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Abstract Because of their flexibility, recently, much attention has been given to the study of

generalized distributions. A complete study of the beta generalized logistic distribution (type IV)

is proposed, introducing an approximate form for the median and deducing the mean deviation

from the mean and the median. A complete parameter estimation using the method of maximum

likelihood and the method of moments is presented. Some characteristic properties of the general-

ized logistic distribution type I are discussed. Also, a highlight to some properties of an analog dis-

tribution to the generalized logistic distribution type IV, discussed by Zografos and Balakrishnan

[1], is presented.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

More than 170 years ago, Verhulst [2,3] used the logistic func-
tion for economic demographic purposes. Gumbel [4] found
that the logistic distribution arises in a purely statistical man-
ner as the limiting distribution (as n fi1) of the standardized

midrange (average of largest and smallest values) of random
samples of size n from a symmetric distribution of exponential
type. Gumbel and Keeney [5] showed that a logistic distribu-

tion is obtained as the limiting distribution of an appropriate
multiple of the ‘extremal quotient’, that is, (largest value)/
(smallest value). Talacko [6] proved that the logistic distribu-

tion is the limiting distribution (as r fi1) of the standardized
su.edu.eg (A. Elmasry).

ptian Mathematical Society.

g by Elsevier

ical Society. Production and hostin

8.011
variable corresponding to
Pr

j¼1j
�1Xj, where Xj’s are indepen-

dent random variables each having a type I extreme value
distribution. A number of authors discussed important

applications of the logistic distribution in many fields including
survival analysis, growth model and public health. Several dif-
ferent forms of generalizations of the logistic distribution have

been proposed in the literature, and studied in Balakrishnan
and Leung [7], Balakrishnan [8], and Johnson et al. [9], i.e.
types I, II, III and IV. The type I generalized logistic distribu-
tion has the following density function (pdf)
gðxÞ ¼ ake�kx

ð1þ e�kxÞaþ1
; �1 < x <1; a > 0: ð1Þ
If X has type I generalized logistic distribution in (1), then-X
has a type II generalized logistic distribution. The type III gen-
eralized logistic distribution has the pdf gðxÞ ¼ 1

Bða;aÞ
ke�kax

ð1þe�kxÞ2a ;
�1 < x <1; a > 0,

Last but not least, the type IV beta generalized logistic dis-
tribution, or BGL (a,b,k), as introduced by Prentice [10] and

Kalbfleisch and Prentice [11], is given by the pdf
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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gðxÞ ¼ 1

Bða; bÞ
ke�kbx

ð1þ e�kxÞaþb ; �1 < x <1; a; b > 0; ð2Þ

where Bða; bÞ ¼
R 1

0
ta�1ð1� tÞb�1dt is the complete beta func-

tion and k is the scale parameter.

The BGL (a,b,k) defined in (2) is also called the log-F
distribution. This is just the family of logistic distributions gen-
erated from the beta distribution, proposed by Jones [12],

where the class of ‘‘beta-generated distributions’’ has the pdf
given by

gðx; a; bÞ ¼ 1

Bða; bÞ fðxÞ½FðxÞ�
a�1½1� FðxÞ�b�1; a; b > 0; ð3Þ

and

FðxÞ ¼ ð1þ e�kxÞ�1; �1 < x <1; k > 0; ð4Þ

where F(x) is the cumulative distribution function (Cdf) of the
standard logistic distribution.

It is well known, in general, that a generalized model is
more flexible than the ordinary model and it is preferred
by many data analysts in analyzing statistical data.Here, we
will be concerned mostly with the beta generalized logistic

distribution type IV, i.e. BGL (a,b,k). Let us introduce the
Cdf of the BGL (a,b,k) distribution, as proposed by Jones
[12], given by

GðxÞ ¼ 1

Bða; bÞ

Z ð1þe�kxÞ�1

0

ta�1ð1� tÞb�1dt ¼ I 1

1þe�kx
ða; bÞ ð5Þ

where Iyða; bÞ ¼ Byða;bÞ
Bða;bÞ is the incomplete beta function ratio and

the incomplete beta function is Byða; bÞ ¼
R y

0
wa�1ð1� wÞb�1dw,

while the pdf is given by Eq. (2).

