (szTX)T‘ﬂZ*.
Which completes the proof. [

Lemma 3.3. For every R C I*, the following are equivalent
statements:

J(R), for all ke IY;
(M), for all 2 € rr;

@ 4<
(i) hgt A= hgt A
(i) Re F.(X);
(iv) R e F.(X).

Proof. (i) = (ii): Let ® C /" and 4 € I*, with 4 < 2*(R). Then

hgt 1. < hgt (R “(R))(x)

= sup{ sup [A(z)T"

xeX zeXyeR

< sup [4(2)Tv(z)],

zeX,veR

= sup(4

xeX

v(2) Tv(x)]}

clear
< supi(z)
zeX
= hgt A
Which holds the equality.
(i) = (ii): If R ¢ F.(X), then there are x, € X and y € [
such that (\/,cqv)(x,) < 7 < 1, and therefore

het[(1y,)"(R)] = sup[(L, )" (W))(x)

=sup{ sup [(1,)(z)Tv(z)Tv(x)]}

xeX zeXyveR

= sup{sup[(L,)(x,) Tv(x,) T(x)]}

xeX veR

— sup{sup[y(x,) Tv(x)}

xeX veR

< sup[v(x,)]

veR
<yp<l1
= hgt (1,,).
Which contradiction with (ii).

(iii) = (iv): Obviously hold from (i).

(iv) = (i): Let ®* € F.(X), /. € I and x € X. Then there is
v € R such that (v*(R))(x) >, V y € I,. Therefore,

sup(u(x)) = sup [v(2)Tu(z)Tu(x)] = (v'(R))(x) > 7.

nen zeX,ueR
By choosing ' € R for which y/(x) > 7, we obtain

(F)) = sup [ THT()]

= Ax) Ty (x)TH' (x)
= Ax)TyTy.
By the arbitrariness of y and x, we get 1"(R) =
dering (i).
This completes the proof. [

A, which ren-

In order to obtain simple expressions for some of the func-
tors we encounter, it will be convenient to reformulate some of
the foregoing definitions and properties.

Definition 3.4

(@) Let yer™ and define o()cI¥ by: o)) =
W) 7)cex> Where Y(1,)7 is the T-section of ¥ over
1.If vcr™ we define o@)cI® by: o) =
{o()h € v} c F(X).

(i) If M I*, we define I'(N) € Y by: (F(N)(x,») =
sup,eq [V(x)Tv(y)], x, y € X; and if ¥ c F(X), we define
I(Z)by: I'(2)={I(N): ReZ}cr™"

Lemma 3.4. For every R, 3 € F.(X), we have the following:

(@) yTo(I'(N)) < R, ¥y eIy,
(i) TR < o(I'(N)), ¥y € Iy;
(i) If ¢ € I, then T'(a()) = Wora;
@iv) (TR ))(x,x) =1, VxeX;
(V)F( ™R) = TW/TF(‘R) Vyel;
i) If R < 3, then T(R) < I'(3);
(vil) If Y, € FOX, for which y < @, then a(\) < a(@).

Proof
(i) Let 2 € [yTa(I'(N))], where y € I,. Then there is x, € X

such that A = [yTT(R)(1,),]. Also by hypothesis, there
is 1, € R for which u,(x,) = 1.Hence, for every y € X,

we have
Ay)=DTIr(R)(1,)7](v)
—VTsup[( )@ T(I(R))(z,0)]

:VT(F(ER))(me)
=Tsup[v(x,) Tv(y)]

< Hy (00 TSUp[v(x,) Tv(y)]
_sup[u(,(’co)TV(xo)TV( )]

V() Tv(y)]

< sup i, (x)T

xeXveR
= (1, (R) ().

This shows the existence of an element p’(R) of R* which
greater or equal to A.

(i1) As the same manner of (i).

(iii) Let y € I™¥. Then, for every (x,y) € X x X, we have
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(F(a(¥)))(x,y) = sup [v(x)Tv(y)] Corollary 4.1. It is clear by above result that the class of all cov-
vea(y) ering TL-uniform spaces together with C-uniformly maps as
= sup[y(L.) -(x)T(Y¥(1.);)(»)], by definition arrows forms a concrete category.
zeX

= szg)g[w(zy X)TY(z, )], by (2)

= sup[ Y (x,2) T(z, )]

zeX

= (Yor)(x, ).

which proves the required equality. The proofs of other parts
are trivially hold. [

4. Covering TL-uniform spaces

In this section, the covering 7TL-uniform spaces are introduce
and some of their properties are given, together with illustra-
tive examples. Also, the C-uniformly continuous functions
are define. Moreover, an isomorphism between category of
TL-uniform spaces and category of TL-uniform spaces is
holds.

