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Abstract In this paper, we show that every T-neighbourhood space induces a T-proximity space,

where T stands for any continuous triangular norm. An axiom of T-completely regular of T-neigh-

bourhood spaces introduced by Hashem and Morsi (2003) [3], guided by that axiom we supply a

Sierpinski object for category T-PS of T-proximity spaces. Also, we define the degree of functional

T-separatedness for a pair of crisp fuzzy subsets of a T-neighbourhood space. Moreover, we define

the Čech T-proximity space of a T-completely regular T-neighbourhood space, hence, we estab-

lishes it is the finest T-proximity space which induces the given T-neighbourhood space.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In [2], Hashem and Morsi deduced the T-neighbourhood
spaces, for each continuous triangular norm T. In this manu-

script, we introduce for a given T-neighbourhood space, a
new structure of functional T-separatedness, which generates
a T-proximity space. Moreover, we show that the existence

of correspondence between T-proximity and T-neighbourhood
structure is fulfilled. Also, we define the Čech T-proximity
space for a T-neighbourhood space, we establish that it is
the finest T-proximity space which generates the given

T-neighbourhood space. We divided this manuscript into four
sections:

In the first section, we recapitulate on some definitions and

ideas of fuzzy sets, T-proximity spaces and T-uniform spaces.
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In the second section, we introduce five propositions, which
well be used to supply the notion of a Sierpinski object for cat-
egory T-PS of T-proximity spaces.

In the third section, we introduce the definition and proper-

ties of functional T-separatedness of crisp fuzzy subsets for a
T-neighbourhood space, together with an illustrative example
for this notion.

In the fourth section, we complete the proof of the compat-
ibility between T-proximity spaces and T-neighbourhood
spaces. Also, we introduce the notion of Čech T-proximity

space.
2. Prerequisites

In this section we will recall some of the definitions related to
fuzzy sets, T-proximity spaces, T-uniform spaces and I-topo-
logical spaces.

A triangular norm (cf. [10]) is a binary operation on the unit
interval I= [0,1] that is associative, symmetric, monotone in
each argument and has the neutral element 1.

A fuzzy set k in a universe set X, introduced by Zadeh in

[11], is a function k : X fi I. The collection of all fuzzy sets
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of X is denoted by IX. The height of a fuzzy set k is the follow-
ing real number: hgtk = sup{k(x) :x 2 X}.

If H is a subset of X, then we shall denote to its character-

istic function by the symbol 1H, said to be a crisp fuzzy subset
of X. We also denote the constant fuzzy set of X with value
a 2 I by a.

Given a fuzzy set k 2 IX and a real number a 2 I1 = [0,1[,
the strong a-cut of k is the following subset of X:
ka = {x 2 X :k(x) > a}; and the weak a-cut of k is the subset

of X: ka* = {x 2 X :k(x) P a}.
For a given two fuzzy sets l,k 2 IX we denote by lTk the

following fuzzy set of X: (lTk)(x) = l(x)Tk(x), x 2 X.
We follow Lowen’s definition of a fuzzy closure operator

on a set X [7]. This is an operator � : IX fi IX that satisfies
l�P l,(l ¤ k)�= l�¤ k� for all l,k 2 IX, and a�= a for
all a 2 I. We may define an I-topology in the usual way,

namely assuming a fuzzy set l to be closed if and only if
l�= l. We denote this I-topology by s. The pair (X,s) is
called an I-topological space. A function f : (X,�) = (X,s)
fi (Y,�0) = (Y,s0), between two I-topological spaces, is said
to be continuous [7]; if f‹(l) 2 s, for all l 2 s0, equivalently
if f(k�) 6 [f(k)]�0, for all k 2 IX.

I-filters and I-filterbases were introduced by Lowen in [8]. An
I-filter in a universeX is a nonempty collectionI � IX which sat-
isfies: 0 R I, I is closed under finite meets and contains all the
fuzzy supersets of its individual members. An I-filterbase in X

is a nonempty collection B � IX which satisfies: 0 R B and the
meet of two members of B contain a member of B.

The T-neighbourhood spaces and T-proximity spaces were

introduced by Hashem and Morsi, for more definitions and
properties, we can refer to [1,2].

Definition 2.1 [2]. A T-neighbourhood space is an I-topolog-
ical space (X,s) = (X,�) whose fuzzy closure operator � is

induced by some indexed family B ¼ ðBðxÞÞx2X of I-filterbases
on IX, in the following manner: For all l 2 IX and x 2 X,

l�ðxÞ ¼ inf
m2B

hgtðlTmÞ:

Theorem 2.1 [1]. A function d: IX · IX fi I is a T-proximity on

a set X if and only if it satisfies the following six axioms, the first
five of which are properties of its restriction d: 2X · 2X fi I. For
all H,M,N 2 2X:

(TP1) d(1;,1X) = 0;
(TP2) d(1H,1M) = d(1M,1H);

(TP3) d(1(H[M),1N) = d(1H,1N) ¤ d(1M,1N);
(TP4) If d(1H,1M) < (hTb) for some h,b 2 I1, there is

C 2 2X such that d(1H,1C) 6 h and
d(1(X�C),1M) 6 b;

(TP5) If H \M „ ;, then d(1H,1M) = 1;
(TP6) dðl; kÞ ¼

W
h;b2I ½hT bT dð1lh� ; 1kb� Þ�; l; k 2 IX .