We can express the Cdf in Eq. (5) in terms of the hypergeo-
metric function, as given by Gradshteyn and Ryzhik [13], as
follows

GðxÞ ¼ 1

aBða; bÞ
1

1þ e�kx 2F1 a; 1� b; aþ 1;
1

1þ e�kx

� �
: ð6Þ

The BGL (a,b,k) distribution generalizes the various forms of
the logistic distribution. For a = b = 1, we obtain the stan-

dard logistic distribution. The generalized logistic (i.e. BGL
(a, 1,k)) distribution type I is a special case for the choice of
b = 1. As for the case b = a, we have the generalized logistic

distribution type III. Fig. 1 gives plots of the pdf (2) for differ-
ent values of (a,b,k).

The hazard function of the BGL (a,b,k) distribution is

hðxÞ ¼ 1

Bða; bÞ
ke�kbx

ð1þ e�kxÞaþb

1

1� GðxÞ ; �1 < x

<1; a; b > 0: ð7Þ

Section 2 introduces some properties of the BGL (a,b,k) as
studied in the literature as well as a complete discussion in
deducing an explicit form for the median and hence the mean
deviation followed by the deduction of Renyi and Shannon

entropies. Section 3 provides different methods of inference
of the parameters in (2). Some characteristic properties of
BGL (a, 1,k) distribution are introduced in Section 4. In

Section 5, an analog family of BGL distribution, defined by
Zografos and Balakrishnan [1], is presented. We conclude, in
Section 6, some remarks on discriminating between the two
families of generalized logistic distributions, and an applica-

tion to real data.

2. Properties of the BGL distribution

2.1. Limiting behavior

If a and b both tend to infinity, as discussed by Aroian [14],
then the appropriately normalized log F distribution tends to

the normal distribution. If a fi1 but b is fixed, then the
appropriately normalized log F distribution tends to the distri-
bution with density proportional to e�bte�e

�t
;�1 < t <1.

Likewise, if b fi1 but a is fixed, then the appropriately nor-
malized log F distribution tends to the (log gamma) distribu-
tion with density proportional to eate�e

t
;�1 < t <1 (see

Prentice [15]). That is, the case where only a fi1 results in

the limiting distribution of the b th largest order statistic; like-
wise, when b fi1 the limiting distribution is that of the ath
smallest order statistic. The particular form of limiting extreme

value-type distribution when a or b is fixed is a consequence of
the exponential tails of the logistic distribution.

2.2. Unimodality

The logistic distribution is very similar in shape to the normal dis-
tribution because its symmetric bell shaped pdf. Besides the max-

imum difference between the two distribution functions can be
less than 0.01, as proposed by Mudholkar and George [16]. So,
the logistic distribution has a close approximation to the normal

distribution. This is why it makes it profitable, on suitable occa-
sions, to replace the normal by the logistic to simplify the analysis
without toomany discrepancies. The BGL (a,b,k) distribution, as
discussed in Johnson et al. [9], is unimodal with mode at 1

k log
a
b.

Hence the pdf of a BGL distribution is an increasing function
for x < 1

k log
a
b and it is a decreasing function for x > 1

k log
a
b.

One can also observe that for a > b, it is positively skewed, for
a < b, it is negatively skewed and symmetric for a = b.