Definition 4.1

(1) A covering TL-uniform base on a set X is a
subset H C F.(X) which fulfills the following
properties:

(CTLUBI1) For all R,3 € H, there is £ € H
such that £ <« N and £ <« J;

(CTLUB2) For all R € H and y € I, there is
£ € H such that (yT£") < R.

(ii) A covering TL-uniformity on a set X is a 7-
saturated covering TL-uniform base on X.

(i) If K is a covering TL-uniformity on X, then
we say that H C F.(X) is a basis for K if
HT =K.

(iv) A covering TL-uniform space is a couple
(X,K), where X is a set and K is a covering
TL-uniformity on X.

Definition 4.2. Let (X,K) and (Y,K’) be covering TL-uniform
spaces and fi X — Y be a function. We say that f is C-uni-
formly continuous (C-uniformly maps) if for each R € K’
there is R € K such that R C /~(R'). Where

FR) = () he R,

The composite of two C-uniformly continuous functions f:
(X,K) — (Y,K') and g: (Y,K') — (Y,K") is again C-uniformly
continuous, since for every R” € K, we have

(fog) (W) =/ (g~ (W)
Df(R), forsome R ek
DN, forsome R e L.
Also, for a covering TL-uniform space (X, K), it is easy to see

that the identity map
Idy: (X,K) — (X,K) is C-uniformly continuous function.

We denote by CTL-US the category of covering
TL-uniform spaces and as morphisms are C-uniformly con-
tinuous functions between these spaces.

First, we show that there is an isomorphism between
category of TL-uniform spaces and category of covering
TL-uniform spaces. We make use of the constructions and
notations introduced above.

Theorem 4.1. If v is a TL-uniform base on a set X, then a(v) is a
covering TL-uniform base on X.

Proof. To prove (CTLUBI), let ¢,¢’ € v. Then by (TLUBI),
we can find y € v such that ¥ < ¢ /A ¢/, it follows for every
X € X that,

V(1) < go(l,\.}T/\(p’(lX)T. So a(y) < () and a(y)
< a(¢').
(CTLUB2) Let ¢ € v and y € I;. By continuity of 7, we can get

0el, for which y = 0TOTOTOTOTO. Then by applying
(TLUBA4) twice, we can find ¢ € v such that

(OTOTO)T(por ¢ or ¢ or ¢) < ¢, thus clearly
(OTOTO)T(¢p or ¢ or ¢) < o,

Also, by Lemma 2.1,

V) <[0T \/ W1 < ¢.
Now, by putting ' = (¢ \/ &) and consider an arbitrary
element

2= T IO D (@)} of 2 (T(a())’, we have for every
yex,

4)

there 1is such that (0T

vey

A) =0T [ (1)) (e()]} )
=7 Tsup[(Y (L)) (N T (b (12) ) (r) (T (1)) (0)]

= yTsup[y(x, ) TY (2, 1) T Y (z,)], by (2)

zreX

=7 T sup[y(x, )T (r, 2) T (2, )]

=y T [y or (W or Y)I(x,»)

<y T W or ' o) (x,y)

= (0T0TOT)[(OT ¥') 0r(OT ¥') 0r(OT ¥)](x, )
< (0T0TOT) (¢ or ¢ or ¢)(x,y)

<o(x,y), by 4)

= (L)) (),

Which shows the existence of a member ¢(1,)7 of a(¢), which
greater or equal to A, therefore (T (¢ ()" < (o).
Which proves (CTLUB2) and completes the proof. [

by (2) again.

Theorem 4.2. If H is a covering TL-uniform base on a set X,
then I'(H) is a TL-uniform base on X.

Proof. To prove (TLUBI), let R, 3 € H. Then by (CTLUBI),
there is £ € H such that £ < R and £ < 3.
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Hence, from Lemma 3.4 (vi), it follows that I'(£)
<K T(R)AL(I).

(TLUB2) Follows immediately from the fact that every
R € H is a fuzzy covering of X.