The real number d(1H,1M) can be interpreted as the degree
of proximity between the two crisp fuzzy subsets 1H and 1M, and
the number d(l,k) can be interpreted as the degree of nearness

of the fuzzy sets l and k . The pair (X,d) is said to be a
T-proximity space.

A function f : (X,d) fi (Y,q) between two T-proximity
spaces, is said to be continuous, if

dðl; kÞ 6 qðfðlÞ; fðkÞÞ; 8 l; k 2 IX: ð1Þ
This is shown in [1], to be equivalent to

dð1H; 1MÞ 6 qðfð1HÞ; fð1MÞÞ; 8 H;M 2 2X: ð2Þ

Given two T-proximities d1, d2 on X, d1 is said to be coarser

than d2 (d2 is said to be finer than d1), if the identity function
on X is a proximally continuous from (X,d2) to (X,d1), that is
d2(1H,1M) 6 d1(1H,1M), for every pair of crsip fuzzy sets

H,M � X.
In [5], Höhle defines for every w,u 2 IX·X and k 2 IX: The

T-section of w over k by (wÆkæT)(x) = supz2X [k(z)Tw(z,x)],
x 2 X. The T-composition of w, u by (w oT u)(x,y) = -

supz2X[u(x,z)Tw(z,y)], x,y 2 X. Also, in [5], Höhle defines
the (fuzzy) T-uniform spaces and uniformly continuous of a
function f: (X,X) fi (Y,-), between T-uniform spaces, as for

every u 2 - there is w 2 X such that w 6 (f · f)‹(u).
A functor from category T-US of T-uniform spaces to cat-

egory T-PS of T-proximity spaces is obtained in [1], by leaving

morphisms unchanged, and by sending (X,X) 2 T-US to the T-
proximity space (X,d(X)) given by

ðdðXÞÞðl; kÞ ¼ inf
w2X

sup
y2X
ðlTwhkiTÞðyÞ; l; k 2 IX: ð3Þ

Another functor from category T-PS to category I-TS of I-

topological spaces is obtained in [2], by leaving morphisms un-
changed and by sending (X,d) 2 T-PS to the I-topological
space (X,s(d)) with the fuzzy closure operator:

l�ðxÞ ¼ dðl; 1xÞ; l 2 IX; x 2 X: ð4Þ

In [2], this I-topological space (X,s(d)) is shown to be a T-
neighbourhood space. By applying these two functors to the

identity function on X, we find that if X1, X2 are T-uniformities
on X and X1 ˝ X2, then d(X2) is coarser than d(X1), while if d1,
d2 are T-proximities on the set X, and d1 is coarser than d2,
then s(d1) ˝ s(d2).

3. A Sierpinski object for the category T-PS

A distance distribution function (ddf) [10], is a function from
the set R+ of positive real numbers to the unit interval I, which
is isotone, left continuous and has supremum 1. The set of all

ddf’s is denoted by D . The partial order � on D is the opposite
of the partial order of ddf’s as real functions. Obviously ðD;�Þ
is a lattice, we denote its join by t, and its meet by u. The set
R* of nonnegative real numbers, can be embedded in ðD;�Þ by
sending every r P 0 onto the crisp ddf er given by

erðsÞ ¼
d0; 0 < s 6 r

j
b1; s > r:

In particular, e0 = the constant function 1 on R+, is the bot-
tom element of ðD;�Þ. The T-addition ¯T and scaler multipli-
cation by nonnegative reals are defined on Dþ as follows: for

g; f 2 Dþ and s> 0:

ðg �T fÞðsÞ ¼ supfgðbÞTfðs� bÞ : 0 < b < sg: ð5Þ
ðbgÞðsÞ ¼ gðs=bÞ; for any b > 0: ð6Þ
Definition 3.1. [10]A probabilistic T-metric (T-PM) on a set X

is a function � : X	 X! Dþ that satisfies, for all x,y,z 2 X :

(TPM1) «(x,x) = 0;
(TPM2) «(x,y) = «(y,x);
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(TPM3) «(x, z) �« (x,y) ¯T « (y,z);

(TPM4) if x „ y, then «(x,y) „e0.

The pair (X,«) is called a probabilistic T-metric space. If

« satisfies (TPM1)–(TPM3) only, then « is called a proba-
bilistic T-pseudometric.