2.3. Median

An important and characteristic feature for any distribution is
the median m, and since it has not been discussed before, our
main goal in this subsection is to deduce an approximate and

easy-to-use formula for the median of the BGL (a,b,k). To de-
duce it, it is well known that

GðmÞ ¼ 1
2
. Taking into consideration that b is an integer and

integrating, we obtain

Bða; bÞ
2
¼
Xb�1
j¼o

b� 1

j

� �
ð�1Þj

aþ j

1

1þ e�km

� �aþj

: ð8Þ

The summation on the right-hand side converges absolutely

for 1
1þe�km

��� ��� < 1. Using the approximation technique, the med-
ian can be written as

m � 1

k
log

1

2
aBða;bÞ

h i1=a
� 1

: ð9Þ

Now, if b is not an integer, the summation is infinite, and

again, converges absolutely for 1
1þe�km

��� ��� < 1, and hence a good



Figure 1 Plots of pdf (2) for various values of parameters.
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approximation is the one given in (9). In the special case of the
generalized logistic distribution type I, that is, when b = 1, we
obtain

m ¼ 1

k
log

1

21=a � 1
:

2.4. Characteristic function

The characteristic function (cf) of the BGL (a,b,k) distribution
can be deduced to yield

fðtÞ ¼
B aþ it

k ; b� it
k

� �
Bða; bÞ : ð10Þ

If b = 1,we obtain the cf of the BGL (a, 1,k) distribution as

proposed by Ahuja and Nash [17] and Johnson et al. [9]. For
a = 1 and b = 1, the above expression reduces to the cf of
the standard logistic distribution (see Johnson et al. [9]).

The mean and variance of BGL (a,b,k), introduced by

Davidson [18], can thus be written as

l ¼ EðXÞ ¼ 1

k
½wðaÞ � wðbÞ�

and

r2 ¼ VarðXÞ ¼ 1

k2
w0ðaÞ þ w0ðbÞ½ �;

where wðxÞ ¼ d
dx

logCðxÞ and w0ðxÞ ¼ d
dx

wðxÞ are known as

digamma and polygamma functions, respectively. In fact,
c = �w (1) = 0.577215 is called the Euler’s constant.

The skewness and kurtosis are

s1 ¼
w00ðaÞ � w00ðbÞ
½w0ðaÞ þ w0ðbÞ�3=2

ð11Þ

and
s2 ¼
w000ðaÞ þ w000ðbÞ
½w0ðaÞ þ w0ðbÞ�2

: ð12Þ

To discuss the behavior of skewness, we give the following
result.

Theorem 1.

(i) For any fixed a, the skewness s1 (a,b) is a decreasing
function of b.

(ii) For any fixed b, the skewness s1 (a,b) is an increasing
function of a.
Proof. Differentiating s1 (a,b) with respect to b,

@s1ða; bÞ
@b

¼ � Aþ B

2½w0ðaÞ þ w0ðbÞ�5=2

where

A ¼ 2w000ðbÞw0ðaÞ þ 3w00ðaÞw00ðbÞ;
B ¼ 2w000ðbÞw0ðbÞ � 3w00ðbÞw00ðbÞ:

From Proposition 9 of Uesaka [19], B > 0. Also, the nth deriv-
ative of the digamma function

wðnÞðxÞ ¼
X1
k¼0

ð�1Þnþ1n!

ðxþ kÞnþ1
ð13Þ

gives A> 0. Thus the derivative of skewness with respect to b
is less than zero, and hence (i) is verified.

Again, differentiating with respect to a,

@s1ða; bÞ
@a

¼ CþD

2½w0ðaÞ þ w0ðbÞ�5=2

where
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C ¼ 2w000ðaÞw0ðbÞ þ 3w00ðaÞw00ðbÞ;
D ¼ 2w000ðaÞw0ðaÞ � 3w00ðaÞw00ðaÞ

In the same manner, using Proposition 9 of Uesaka [19],
D> 0. Also, as discussed above, C> 0, thus verifying (ii).

The asymptotic behavior of skewness and kurtosis as a and

b tend to zero or infinity is an important issue and is discussed
DðlÞ ¼ 2lGðlÞ � 2

kBða; bÞ
X1
k¼0

b� 1

k

� �
ð�1Þb�1�k log v� 1

aþ b� k� 1

� �
vaþb�k�1

aþ b� k� 1

"

þ
X1
j¼0

a� 1

j

� �
ð�1Þa�1�j logð1� vÞ � 1

aþ b� j� 1

� �
ð1� vÞaþb�k�1

aþ b� j� 1

#

in the following theorems. h
DðmÞ ¼ l� 2

kBða; bÞ
X1
k¼0

b� 1

k

� �
ð�1Þb�1�k log u� 1

aþ b� k� 1

� �
uaþb�k�1

aþ b� k� 1

"