(TLUB3) Obviously holds,
symmetric.

because every I'(R) is

(TLUB4) Let R € H and y € [;. Then by continuity of T,
we can get 0 € I} for which y = (6 T0). Thus by (CTLUB2), we
can find 3 € H such that (§73") < R, this meaning that, for
every A € 3J there is ¥ € R such that

[07 1 (3)] < 9. (5)
Now, for every x, yeX, we have

BT (I(3) or F@)](x.y) =7 Tsup[(F(F)(x,2) T T () (2. 0)]}

=y Ts:gg{[slggu(w TA)IT [S\Eg<V(Z) Tv(y)l}

=3 Tsup{supl2(x) TA(:)Tv(z) Tv()}

- Tiggﬂ.(;i I sup ) TG o)

—010) Tup (0T (2 ()

<(070) Toupl(* (ST (3 () )], by Lemma 3.3 )
—sup{[(07 (- () WITIOT ()0}

<sup[d(x)TH(y)], by (5)

VeR

= (L(R)(x,2),

that is, yT[I'(J) orl'(J)] < T'(N).
Which completes the proof that I'(H) is a TL-uniform base
on X.

Proposition 4.1

() If H C F.(X) satisfies (CTLUBI) and H™" is a covering
TL-uniformity on X, then H is a covering TL-uniform
base (and a basis for H™T).

(i) IfH C F. (X) and [H] is a covering TL-uniformity on X,
then H is a covering TL-uniform base (and a basis for

[H]).

Proof

(i) For the condition (CTLUB2), let R e HCH~" and
y € I,. Then by continuity of 7, we can find 6 € I; for
which y = (0TOTOTO) and by hypothesis, there is
3 € 17 such that (0T 3*)< R.Also, there is a family
{3.:e€ I} such that [\ ,(eT3.)] < 3.In particular,
it follows that (07J,) < 3, so (0T7Jp)" < I°. Hence

(1T3;) = [(0TOTOTO) T3]
= [0T(0T3,;)], by Lemma 3.2 (iv)
< (0T 3)
< R,
(i) Let R,I € HC [H]. Then there is £ € [H] satisfies
£ <R and £ < J.Consequently there is £ € H for

which £ <« £.Thus H satisfies (CTLUBI).Now, by
hypothesis and Lemma 3.1, we have

H] =M =[H"IClH) =[H"|=HTC[H]" =[H].

It follows that H™~" = [H] is a covering TL-uniformity and
then we can apply (i) to reach our assertion.

Proposition 4.2. If'H is a covering TL-uniform base on a set X
and Y c F.(X) satisfies Y C [H] and H C [Y], then Y is also a
covering TL-uniform base on X.

Proof. Let R,3€Y, since Y C [H].
R, T € H such that W <« Rand I <« 3.

Then there exist

Since H is a covering T'L-uniform base, then there is ¢’ € H
such that

o <Rand o «J.

We can in turn, since H C [Y], then there is ¢ € Y such that
e Q.

Hence o < R and ¢ < 3,

which proves that Y satisfies (CTLUBI).

(CTLUB2) Follows from Proposition 4.1 (i), since by
Lemma 3.1 (vii), Y~7 = H~T and by hypothesis we have, H~7
is a covering TL-uniformity on X. [

Proposition 4.3. If 'H is a covering TL-uniform base on a set X,
then a(I'(H)) is a basis for H™", that is (a(I'(H)))™" =H"T.

Proof. That ¢(I'(H))) is a covering TL-uniform base, follows
from Theorems 4.1 and 4.2.

Now, from Lemma 34 (ii), it follows that
(yTR) < 6(I'(M)), for every ReH,yel;, so that
a(I'(R)) € H~7, hence o(I'(H)) CH™T and thus, by Lemma
3.1 (i), (vi), we get (o(I'(H)))~" cH~T.

On the other hand, for every R € Handy = (0 T0) € I, we
get an element R, € H such that [0 T(R,)"] < R.

By Lemma 2.4 (i), it follows that, [0Ta(I'(R,))] < K.

Consequently,
[2To(I'(R,))] = {0T[0Ta(I'(R,))]} < [0T(R,)] < R,

this  implies  that  {\/ ., [yTo(I(R,))]} < R, thus

Re (a(I'(H)".
Hence H C (a(I'(H)))~". Which proves our assertion.