We shall apply the following notation: Given two non-
empty subsets H, M of a probabilistic T-metric space (X,«),
we put

�ðH;MÞ ¼ f�ðx; yÞ : ðx; yÞ 2 H	Mg: ð7Þ

A function FH : X! Dþ is defined by

FH ¼ �ðH; xÞ: ð8Þ

Also, for g 2 Dþ, we write

gð0þÞ ¼ inf
r>0

gðrÞ: ð9Þ

Theorem 3.1. [3] Let (X,«) be a probabilistic T-metric space.
Then the T-proximity d = d(«), induced by «, is given by:

dðl; kÞ ¼ inf
r>0

sup
x;y2X
flðxÞTð�ðx; yÞÞðrÞTkðyÞg; l; k 2 IX:

In particular, d(1H,1M) = («(H,M))(0+), H,M 2 2X.
Consequently, the fuzzy closure operator � of the T-

neighbourhood space (X,s(«)) is given by:

l�ðxÞ ¼ inf
r>0

sup
y2X
½lðyÞ Tð�ðx; yÞÞðrÞ�; l 2 IX; x 2 X:

In particular, (1H)
�(x) = («(H,x))(0+), H 2 2X, x 2 X.

For each triangular norm T, Höhle introduced in [4] a
probabilistic T-metric on Dþ, which we denote by I, as follows:
for all g; f 2 Dþ,

Iðg; fÞ ¼ ufn 2 Dþ : g � f �T n and f � g �T ng: ð10Þ

Obviously, it follows at once that [5]:

Iðg; e0Þ ¼ g; 8 g 2 Dþ: ð11Þ

In [4–6], Höhle defines for a T-PM « on a set X, a T-unifor-

mity X(«) on X by its T-uniform base {wr 2 IX·X: r> 0},
where

wrðx; yÞ ¼ ð�ðx; yÞÞðrÞ; x; y 2 X: ð12Þ

Proposition 3.1. [10]In ðDþ;XðIÞÞ, the binary operations t, u,
¯T are uniformly continuous. Also, scaler multiplication on Dþ
by a fixed b P 0 is uniformly continuous. In consequence, if

f; g : X! Dþ are two (uniformly) continuous functions, then
so will be f t g, f u g, f ¯T g, bf.

Proposition 3.2. Let M be a nonempty subset of X and

f : X! ðDþ; sðIÞÞ be a function such that f(M) = e0. Then
for all x 2 X, we have [f(M)]�(f(x)) = (f(x))(0+).

Proof 1. For every x 2 X, we have

ðfðxÞÞð0þÞ ¼ IðfðxÞ; e0Þð0þÞ; byð11Þ
¼ Iðe0; fðxÞÞð0þÞ; by ðTPM2Þ
¼ ðe0Þ�ðfðxÞÞ; by Theorem 3:1

¼ ½fðMÞ��ðfðxÞÞ: �
Definition 3.2. [3]A T-neighbourhood space (X,R) is said to be

T-completely regular if its I-topology R equals the initial I-
topology for the family of all continuous functions:
ðX;RÞ ! ðDþ; sðIÞÞ.

Theorem 3.2. [3]Let (X,�) = (X,R) be a T-neighbourhood

space. Then, the following statements are equivalent:

(i) (X,�) is T-completely regular;

(ii) (X,�) is T-unifomizable;
(iii) For every M ˝ X, x 2 X and h 2 I0, there is a continuous

function

f : ðX; �Þ ! ðDþ; sðIÞÞ such thatfðMÞ ¼ e0 and

ðfðxÞÞð0þÞ < ð1MÞ�ðxÞ þ h: ð13Þ

In categorical terms, Theorem 3.2 says that ðDþ; sðIÞÞ is a
Sierpinski object for the full subcategory of T-NS, of T-uni-

formizable T-neighbourhood spaces. For a brief introduction
to topological categories and Sierpinski objects, see [9]. Now,
we proceed to supply a Sierpinski object for category T-PS.

Definition 3.3. A gauge for a T-uniformity X on a set X is a T-

PM « on X such that X(«) ˝ X.

Proposition 3.3. Let w be a fuzzy vicinity in a T-uniform space
(X,X). Then there is a gauge « for X such that w 2 X(«).

Proof 2. We can choose a decreasing sequence (wn�1)n2N of

symmetric members of X, such that w0 6 w and (wn oT wn oT
wn) � 2�n 6 wn�1.

Define F : X	 X! Dþ as follows:

ðFðx; yÞÞðsÞ ¼
d0; s ¼ 0

jwkðx; yÞ; 2�k < s 6 2�ðk�1Þ

b1; s > 1:

Next, define � : X	 X! Dþ, by

�ðx; yÞ ¼
_
�n

i¼1Fðxi�1; xiÞ : xi 2 X; x0 ¼ x; xn ¼ y; n 2 N
� �

:

It is easy to see that « is a probabilistic T-pseudometric with
X(«) ˝ X, also

wnþ1ðx; yÞ 6 ð�ðx; yÞÞ2�n 6 wnðx; yÞ þ 2�n:

Now, for every e > 0, choose n 2 N such that e > 2�n, we get

ð�ðx; yÞÞð2�nÞ � e 6 wnðx; yÞ 6 wðx; yÞ:

Which proves that w 2 X(«). h

Proposition 3.4. Let (X,X) be a T-uniform space. Then for all
w 2 X, h 2 I0, x 2 X and a nonempty subset M of X, there is a
uniformly continuous function g : ðX;XÞ ! ðDþ;XðIÞÞ such

that g(M) = e0 and (g(x)) (1) < (wÆ1MæT)(x) + h.