þ
X1
j¼0

a� 1

j

� �
ð�1Þa�1�j logð1� uÞ � 1

aþ b� j� 1

� �
ð1� uÞaþb�k�1

aþ b� j� 1

#

Theorem 2. The limiting values of skewness of the BGL distribu-
tion as a and b tend to zero or infinity are given by the following

lim
a!0
b!1

s1ða; bÞ ¼ �2; lim
a!1
b!0

s1ða; bÞ ¼ 2; lim
a!0
b!0

s1ða; bÞ ¼ 0: ð14Þ

The proof can be easily deduced using Eq. (13).

Theorem 3. The limiting values of kurtosis of the BGL distribu-
tion as a and b tend to zero or infinity are given by the following

lim
a!0
b!1

s2ða; bÞ ¼ 6; lim
a!1
b!0

s2ða; bÞ ¼ 6: ð15Þ

The proof, again, can be carried out using Eq. (13).
2.5. Mean deviation

The deviation from the mean (in the case of symmetric distri-
butions) or the deviation from the median (in the case of

skewed distributions) is an important measure of spread in a
population. Let X be a random variable having pdf given in
Eq. (2) with mean l = E(X) and median m. The mean devia-

tion from the mean and the mean deviation from the median
are defined, respectively, by

DðlÞ ¼ EðjX� ljÞ ¼
Z 1

�1
jX� ljgðxÞdx

DðmÞ ¼ EðjX�mjÞ ¼
Z 1

�1
jX�mjgðxÞdx:

The mean deviation from the mean can be simplified as

DðlÞ ¼ 2lGðlÞ � 2

Z l

�1
xgðxÞdx: ð16Þ
The mean deviation from the median, similarly, can be sim-
plified as

DðmÞ ¼ l� 2

Z m

�1
xgðxÞdx: ð17Þ

Then the mean deviation from the mean and the mean devi-

ation from the median are, respectively, given by
and
where

v ¼ 1

1þ e�ðwðaÞ�wðbÞÞ ; u ¼ aBða; bÞ
2

� �1=a

:

2.6. Renyi and Shannon entropies

The notion of entropy is of fundamental importance in differ-
ent areas such as physics, probability and statistics, communi-
cation theory, and economics. Since the entropy of a random

variable is a measure of variation of the uncertainty, the Renyi
entropy can be deduced to yield

IRðnÞ ¼
1

1� n
log

kn�1Bðna; nbÞ
Bnða; bÞ

: ð18Þ

A special case, defined in Shannon’s [20] pioneering work
on the mathematical theory of communication, given by Shan-

non entropy – a major tool in information theory and in al-
most every branch of science and engineering – is

�hshðgBÞ ¼ logBða; bÞ � log k� a½wðaÞ � wðaþ bÞ�
� b½wðbÞ � wðaþ bÞ� ð19Þ

as introduced by Zografos and Balakrishnan [1].

3. Parameter estimation and inference

In the following subsections, we discuss two methods of
parameter estimation thus deriving the estimators in each case.

3.1. Maximum likelihood estimators

Here, we consider the maximum likelihood estimators (MLEs)

of the BGL(a,b,k) distribution given in (2). Let X=
(X1, X2, . . . , Xn) be a random sample of size n from the BGL
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(a,b,k) distribution. The log-likelihood function can be written
as follows:

logL ¼ �n logBða; bÞ þ n log k� kb
Xn
i¼1

xi � ðaþ bÞ
Xn
i¼1

logð1

þ e�kxiÞ:

Setting �x ¼ 1
n

Pn
i¼1xi and differentiating with respect to a,b and

k, we obtain the following normal equations

@ logL

@a
¼ �nwðaÞ þ nwðaþ bÞ þDnðkÞ

@ logL

@b
¼ �nwðbÞ þ nwðaþ bÞ þ nkxþDnðkÞ

@ logL

@k
¼ n

k
� nb�x� ðaþ bÞ

Xn
i¼1

xie
�kxi

1þ e�kxi
;