Proposition 4.4. If vis a TL-uniform base on a set X, then I'
(o(v)) is a basis for v™7T, that is (T'(a(v)))~T = v~T.

Proof. We already know from Theorems 4.1 and 4.2, that
I'(a(v)) is a TL-uniform base.

Let ¢ € v and y € I}, by continuity of 7, we can get § € I
for which y = (0T0T0). Then there is ¢y € v such that

(0T (4 07 ¢p)] < . (6)
By Lemma 2.1, there is ,€v with (0T,) < [0T(y,
\/rlp,)} g Py-

It follows that
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yTT(a(y,)) = yT(Y, orsf,), by Lemma 3.4 (iii) Theorem 4.3
= (0TOTO)T(Y, orsh,) , _ , .
(i) If the function f: (X,Q2) = (Y,Q') between TL-uniform
< (070TO)TT(y, \/ W) or (¥, \/ W)l spaces, is uniformly continuous, then  f:
= 0T[OT (Y, \/an or[0T (Y, \/xw” 1} (X,0(R2)) = (Y,0(Q')) is C-uniformly continuous.
omeTt, ’ - ' (ii) If the function f: (X,K) — (Y,K') between covering TL-
= 0T(¢y or @y) uniform spaces, is C-uniformly continuous, then f:
< ¢, by (6) (X,T(K)) — (Y,[(K')) is uniformly continuous.

Consequently, \/., [yTT(a(y,))] < ¢, so v < (I'(a(v)))~""
Hence, by Lemma 3.1, T (I'(a))~T.

On the other hand, for every ¢ € v, we have from Lemma
3.4 (iii), that

I'(o()) = (¢ ors0) = ¢.
Therefore, I'(a(¢p)) € [v],.
CO) =

This winds up the proof.

hence by Lemma 3.1 (vii), we have

Lemma 4.1.1f vcI™  and HCF.(X), then
a(v™T) = (a(v))~T and (I'(H ))NTQF(HNT). Moreover, if H

is a T-saturated, then I'(H™T) = (I'(H))™".

Proof. First, we show that o(v™7) = (a(v))~7, as follows. Let
€ I, we have

e o)
iff 3y € v™7 such that u = a(}))
iff 3, €vsuchthat y > V (T ¥,), u= oY)

V QT,), w=v(1y,)r

vel
yel

iff 3y, € v,x, € X such that ¢y >
[V 0Ty, ),

vEL

V Ty, (1))

vel

iff 3, €v,x, € X and 2, =y, (1,,), such thaty >

VT %)

vel

iff 3, € v,x, € X such that u >

iff 3y, € v,x, € X such that u >

iff 34, € vand 4, = a(y,) such that u >

VT 4)

vel

iff 3 4, € o(v) such that u >
iff e a(v)™".

Second, as the same steps of the first part and using Lemma 3.4
(v), we can show that (I'(H))™" C I'(H™7).

Moreover, if H is a T-saturated, then by Lemma 3.1 (ii), we
have

F(HT) S (D)™ = (r(H)™.
Hence, we get the required equality and completes the proof.
O

The preceding results entails the following proposition

Proposition 4.5

(i) If Q is a TL-uniformity on a set X, then I'(a(Q)) = Q.
(i) If H is a covering TL-uniformity on X, then
a(I'(H)) =H.

Proof

(1) Let f: (X, Q) - (Y,€) be uniformly continuous and con-
sider an arbitrary element R’ € ¢(2'), then there is
@' € Q such that R = (¢/(1,);),.,-Now, for every x,
z € X, we have

(1 (@' (L) 7)) (2) = (@' (L)1) ((2))
= ¢'(f(x)./(2)), by (2)
=[x (@)(x,2)
= [((Fx )" (@) (L)7)(2), by(2)again
If we take R = (((F < /)" (¢'))(1c) 1) x> We get by hypothesis
that R € o(Q) andf~ (R) =/~ ((¢'(1,)7),ey)
2 (7 (¢ (L)) ) sey, for range fC Y
= (>N (@) L)1) cex
=R

This proves that f (X,0(Q)) — (Y,0(2)) is C-uniformly
continuous.