Proof 3. By Proposition 3.3, there is a T-PM « on X with
w 2 X(«) ˝ X.

Consequently, wþ 1
2 h P w1 2 Xð�Þ, where

w1(x,y) = («(x,y)) (1), " x,y 2 X (cf.(12)).
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Let FM : X! Dþ be a function given by

FMðxÞ ¼ �ðM; xÞ ¼ sup
y2M
� ðy; xÞ; x 2 X:

This FM is a uniformly continuous [6. Proposition 5.2], also,
FM(M) = e0, (by (TPM1)). Thus for every x 2 X, we have

ðwh1MiTÞðxÞ þ h P ðw1h1MiTÞðxÞ þ
1

2
h

¼ sup
y2X
½1MðyÞTw1ðy; xÞ�

� �
þ 1

2
h

¼ sup
y2M

w1ðy; xÞ þ
1

2
h

> sup
y2M
� ðy; xÞð1Þ

¼ ðFMðxÞÞð1Þ:

This shows that FM satisfies all the properties stated for g. h

Proposition 3.5. If (X,d) is a T-proximity space, then for all

nonempty subsets H, M of X and all a > d(1H,1M), there is a
proximally continuous function f : ðX; dÞ ! ðDþ; dðIÞÞ such that
f(M) = e0, f is constant on H and g = f(H) satisfies g(1) = a.

Proof 4. There is a T-uniformity X on X that induces d [1].
Since a > d(1H,1M), then there is, by (3), a fuzzy vicinity
w 2 X such that

sup
y2X
ð1HTwh1MiTÞðyÞ ¼ a� h; for some h > 0:

By Proposition 3.4, there is a uniformly continuous function

g : ðX;XÞ ! ðDþ;XðIÞÞ such that g(M) = e0 and for all
x 2 H ; g(x) (1) < (wÆ1MæT)(x) + h 6 (a � h) + h = a. Define
g 2 Dþ by

gðsÞ ¼
d0; s ¼ 0

ja; 0 < s 6 1

b1; s > 1:

Then g � g(x) for all x 2 H. Define f : X! Dþ, by
f(x) = g(x) u g, "x 2 X. Then f is uniformly continuous (by

Proposition 3.1) and hence it is a proximally continuous from
(X,d) to ðDþ; dðIÞÞ. Also, f(M) = e0 and f(H) = g.

This completes the proof. h

Theorem 3.3. Every T-proximity d on a set X is the initial T-

proximity (=optimal lift in T-PS) for the set of all proximally
continuous functions from (X,d) into ðDþ; dðIÞÞ. Therefore, the
T-proximity space ðDþ; dðIÞÞ is a Sierpinski object for the cat-

egory T-PS.

Proof 5. Let d1 be the mentioned initial (coarsest) T-proximity
on X. Then d1 is coarser than d.

Now, we demonstrate the opposite relationship. Let
nonempty subsets H,M 2 2X and a 2 I, be such that
a > d(1H,1M).

Then by Proposition 3.5, there is a proximally continuous

function f : ðX; dÞ ! ðDþ; dðIÞÞ that satisfies f(M) = e0, f is
constant on H, and g = f(H) has g(1) = a. By definition of d1,
f is also a proximally continuous from (X,d1) into ðDþ; dðIÞÞ.
Consequently,

d1ð1H; 1MÞ 6 ðdðIÞÞðfð1HÞ; ðf1MÞÞ; by ð2Þ
¼ dðIÞÞð1fðHÞ; 1fðMÞÞ; clear

¼ IðfðHÞ; fðMÞÞð0þÞ; by Theorem 3:1

¼ Iðg; e0Þð0þÞ
¼ gð0þÞ; by ð11Þ
6 gð1Þ; by isotonicity of g

¼ a:

This establishes that d1(1H,1M) 6 d(1H,1M) for all H,M 2 X,
that is d is coarser than d1. Therefore, d = d1, as required. h

4. Functional T-separatedness

In this section, we introduce the definition and some properties
of functional T-separatedness of crisp fuzzy subsets for a given
T-neighbourhood space.

Definition 4.1. Let (X,R) be a T-neighbourhood space. For all

nonempty subsets H, M of X, let RðH;MÞ ¼ RRðH;MÞ be the
following set of functions:

RðH;MÞ ¼ ff : ðX;RÞ ! ðDþ; sðIÞÞ : f is continuous,
f(H) = e0 and f is constant on M}.

(This set is nonempty, as it contains the constant function e0).