ð20Þ

where DnðkÞ ¼
Pn

i¼1 logð1þ e�kxiÞ.
For interval estimation and hypothesis tests on the model

parameters, we require the information matrix. The Fisher
information matrix K= K(h), h = (a,b,k)T, is

K ¼
Ka;a Ka;b Ka;k

Ka;b Kb;b Kb;k

Ka;k Kb;k Kk;k

0
B@

1
CA;

whose elements are

Ka;a ¼ E � @
2 logL

@a2

� �
¼ nw0ðaÞ � nw0ðaþ bÞ;

Ka;b ¼ E � @
2 logL

@a@b

� �
¼ �nw0ðaþ bÞ;

Kb;b ¼ E � @
2 logL

@b2

� �
¼ nw0ðbÞ � nw0ðaþ bÞ;

Kk;k ¼ E � @
2 logL

@k2

� �
¼ n

k2
þ n

ab
aþ bþ 1

;

Kb;k ¼ E � @
2 logL

@b@k

� �
¼ n

k
ðwðaÞ � wðbÞÞ þ nb

aþ b
ðwðaÞ

þ wðaþ bþ 1Þ � wðaþ bÞ � wðbþ 1ÞÞ;

Ka;k ¼ E � @
2 logL

@a@k

� �
¼ nb

aþ b
ðwðaÞ þ wðaþ bþ 1Þ

� wðaþ bÞ � wðbþ 1ÞÞ:

The MLE ĥ ¼ ðâML; b̂ML; k̂MLÞT of h is numerically deter-
mined from the solution of the nonlinear system of equations

given earlier. Under conditions that are fulfilled for the param-
eter h in the interior of the parameter space but not on the

boundary, the asymptotic distribution of
ffiffiffi
n
p
ðâML � aÞ;½ffiffiffi

n
p
ðb̂ML � bÞ;

ffiffiffi
n
p
ðk̂ML � kÞ�T is N3(0, K

�1(a,b,k)T). The asymp-

totic normal N3ð0;K�1ðâML; b̂ML; k̂MLÞTÞ distribution of

ĥ ¼ ðâML; b̂ML; k̂MLÞT can be used to construct confidence re-
gions for some parameters and for the hazard and survival
functions. In fact, a 100(1 � c)% asymptotic confidence inter-

val (ACI) for each parameter is given by

ACIa ¼ âML � zc=2

ffiffiffiffiffiffiffi
K11

p
; âML þ zc=2

ffiffiffiffiffiffiffi
K11

p� 	
ACIb ¼ b̂ML � zc=2

ffiffiffiffiffiffiffi
K22

p
; b̂ML þ zc=2

ffiffiffiffiffiffiffi
K22

p� 	
ACIk ¼ k̂ML � zc=2

ffiffiffiffiffiffiffi
K33

p
; k̂ML þ zc=2

ffiffiffiffiffiffiffi
K33

p� 	
where Kii denotes the ith diagonal element of

K�1ðâML; b̂ML; k̂MLÞT for i= 1, 2, 3 and zc/2 is the 1 � c/2 of
the standard normal distribution.

3.2. Moment estimators

Let X = (X1, X2, . . . , Xn) be a random sample of size n from
the BGL (a,b,k) distribution. Under the method of moments,
equating E(X), Var(X) and E(X � E(X))3, respectively,

with the corresponding sample estimates s1 ¼ 1
n

Pn
i¼1xi; s2 ¼

1
n

Pn
i¼1ðxi � s1Þ2 and s3 ¼ 1

n

Pn
i¼1ðxi � s1Þ3 respectively, one ob-

tains the system of equations

s1 ¼
1

k
½wðaÞ � wðbÞ�

s2 ¼
1

k2
½w0ðaÞ þ w0ðbÞ�

s3 ¼
1

k3
½w00ðaÞ � w00ðbÞ�

ð21Þ

Combining the three equations in (21), one obtains

w0ðaÞ þ w0ðbÞ
½wðaÞ � wðbÞ�2

¼ s2
s21

and

w00ðaÞ � w00ðbÞ
½wðaÞ � wðbÞ�3

¼ s3
s31

This can be solved simultaneously to give the estimates for
a and b:

âMM and b̂MM:

The estimate for k can then be obtained directly from

k̂MM ¼
1

s1
½wðâMMÞ � wðb̂MMÞ�:
4. Some characteristic properties of GL distribution

Let X be a random variable with Cdf G(x) and characteristic

function cf f(t), takinginto consideration that b = 1. Let
X1, X2, . . . , Xn be a random sample of size n from the
BGL(a, 1,k), and denote the corresponding order statistics by

X1,n 6 X2,n 6 � � � 6 Xn,n. The distribution function and charac-
teristic function of Xk,n are denoted by Gk,n and fk,n, respec-
tively. For the special case of an odd sample size

n= 2m � 1, denote the sample median Xm,2m�1 by X(m) and
its Cdf and cf by G(m) and f(m), respectively. As usual, define
G�1(t) = inf{x:G(x) P t},t 2 (0,1) to be the quantile function
of G. Moreover, let R be the real line and denote equality in

distribution by d. We now give some basic properties.

Theorem 4. Let X have the BGL (a, 1,k), i.e.

G(x) = (1 + e�kx)�a, x 2 R, and let U follow the uniform
distribution on [0,1]. Then the following properties hold.

(a) The quantile function of G is G�1ðtÞ¼ 1
k log

t1=a

1�t1=a

h i
;t2ð0;1Þ,

and hence X d 1
k log

U1=a

1�U1=a

h i
.

(b) The moment generating function of X is
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MðsÞ ¼ C aþ s

k

� 	
C 1� s

k

� 	
=CðaÞ; s 2 ð�1; 1Þ:

(c) The cf fðtÞ ¼ MðitÞ ¼ B aþit
k;1�

it
kð Þ

Bða;1Þ ; t 2 R

(d) The cf of the smallest order statistic X1:n is

f1:nðtÞ¼nfðtÞ
Xn�1
j¼0

n�1

j

� �
ð�1Þn�1�j

C aðn� jÞþ it
k

� �
Cðaþ1Þ

Cðaðn� jÞþ1ÞC aþ it
k

� �; t2R:

ð22Þ

In particular,

f1:2ðtÞ ¼ 2fðtÞ 1�
C 2aþ it

k

� �
Cðaþ 1Þ

Cð2aþ 1ÞC aþ it
k

� �
" #

; t 2 R

and

f1:3ðtÞ ¼ 3fðtÞ 1� 2
C 2aþ it

k

� �
Cðaþ 1Þ

Cð2aþ 1ÞC aþ it
k

� �þ C 3aþ it
k

� �
Cðaþ 1Þ

Cð3aþ 1ÞC aþ it
k

� �
" #

;

2 R:

For the special case a = 1,k = 1, we obtain the result due to Lin
and Hu [21]

f1:2ðtÞ ¼ fðtÞ½1� it� and f1:3ðtÞ ¼ fðtÞ½1� it� 1� it

2


 �
; t 2 R:

(e) For n = 2m � 1 P 3, the cf of the sample median X(m) is

fm:2m�1ðtÞ ¼
2m� 1!

m� 1!2
fðtÞ
Xm�1
j¼0

m� 1

j

� �
ð�1Þm�1�j

�
C að2m� 1� jÞ þ it

k

� �
Cðaþ 1Þ

Cðað2m� 1� jÞ þ 1ÞC aþ it
k

� � ; t 2 R: ð23Þ

In particular,

f2:3ðtÞ ¼ 6fðtÞ
C 2aþ it

k

� �
Cðaþ 1Þ

Cð2aþ 1ÞC aþ it
k

� ��C 3aþ it
k

� �
Cðaþ 1Þ

Cð3aþ 1ÞC aþ it
k

� �
" #

; t 2R

For the special case a = 1,k = 1, this reduces to Lin and Hu’s

result [21]

f2:3ðtÞ ¼ fðtÞð1þ t2Þ:

(f) The moments of order statistics are given, for 1 6 j 6 n

and k P 1, by the following

EðXk
j;nÞ ¼

1

kk

Xn�j
r¼0

wðk�1Þððn� rÞaÞ þ ð�1Þkwðk�1Þð1Þ
" #

ð24Þ

EðXk
j;nÞ � EðXk

j;n�1Þ ¼
1

kk
wðk�1ÞðnaÞ ð25Þ

EðXk
j�1;nÞ � EðXk

j;nÞ ¼
1

kk
wðk�1Þððj� 1ÞaÞ: ð26Þ

(g) The moment generating function of Xk,n is
Figure 2 Plots of pdf (29) for various values of parameters.
Mk;nðtÞ ¼ ak
n

k

� �Xn�k
l¼0

n�k

l

� �
ð�1Þn�k�lB aðn� lÞþ t

k
;1� t

k

� 	
:

ð27Þ

Results 4.1(a)–(g) are generalizations of those given by Gupta
and Balakrishnan [22]. Applying the Muntz–Szasz theorem,
we are able to characterize the BGL (a,1,k) by using the recur-

rence relations (24)–(27) (see Lin [23]).
5. Gamma-generated logistic distribution

Recently, a family of continuous distributions has been intro-
duced through a particular case of Stacy’s generalized gamma

distribution-in the same spirit as Jones’ family defined through
the beta distribution – given by the pdf

gðxÞ ¼ s
CðdÞ f� logð1� FðxÞÞgsd�1e�½� lnð1�FðxÞÞ�s fðxÞ

1� FðxÞ ;

x 2 R; s; d > 0: ð28Þ

For s = 1, the above pdf takes the form

gðxÞ ¼ 1

CðdÞ ½� logð1� FðxÞÞ�d�1fðxÞ; x 2 R; d > 0;

with F(x) given by (4) as follows:
gðx; d; kÞ ¼ 1

CðdÞ � log 1� 1

1þ e�kx

� �
 �d�1 ke�kx

ð1þ e�kxÞ2
;

�1 < x <1; d > 0: ð29Þ

Let us denote the gamma-generated Logistic distribution in
(29) by GGL (d, 1,k). In the case d = n, where n is a positive
integer, the density function in (29) is the pdf of the nth upper

record value arising from a sequence of independent and iden-
tically distributed random variables from a population with
Cdf F(x) given by (4). First of all, the Cdf of the GGL

(d, 1,k) is given by the following

GðxÞ ¼ 1þ e�kx

k

X1
k¼dþ1

gðx; k; kÞ: ð30Þ

Fig. 2 gives plots of the pdf (29) for different values of d and k.
The most important characteristic features for the distribu-

tion (29) are discussed in the following subsections.

5.1. Mode

The mode of the GGL (d,1,k) is deduced by differentiating the
pdf g(x). This leads to the approximate mode 1

k logð2dÞ. Hence
the pdf of the GGL (d, 1,k) is an increasing function for

x < 1
k logð2dÞ and it is a decreasing function for

x > 1
k logð2dÞ: One can observe that for d > 1

2
, it is positively

skewed, for 0 < d < 1
2
, it is negatively skewed and symmetric

for d ¼ 1
2
.
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5.2. Median

The second important feature is the median m0 which can be
derived using (30) and the approximation technique to obtain
the approximate form for the median

m0 � 1

k
log

Cðdþ 1Þ
2

� � 1
d�1

� 1

( )
: ð31Þ
5.3. Mean

The rth moment of the GGL (d, 1,k), as proposed by Zografos

and Balakrishnan [1], is given by

EðXrÞ ¼ ð�1Þ
d�1

kCðdÞ

Z 1

0

log
1� y

y

� �r

½logð1� yÞ�d�1dy:

For d > 1 a natural number, Zografos and Balakrishnan [1]
expected that it cannot be simplified further. This is true for
r> 1, but, for the case r= 1, the mean of the GGL (d, 1,k)
is given by