(i) Let £ (X.K) —

(Y,K') be C-uniformly continuous and

W' € I(K'). Then there is R €K' for which
W' = I'(R).Hence, for every x, y € X, we have
[(Fx N Wx,p) = [(F = )™ (D(R))](x, )
= (I'(R)(Ax). /)
= SQ}I}{[’»(J‘ (X)) TA(f»))]
= SI{JE[(I‘F(A"))(X) T~ (2) )]
= sup [v(x)Tv(y)]
vef~(W)

= sup[u(x)Tu(y)], by hypothesis

HER

= (I'(M)(x,»)
=y(x,y), for some € I'(K).

This shows the existences of an element  in I'(K) satisfies
¥ < (X )T ()).Which proves the uniformly continuous of f:
(X,I(K)) = (Y,I'(K')).Rendering  (ii) and completes the
proof. O

Now, we see how a covering TL-uniformity can generate an
I-topology. The formula of fuzzy interior operator, conse-
quently I-topology associated with a covering TL-uniformity,
in particularly simple, through the TL-uniformity which de-
fined by covering T'L-uniformity, as is shown in the next result.

Theorem 4.4. If (X, K) is a covering T L-uniform space, then the
fuzzy interior operator which defines the I-topology t(K) is given
by:
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2°(x) = supJ ((T(R))(1,),), A), 4 € I, x € X.
Rek

Proof. By Theorem 4.2, we have I'(K) is a TL-uniformity, it
follows from Proposition 2.2, that for every 4 € IFand x € X,

2(x) = sup J(@(L) 7, 2) = supd((T(R))(L) 7, 4).
per(K) RNek
which renders the proof. [

By conjunction of Theorem 4.3 (ii) and [
we arrive to

5. Theorem 3.10],

Theorem 4.5. Let (X,K) and (Y,K') be covering TL-uniform
spaces and f: X — Y is C-uniformly continuous, then f is
continuous with respect to the I-topologies associated with K and
K, respectively.

Example 1. Let (X,<) be a directed set, define
H, = {xe X:x > r} for every re X, and 3, =14V {{1.}:
x < r}. It is easy to verify that

H={3,

Obviously, H C F.(X), to verify that (CTLUBI) holds, let
3,3, € H and take r > ry > rp. Therefore 3, € H, which
satisfies 3, < 3, and 3, <€ J,,.

:r € X} is a covering T'L-uniform base on X.

(CTLUB2) Let S, € H and y € I, we can choose ¢ > r, for
which 3, € H and I3, < J,. Then, for every 1 € J,, x € X, we
have

RTA(S))(x) < (4(3))(x)

= sup [A(2)Tv(z)Tv(x)]
zeXveJ,;
< sup [A(2)Tu(z)Tu(x)],  clear
zEX,HES,
= sup[A(x) Tu(x) Tp(x)]
HES,
= Ax)
< X(x), for some /' €3, since 3, < J,.

This shows that, [yT(3,)] < ..

In particular, if X is any set, then H = {{1,}: x € X} is a
covering TL-uniform base on X, which generated the discrete
I-topology on X, since we can show that each fuzzy set is open,
as follows:

For every A € I' and x € X, we have

2°(x) = supJ((F(R)) (1) 7, 2)

ReH

= J(F(H) (1) 7, 2)

;Q};J(((F(H)M D)) A1), by (1)
;g};J(((F (H))(x,), 4(»)), by (2)
32)1;‘](5-25((1 D) T(L) (1), ()
J((L)(x) T(1)(x), Ax)),

(1, 4(x),
= A(x), by Proposition 2.1 (i).

by Proposition 2.1 (ii)

That is, 12 = 4.

Example 2. If X is a nonempty set, then the singleton H = {1}
is a covering TL-uniform base on X, which induces the indis-
crete I-topology, because the open sets are exactly the constant
fuzzy sets. Since as the same steps in Example 1, it is easy to see
that for every 4 € I, we have 2° = g, for some o € I.

Now, if we define the map ¢~ :TL-US — CTL-US by setting
o~ (X, Q) = (X,0(Q)) and ¢~ (f) = f, we get ¢ is a well defined
functor.

Also, if we define the map I'"™: CTL-US — TL-US by
setting I'"(X,K) = (X, I'(K)) and I'"(f) = f, we get I'"" is well
defined functor.