We define a function C = CR: 2
X · 2X fi I by

Cð1H; 1MÞ ¼ sup
f2RðH;MÞ

½1� fðMÞð0þÞ�; H;M 2 2X: ð14Þ

and

Cð1H; 1;Þ ¼ Cð1;; 1HÞ ¼ 1; H 2 2X: ð15Þ

The function C is said to be functional T-separatedness and
the real number C(1H,1M) is called the degree of functional
T-separatedness of H and M in (X,R).

In the following theorem we compile those properties of the
function C which we shall need in the next section.

Theorem 4.1. Let (X,R) be a T-neighbourhood space. Then for

all H,M,N 2 2X, we have

(FTS1) C(1H,1M) = C(1M,1H);
(FTS2) if H ˝ M, then C(1H,1N) P C(1M,1N);

(FTS3) C(1(H[M),1N) = C(1H,1N) § C(1M,1N);
(FTS4) If C(1H,1M)> 1 � (hT b) for some h,b 2 I0, there

is C 2 2X such that C(1H,1C)> 1 � h and

C(1(X�C),1M) > 1 � b;
(TP5) If H \M „ ;, then C(1H,1M) = 0;
Proof 6. These are easily seen to hold whenever one of the
entering sets is empty. So, suppose that H, M and N are non-

empty subsets of X, then

(FTS1) For all f 2 RðH;MÞ, define gf : X! Dþ, by
gfðxÞ ¼ IðfðxÞ; fðMÞÞ; x 2 X:

Then for all x 2 H, we get

gfðxÞ ¼ Iðe0; fðMÞÞ
¼ IðfðMÞ; e0Þ; by ðTPM2Þ
¼ IfðMÞ; by ð12Þ
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that is, gf(H) = f(M).

Since f is constant on M, then, for all y 2M, we have
gfðyÞ ¼ IðfðyÞ; fðMÞÞ ¼ e0.

Moreover, gf equals the composite function Ioðf	 ðfðMÞÞÞ,
where f(M) is constant ddf. and · restricted cartesian product
of functions. Since these three functions are continuous (cf.

[3]), we conclude that gf is also continuous, therefore gf is in
RðM;HÞ. Consequently,

Cð1H; 1MÞ ¼ sup
f2RðH;MÞ

½1� fðMÞð0þÞ�

¼ sup
f2RðH;MÞ

½1� gfðHÞð0þÞ�

6 sup
g2RðM;HÞ

½1� gðHÞð0þÞ�

¼ Cð1M; 1HÞ:

Hence equality holds by interchanging H and M.

(FTS2) if H ˝ M, then evidently RðH;NÞ 
 RðM;NÞ and
so C(1H,1N) P C(1M,1N).

(FTS3) For all f 2 RðH;NÞ and g2 RðM;NÞ, f u g is e0 on
H [M and is constant on N. It is also continuous (Proposition
3.1). Therefore, f u g is also in RðH [M;NÞ. Hence we obtain

Cð1ðH[MÞ; 1NÞ ¼ sup
h2RðH[M;NÞ

½1� hðNÞð0þÞ�

P sup
ðf;gÞ2RðH;NÞ	RðM;NÞ

½1� ðf u gÞðNÞð0þÞ�

¼ sup
ðf;gÞ2RðH;NÞ	RðM;NÞ

f1� ½fðNÞð0þÞ
_

gðNÞð0þÞ�g

¼ sup
ðf;gÞ2RðH;NÞ	RðM;NÞ

f½1� fðNÞð0þÞ�
^
½1� gðNÞð0þÞ�g

¼ f sup
f2RðH;NÞ

½1� fðNÞð0þÞ�g
^
f sup
g2RðM;NÞ

½1� gðNÞð0þÞ�g

¼ Cð1H; 1NÞ
^

Cð1M; 1NÞ:

The opposite inequality follows from (FTS2). Which renders
(FTS3).

(FTS4) Suppose that C(1H,1M) > 1 � (hT b) for some

h,b 2 I0, then there are a,c 2 I0 and f1 2 RðH;MÞ such that
[1 � f1(M)(0+)] = a > c > 1 � (hTb).

Let f 2 Dþ be the ddf defined by

fðsÞ ¼
d0; s ¼ 0

j1� c; 0 < s 6 1

b1; s > 1:

Define f : X! Dþ by, f(x) = f1(x) u f, " x 2 X. Then
f(H) = e0, f(M) = f and f is continuous, by Proposition 3.1.