EðXÞ ¼ d
k

1þ
X1
k¼1

1

kðkþ 1Þdþ1

" #
: ð32Þ
5.4. Shannon entropy

Last but not least is Shannon entropy of the GGL (d, 1,k), as
introduced by Zografos and Balakrishnan [1],

�hshðgGÞ ¼ logCðdÞ � ðd� 1ÞwðdÞ � log kþ d

þ
X1
k¼1

1

kðkþ 1Þd
: ð33Þ
5.5. Maximum likelihood estimation

The log-likelihood function of the distribution (29) can be
written as follows:

logL ¼ n log k� n logCðdÞ þ ðd� 1Þ
Xn
i¼1

log½logð1þ ekxiÞ�

� k
Xn
i¼1

xi � 2
Xn
i¼1

logð1þ e�kxiÞ:
Figure 3 Fitted densities to the d
Differentiating with respect to k and d, we obtain the following

equations,

@ logL

@k
¼n

k
�ðd�1Þ

Xn
i¼1

1

logð1þekxi Þ:
xie

kxi

ð1þekxi Þ�
Xn
i¼1

xiþ2
Xn
i¼1

xi

ð1þekxi Þ
@ logL

@d
¼�nwðdÞþ

Xn
i¼1

loglogð1þekxi Þ:

The MLE of the parameters can be determined numerically

from the solution of the nonlinear system of equations given
above.

6. Concluding remarks

The problem of testing whether some given observations can
be considered as coming from one of two probability distribu-

tions is an old problem in statistics, as given by Kundu et al.
[24] and Zografos and Balakrishnan [1]. Our interest is to iden-
tify the specific model that is most appropriate to describe the

data under consideration. In the spirit of maximum entropy
principle, we have to decide in favor of one of the two proba-
bility distributions using the following difference

DB;G ¼ �hshðgBÞ � �hshðgGÞ
¼ logBða; bÞ � a½wðaÞ � wðaþ bÞ� � b½wðbÞ � wðaþ bÞ�

� logCðdÞ þ ðd� 1ÞwðdÞ � d�
X1
k¼1

1

kðkþ 1Þd
:

Observe that DB,G does not depend on the parent distribution

F. It is clear because gB and gG are based on the same parent F.
In this paper, we studied the generalized logistic distribu-

tion and provided detailed mathematical treatment for this dis-
tribution. As an application, consider short-and long-term

outcomes of constraint-induced movement therapy after
stroke investigated in a randomized controlled feasibility trial
by Dahl et al. [25]. The 30 patients were assessed at baseline,

post treatment, and a 6-month follow-up using the Wolf Mo-
tor Function Test as primary outcome measure. The test con-
sists of 17 tasks with two strength and 15 timed tasks which

vary from gross shoulder movements to complex finger grips.
The measurement was done by the analysis of videotapes.
The 30 observations were 0.5, 1.0, 1.0, 1.5, 1.0, 1.5, 2.0, 1.0,

0.5, 1.0, 0.5, 1.0, 1.0, 1.5, 1.0, 0.5, 1.0, 1.5, 1.0, 1.0, 0.5, 1.0,
1.0, 1.5, 1.5, 1.0, 1.0, 0.5, 1.0, and 1.0, measured in seconds.The
MLE estimates for the BGL distribution are â ¼ 17:8374;
ata set given in Dahl et al. [25].
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b̂ ¼ 3:29048; k̂ ¼ 1:76279: Also, the maximized log-likelihood
determined by fitting the BGL, GGL, gamma and Weibull dis-
tributions are, respectively,

log LðBGLÞ ¼ 181:8719208; log LðGGLÞ
¼ �32:39702109; log LðGÞ
¼ 28:84992755; log LðWÞ ¼ 119:958053:

The fitted BGL, GGL, gamma and Weibull densities are dis-
played in Fig. 3. They show that the BGL distribution yields

a better fit to these data than theGGL, gamma and Weibull
distributions.
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