5. The a-levels of a covering 7L-uniformity

In this section, we introduce the concepts of a-level covering
uniformities for a covering TL-uniformity and we study the
relationships between them. Also, we study the correspond-
ing functors between category of covering TL-uniform
spaces and category of covering uniform spaces. We denote
by US (CUS) the category of uniform spaces (covering uni-
form spaces).

The functors P~: US — CUS and Q™: CUS — US are de-
fined in [13] as follows:

(i) if (X,U) € | US|, the image object is (X,P(l)), where
P(U) is the unique covering uniformity on X, having a
basis

PB) ={(V(x))ex : V
€ B}, whenever B is any basis for U.

(i) if (X,C) € | CUS |, the image object is (X, Q(C)), where
Q(C) is the unique uniformity on X, having a basis

& ={{JHxH): 4

HeA

€ &}, whenever £ is any basis for C;
both functors P~ and Q™ leaving morphisms unchanged.

The functors 7 :TL-US — US and w): US — TL-US are
defined in [5] as follows

(i) if (X,Q) el TL-US and o€, the image object is
(X,1,,(R)), where
b2 (Q) = (WP C X x Xy € Qand B €, 1]},

is a uniformity on X, called the a-level uniformity of €;
(i) if (X,U) € |[US, the image object is (X, w,(14)), where

a)u(u) :{lI/GIXXX: l//v Eu7v yell}a

is a TL-uniformity on X.In the following, we introduce the no-
tions of a-level covering uniformities for a covering 7'L-unifor-
mity and we study the relationships between these structures.

Definition 5.1

(1) For a covering TL-uniform base H on a set X and « € I,
we define
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lc,o((H) _ {ERJ(/f.oc)
called the o-level covering uniformity of H, where
R — (P x:)e R

(ii) For a covering uniform base £ on a set X and o € I, we
define

00n(€) = {0ea(A) : A € E),
where o, (A) = {(1=a\/ 1) € I'":H € A}.

: R e H and B €o, 1]},

Next, we show that i.,(H) is a covering uniform base and
c4(€) is a covering TL-uniform base on X.

It is not difficult to prove directly that we can obtain the
desired functors with the help of the above, quite natural,
definitions. However, given a covering 7TL-uniform base H, we
already know an associated 7'L-uniform base I'(H), so a
uniform base 1,,(I'(H)) and in turn a basis P(1,,(I(H))) for a
covering uniformity and it is to be expected that this last basis
should be equivalent to i.,(?). Analogous considerations can
be made about the transition in the other direction. In order to
prove all the desired results, it appears to be necessary to study
the functors can be derived from Definition 5.1.

Theorem 5.1. If 'H is a covering TL-uniform base on a set X and
o €1;, then both 1.,(H) and P(1,,(I'(H))) are basis for the
same covering uniformity C on X.

Proof. We already know that P(1,,(I'(H))) is a basis for a cov-
ering uniformity C on X, moreover, as H C F.(X), that every
element of 1,,(H) is a covering of the set X. Thus, it is sufficient
to prove that each element of 1.,(H) (resp. P(1,,(I'(H)))) is
refined by an element of P(1,,(I'(H))) (resp. i.,(H)).

In order to do, we first take an arbitrary element R’ (B2 in
1c(H), where B€lo, 1]. Now, by continuity of 7" and Propo-
sition 2.1 (ii), we can find 7y, 0 € [}, such that

yTI(OTB, o) TH(OTS, o)) > J(B, ).

Cons1(ger the
(R (x))
‘R such that

(RO k) in

element

Choosing v, €

Vo) > [0 (%) T, ()] > 3(OTB, ). (7)
For every y € (I'(R))"“"(x, ), we can get v € R such that
v(x) To(y) = J(OTB, ). ®)
Moreover, by (CTLUB2), we can find A€ R for which
[yTvi(R)] < A Hence

Ay) = X(y)T{;eSXu;E‘R[ )Tu(2) Tu(yl},

oz
=y Tvo(x0) TV(x,) TV (]
>y TIOTB, o) TI(OTB, ),
> J(B,),
that is, y e/,
Which implies that (F(R))’"7#* g xo)y € 7P and there-
fore R/ is refined by (I'(R))" 7P (x))xe x in Pliq(I'(H))).