Take C = {x 2 X: f(x)(1) 6 1 � a}, and let g 2 Dþ be the

ddf

gðsÞ ¼
d0; s ¼ 0

j1� a; 0 < s 6 1

b1; s > 1:

Define h : X! Dþ by, h(x) = f(x) u g, " x 2 X. Then
h(H) = e0, f is continuous and for all x 2 C, we have, at

s 2 ]0,1]:
ðhðxÞÞðsÞ ¼ ðfðxÞ u gÞðsÞ
¼ ðfðxÞÞðsÞ

_
gðsÞ

P gðsÞ
¼ 1� a

¼ ðfðxÞÞð1Þ
_
ð1� aÞ

P ðfðxÞÞðsÞ
_

gðsÞ; because fðxÞ is isotone
¼ ðhðxÞÞðsÞ:

Moreover, at s> 1:
(h(x))(s) = (f(x) u g)(s) = (f(x))(s) ¤ g (s) = (f(x))(s) ¤ 1 =

1= g(s). Also, (h(x))(0) = (f(x) u g)(0) = f(x)(0) ¤ g(0) =
(f1(x) u f)(0) ¤ g(0) = f1(x)(0) ¤ f(0) ¤ g(0) = 0. This proves
that h(C) = g, which completes the proof that h is in RðH;CÞ.
Consequently,

Cð1H; 1CÞP 1� hðCÞð0þÞ ¼ 1� gð0þÞ ¼ a > 1� ðhTbÞ
P 1� h;

which establishes one half of (FTS4).
Now, define a function g : X! Dþ by,

gðxÞ ¼ Iðg; g t I f; f u 1
2 fðxÞ

� �
; x 2 X.

We have g is continuous because f, t, u and I are
continuous with respect to s and sðIÞ.

We need the following identities, which easily follow from
definitions of g, f and I:

Iðf; g �T fÞ ¼ g ð16Þ

I f;
1

2
f

� 	
¼ f ð17Þ

Iðg; fÞ ¼ f ð18Þ

Thus for every y 2M, we get

gðyÞ ¼ Iðg; g t I f; f u 1

2
f

� 	

¼ Iðg; g t I f;
1

2
f

� 	
; because

1

2
f � f

¼ Iðg; g t fÞ; by ð17Þ
¼ Iðg; fÞ; because g � f

¼ f; by ð18Þ

That is, g(M) = f.
Now, for all s P 0, we have

ðg �T fÞðsÞ ¼

d0; s ¼ 0

jð1� aÞTð1� cÞ; 0 < s 6 1

j1� a; 1 < s 6 2

b1; s > 2:

Thus,

f � g �T f: ð19Þ

Hence, for all x 2 X � C, we get
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e0 � gðxÞ ¼ Iðg; g t I f; f u 1

2
fðxÞ

� 	

� Iðg; g t Iðf; g �T fÞÞ; by ð19Þand definition of I

¼ Iðg; g t gÞ; by ð16Þ
¼ Iðg; gÞ ¼ e0

that is, g(X � C) = e0.
Which completes the proof that g is in RðX� C;MÞ. In

consequence,

C(1(X�C), 1M) P 1 � g(M)(0+) = 1 � f(0+) = c > 1 �
(hTb) P 1 � b,

which establishes the other half of (FTS4).

(FTS5) If H \M „ ;, then evidently, every f in

RðH;MÞ must be equal to e0 on M. Hence,

Cð1H; 1MÞ ¼ supf2RðH;MÞ½1� fðMÞð0þÞ� ¼ 1� e0ð0þÞ ¼ 1�
1 ¼ 0.

Which completes the proof. h

Lemma 4.1. If (X, �) is a T-neighbourhood space, then for all
l 2 IX and H ˝ X, we have l T (1H)

�
6 (l T 1H)

�.

Proof 7. Let l 2 IX and H ˝ X. Then for every x 2 X, we have

½lTð1HÞ��ðxÞ ¼ lðxÞTð1HÞ�ðxÞ
¼ lðxÞT inf

m2RðxÞ
hgtð1HTmÞ

¼ inf
m2RðxÞ

hgt½lðxÞT1HTm�; by continuity and isotonicity of T

6 inf
m2RðxÞ

hgt½ðlT1HÞTm�

¼ ðlT1HÞ�ðxÞ:

That is, lT(1H)
�
6 (lT1H)

�. h

Example 4.1. Let (X, �) = (X,R) be a T-neighbourhood space

and define a function C: 2X · 2X fi I by

Cð1H; 1MÞ ¼ 1� hgt½ð1HÞ�Tð1MÞ��; H;M 2 2X:

It is easy to verify that the function C is a functional T-separ-
atedness, it is enough to check (FTS3) and (FTS4) of Theo-
rem 4.1, since the other axioms are trivially hold.

(FTS3) Let H,M,N 2 2X. Then

Cð1ðH[MÞ; 1NÞ ¼ 1� hgt½ð1ðH[MÞÞ�Tð1NÞ��
¼ 1� hgtf½ð1HÞ�

_
ð1MÞ��Tð1NÞ�g

¼ 1� hgtf½ð1HÞ�Tð1NÞ��
_
½ð1MÞ�Tð1NÞ��g

¼ 1� fhgt½ð1HÞ�Tð1NÞ��
_

hgt½ð1MÞ�Tð1NÞ��g
¼ f1� hgt½ð1HÞ�Tð1NÞ��g

^
f1� hgt½ð1MÞ�Tð1NÞ��g

¼ Cð1H; 1NÞ
^

Cð1M; 1NÞ:

(FTS4) Let H,M 2 2X, with C(1H,1M) > 1 � (hTb) for some

h,b 2 I0. Then hgt [(1H)
� T (1M)�] < hTb. So, there are

h1,b1 2 I, such that h1 < h and b1 < b, for which hgt [(1H)
�

T (1M)�] < h1Tb1, hence

; ¼ ½ð1HÞ�Tð1MÞ��ðh1Tb1Þ�

¼
[

aTcPh1Tb1

f½ð1HÞ��a�
\
½ð1MÞ��c�g; by½4; Lemma 1:2�


 ½ð1HÞ��h1�
\
½ð1MÞ��b1�:
By taking C ¼ ½ð1MÞ��b1� 2 2X, we have

Cð1H; 1CÞ ¼ 1� hgt½ð1HÞ�Tð1CÞ��
¼ 1� hgtfð1HÞ�T½ðð1MÞ�Þb1��

�g
P 1� hgtfð1HÞ�T½1X � ðð1HÞ�Þh1��

�g
P 1� hgtfð1HÞ�T½1X � ð1HÞ��h1�g

�
; by Lemma 4:1

P 1� hgtðh1Þ�

¼ 1� h1

> 1� h;

and

Cð1ðX�CÞ; 1MÞ ¼ 1� hgt½ð1X�CÞ�Tð1MÞ��
¼ 1� hgtf½1X � ðð1MÞ�Þb1��

�
Tð1MÞ�g

P 1� hgtf½1X � ðð1MÞ�Þb1��
�
Tð1MÞ�g�; by Lemma 4:1 again

P 1� hgtðb1Þ
�

¼ 1� b1

> 1� b:
5. T-proximity induced by T-neighbourhood structure

In this section, we show that every T-neighbourhood space
generates a T-proximity space, also, we introduce the notion
of Čech T-proximity space. In [1], we have seen that every T-
uniformity X on a set X, induces a T-proximity d(X), we prove

that, the I-topologies generated by the two structures X and
d(X) are coincide.

Theorem 5.1. Let (X,R) be a T-neighbourhood space and define

dR: 2
X · 2X fi I by

dRð1H; 1MÞ ¼ 1� CRð1H; 1MÞ; M;H 2 2X: ð20Þ

Then dR is a T-proximity on X, also s(dR) ˝ R and equality
holds if and only if (X,R) is T-completely regular.

Proof 8. From definition of CR, we get dR satisfies (TP1), and
the other axioms follows immediately from properties of CR

established in Theorem 4.1. Therefore, dR is a T-proximity
on X.

Now, let M 2 2X, x 2 X and denote the fuzzy closure
operators associated with R, s(dR) and sðIÞ respectively by �1,
�2, �3. Then, we have

½ð1MÞ�2�ðxÞ ¼ dRð1M; 1xÞ; by ð4Þ
¼ 1� CRð1M; 1xÞ
¼ 1� f sup

f2RðM;xÞ
½1� ðfðxÞÞð0þÞ�g

¼ inf
f2RðM;xÞ

ðfðxÞÞð0þÞ

¼ inf
f2RðM;xÞ

ð½fð1MÞ��3ÞðfðxÞÞ; by Proposition 3:2

P inf
f2RðM;xÞ

½fðð1MÞ�1Þ�ðfðxÞÞ; by continuity of f

¼ inf
f2RðM;xÞ

½f ðfðð1MÞ�1ÞÞ�ðxÞ

P ½ð1MÞ�1�ðxÞ; clear

Which yields,

ð1MÞ�2 P ð1MÞ�1; 8 M 2 2X: ð21Þ
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This establishes (cf. [5. Corollary 2.1]) that, s(dR) is coarser

than R.
On the other hand, if (X,R) is T-completely regular, then by

Theorem 3.2, we get for every M 2 2X, x 2 X and h 2 I0, there

is a continuous function

g : ðX; �Þ ! ðDþ; sðIÞÞ, for which g(M) = e0 and

(g(x))(0+) < (1M)�(x) + h, (that is g 2 RðM; xÞ).
Consequently

½ð1MÞ�2�ðxÞ ¼ dRð1M; 1xÞ
¼ 1� CRð1M; 1xÞ
¼ 1� f sup

f2RðM;xÞ
½1� ðfðxÞÞð0þÞ�g

¼ inf
f2RðM;xÞ

ðfðxÞÞð0þÞ

6 ðgðxÞÞð0þÞ
6 ½ð1MÞ�1�ðxÞ þ h:

This yields,

ð1MÞ�2 6 ð1MÞ�1; 8 M 2 2X:

This establishes the opposite inequality (21), which renders
s(dR) = R.

Conversely, if s(dR) = R then R is T-proximizable, and
hence T-completely regular.

As in [2], since the I-topological space (X,s(d)) induced by

the T-proximity space (X,d) is a T-neighbourhood space, then
from this fact together with Theorem 5.1, we have there is a
one to one corresponding between T-proximity and T-neigh-
bourhood structures. h

Definition 5.1. If the T-neighbourhood space (X,R) is a T-
completely regular, then the T-proximity dR on X, defined by
(20), is called Čech T-proximity of (X,R).