Conversely, let (((F(f!%))"(ﬁ‘“) (X ))yex € P(x(I'(H))) and
W'D €., (R) for some u € R, B €la, 1].

by (7), (8)

Then choosing x, € p/#*

we have

, since N is a fuzzy covering of X,

(F'(M))(x,,x,) =1, by Lemma 3.4 (iv)
> J(B,a), V B €la, 1].
Hence, (x,,x,) € (F(R))"", that is x, € (F(RN))""(x,),
therefore
1 € (P () )

Which proves that ((I'(R))"* ”( X))xey is refined by the ele-
ment R in 4, «(H).

Proposition 5.1. If' B is a uniform base on a set X and o € I,
thenw,,(B) = {(L=a\/1y) € I"*:UcB}, isa
TL — uniform base onX.

Proof. (TLUBI) Obviously w,,(B) is an I-filterbase, because
Q ¢ wu,ot(B)a also
[ﬂv lU)] /\[ﬂ\/ IV} = [ﬂv l(UﬂV)]’v U, Ve

B >1—a\/ 1y, forsomeW € B withW CcUNV.(T-
LUB2) For every (1 —a\/1y) € w,,(B) and x € X, we have
(x,x) € U and hence [1—al/1y](x,x) =1.Now, for every
(1—=a\1y) € w,,(B) and y € I, we can get W € B with

(W o W) c,U which implies, for every x, y € X, that

(T =2 \/ 1w)or(L=a\/ 14)]}(x, )

_ yTszlel)r()[(u\/ 1y)(x, 2)T(L=2\/ 1w)(z, )]
= Tsup{1 =2 V[ (x, 2) Tl (=, )]}

< sup{l=a\/[Lw(x.2) A 1wz )]}

< [l;a\flur](x,y)

=2\ 1)

This obviously, rendering both (TLUB3) and (TLUB4).
Which completes the proof. [

Theorem 5.2. If £ is a covering uniform base on a set X and
a €1, then both w.,(E) and o(w,,(Q(E))) are basis for the
same covering TL-uniformity IC on X.

Proof. We already know that ¢(w,,(Q(£))) is a basis for a
covering T'L-uniformity &, moreover . ,(£) C F.(X) is trivial.

From above definitions, we can write for simply

7(@02(Q(E))) = {((n(A)) (L) 7) ey : 4 € €},

where 7(A4) = \/gea(l = o \/ Lxn).
Now, suppose that 4 € £ and M € A, by choosing x, € M,
we have, for every y € X,

(L=o\/ L)) = (L=o\/ Tarerr) x,,,y) because 1,(x,) = 1

= 1—(1\/1wa (), by (2)
u\/leH xo T ;V)

He/l

//\



Characterization of T'L-uniform spaces by coverings

107

This shows the existence of an element [\/,_,
(L= Liew)(L,); of (A)L)7)ex which greater or
equal to (1 —a\/1x).

Therefore, . (A) < (N(A)){1)7)rex, from which it fol-
lows that (w,,(Q(£))) C w.4(E).

On the other hand, let 4 € £ and x, € X. Now if any y € X,

we  get (Vaeal=aV1mm)|[(l,)r)0) =1, e,
(by (2)), Vyea(l=aV 1gn)](x,,») = 1,
then, there is M € A in such a way that {x,,y} C M.

Consequently (1 —a\/14/)(y) = (14)(y) = 1, which shows
the existence of an element (1 —o\/ 1) of w.,(4) which

greater or equal to [\/ e (1 =\ 1gwm)](1y, )7

Therefore ((7(A)){1)7)rex K ®,(A), from which it follows
that @ ,(A4) C o(w,(2(E))).

Hence, the theorem is follows from Proposition 4.2. [J

Now, if a € I}, and we define the map ,:CTL-US — CUS by
setting 7, (X, K) = (X,1.,(K)) and z:“(f)':f, we get 17, is well
defined functor.

Also, if o € I, and we define the map w7 ,: CUS — CTL-US
by setting o, (X,C) = (X, w.,(C)) and w:;c (f) = 1. we get w7,
is well defined functor. '

Proposition 5.2. For the functors defined above, we get the
following relations:

() For all oc I, we have 17,=P o, ol and
1, = Qo1 ,00" consequently, Q7 o i, =1, o I

and 7, 06~ =P o1,

(ii) For all we I, we have w,, =0~ o w,, o Q  and
oy, =17 o o, o P~ therefore I'" 0 vy, =w], 0 Q

and ¢7 o wy,=w;, o P .The proof follows
immediately.
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