To justify this terminology, we proceed to establish a
maximality property for Čech T-proximities.

Theorem 5.2. The Čech T-proximity dR, of a T-completely reg-

ular T-neighbourhood space (X,R), is the finest T-proximity on
X that induces R.

Proof 9. By Theorem 5.1, we have dR induces R. Now, let d be

another T-proximity on X that induces R. For all nonempty
subsets H, M of X, and all a > d(1H,1M), there is, by Proposi-
tion 3.5, a function f 2 RðH;MÞ with (f(M)) (1) = a. Conse-
quently, dR(1H,1M) = 1 � CR(1H,1M) 6 (f(M))(0+) 6 (f(M))

(1) = a.

This establishes d(1H,1M) P dR(1H,1M), which proves that
d is coarser than dR. h

Theorem 5.3. Let f: (X,d) fi (Y,q) be a proximally continuous
function. Then it is continuous with respect to the I-topologies

generated by d and q, respectively.

Proof 10. We denote the fuzzy closure operators associated
with s(d) and s(q) respectively by �1, �2. Then, for every k 2 IX

and all y 2 Y, we have
½fðk�1Þ�ðyÞ ¼ sup
x2f ðyÞ

ðk�1ÞðxÞ

¼ sup
x2f ðyÞ

dðk; 1xÞ; by ð4Þ

6 sup
x2f ðyÞ

qðfðkÞ; fð1xÞÞ; by hypothesis

¼ sup
x2f ðyÞ

qðfðkÞ; 1fðxÞÞ

¼ sup
x2f ðyÞ

½fðkÞ��2ðfðxÞÞ

¼ ½fðkÞ��2ðyÞ;

that is, f(k�1) 6 [f(k)]�2

Which proves the continuity of f: (X,s(d)) fi (Y,s(q)). h

Proposition 5.1. If the function f: (X,R) fi (Y,R0) between T-

neighbourhood spaces is continuous, then it is a proximally con-
tinuous from (X,dR) to ðY; dR0). The converse holds when its
codomain (Y,R0) is T-completely regular.

Proof 11. For all nonempty H,M 2 2X and all

g 2 RR0 ðfðHÞ; ðfðMÞÞ, the composite function g o f is in
RR(H, M). This entails that

dRð1H; 1MÞ ¼ 1� CRð1H; 1MÞ
6 1� CR0 ð1fðHÞ; 1fðMÞÞ
¼ dR0 ð1fðHÞ; 1fðMÞÞ
¼ dR0 ðfð1HÞ; fð1MÞÞ:

Hence, by (2), we have f is a proximally continuous with re-
spect to dR and dR0 .

Conversely, suppose that h : ðX; dRÞ ! ðY; dR0 Þ is a proxi-
mally continuous, then, by Theorem 5.3, we get
h : ðX; sðdRÞÞ ! ðY; sðdR0 ÞÞ is continuous.

But from Theorem 5.1, we have s(dR) ˝ R and sðdR0 Þ ¼ R0,
consequently,

h is also continuous: (X,R) fi (Y,R0).

Now, we define a function d�, from category of T-
neighbourhood spaces and continuous functions to category
of T-proximity spaces and proximally continuous functions,

as:

On object (X,R) in T-NS, by d�(X,R) = (X,dR) an objects

in T-PS. On morphisms, d� is the identity function. Then an
obvious conclusion from the above theorems is that these d� is
well defined functor. h

Proposition 5.2. [2]Let (X,X) be a T-uniform space. Then the
fuzzy closure operator of the T-neighbourhood space
(X,s(X)) is given by:

l� ¼ inf
w2X

whliT; l 2 IX:

Theorem 5.4. If X is a T-uniformity on a set X, and d(X) is the
T-proximity induced by the T-uniformity X, then the I-topology
s(X) coincide with s(d(X)).

Proof 12. Let l 2 IX and x 2 X, and denote the fuzzy closure

operators associated with s(X) and s(d(X)) respectively by �1,
�2. Then, we have
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l�2ðxÞ ¼ ðdðXÞÞðl; 1xÞ; by ð4Þ
¼ ðdðXÞÞð1x; lÞ; by ðTP2Þ
¼ inf

w2X
sup
y2X
ð1x;TwhliTÞðyÞ; by ð3Þ

¼ inf
w2X
ðwhliTÞðxÞ

¼ l�1ðxÞ; by Proposition 5:2

This proves our assertion. h

Proposition 5.3 1. If Xd is the T-uniformity induced by a T-
proximity d on a set X, then d(Xd) = d. By combining Theorem

5.4 and Proposition 5.3, we arrive to the fact that, a T-proxim-
izability is equivalent to T-uniformizability. Hence, from Theo-
rem 3.2, we get a T-neighbourhood space is T-proximizable

(i.e., induced by a T-proximity) if and only if it is T-completely
regular.
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