
NiOA: A Novel Metaheuristic Algorithm Modeled on the Stealth and
Precision of Japanese Ninjas

El-Sayed M. El-Kenawy 1,2,3,4 ∗, Faris H. Rizk5, Ahmed Mohamed Zaki5, Mahmoud Elshabrawy
Mohamed5, Abdelhameed Ibrahim1, Abdelaziz A. Abdelhamid6,7, Nima Khodadadi8,

Ehab M. Almetwally9,10, Marwa M. Eid11

1School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT),
Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain.

2Jadara University Research Center, Jadara University, Jordan.
3Applied Science Research Center. Applied Science Private University, Amman, Jordan.

4Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology,
Mansoura 35111, Egypt.

5Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA
6Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University,

Cairo 11566, Egypt
7Department of Computer Science, College of Computing and Information Technology, Shaqra University,

11961, Shaqra, Saudi Arabia
8Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, USA
9Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11432, Saudi Arabia
10Faculty of Business Administration, Delta University for Science and Technology, Gamasa 11152, Egypt
11Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt

*Corresponding author: skenawy@ieee.org
Emails: skenawy@ieee.org, faris.rizk@jcsis.org, Azaki@jcsis.org, mshabrawy@jcsis.org,
abdelhameed.fawzy@polytechnic.bh, abdelaziz@cis.asu.edu.eg, nima.khodadadi@miami.edu,
EMAlmetwally@imamu.edu.sa, mmm@ieee.org

Abstract

This paper presents a new metaheuristic optimization algorithm called the Ninja Optimization Algorithm
(NiOA) owing to its characteristics such as stealth, precision, and adaptability of the ninjas of Japan. NiOA is
proposed to avoid high exploration and exploitation costs within such complex search spaces and to avoid the
problem of getting trapped in local optima. The algorithm imitates ninja searching techniques because it has
a scanning phase, adapted to search large areas to look for answers, while the more specific phase is used to
refine the answers found. The performance of NiOA is compared with other benchmark optimization functions
and some of the frequently used CEC 2005 benchmarks. These benchmarks are well suited to test unimodal
and multimodal optimization problems of good quality. Experimental results prove that NiOA can signifi-
cantly provide better optimization results regarding solution quality, convergence rate, and time complexity,
suggesting that NiOA is a robust algorithm for solving high-dimensional large-scale optimization problems.
Furthermore, it reveals that NiOA is applicable to solve different kinds of problem spaces, signifying that
NiOA can be used in practice on scientific and engineering problems.
Keywords: Ninja Optimization Algorithm, metaheuristic, exploration and exploitation, complex problem
solving, adaptive optimization
MSC: 68T20; 62J05; 93B45

Doi: https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and
conditions of the Creative Commons Attribution (CC BY) license.

1 introduction

Metaheuristic optimization algorithms have become a valuable source for solving optimization problems that
conventional methods fail to solve satisfactorily. These algorithms offer customizable structures that can be
applied to potentially significant solution spaces in the high dimensionality where exact or deterministic type
methods can be inapplicable due to the existence of non-linearity, multimodality, or a lack of knowledge of the
shape of the objective function. Several metaheuristic algorithms have been introduced in recent decades based
on numerous natural processes and phenomena, such as evolution, swarm intelligence, and physics. Again,
metaheuristic techniques have been found particularly useful due to flexibility in implementation and capability
to provide reasonable suboptimal solutions within acceptable computer time for practically an extensive array
of scientific and engineering problems [1–3].
The success of metaheuristic algorithms is rooted in their ability to balance two essential aspects of opti-
mization: exploration and exploitation. Exploration is the capacity of the algorithm to search in areas of the
solution space that it has not visited to avoid being trapped with local optima. At the same time, exploitation
focuses on fiddling around the promising search space region to converge to optimum search points. Find-
ing this balance effectively sets a good metaheuristic approach above the rest, as being bad at this weakens a
metaheuristic [4–6].
Recently, new metaheuristic algorithms have continued to be developed and are derived from various aspects
of animalology, natural processes or anthropology. Such algorithms include Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Firefly Algorithm (FA). They are promis-
ing algorithms for solving single-objective as well as multi-objective optimization problems. However, given
that several methods are available on the topic, the current work indicates that there is still room for enhancing
methodological research, especially about how to enhance convergence speed and solving methods for com-
plicated constraint problems. The operating reliability of the optimization methods across various problem
areas [7–9].
In this paper, a newly developed metaheuristic algorithm called the Ninja Optimization Algorithm (NiOA)
is based on the features of the ninjas in Japan’s history. In this case, the ninja terminology of movement,
execution, and environment provides the best framework for constructing a sound optimization strategy. NiOA
uses this characteristic to construct an optimizer to successfully search between exploration and exploitation
and to build a practical approach to the stochastic character of the solutions space [10–12].
A new approach is presented by the Ninja Optimization Algorithm (NiOA), which includes several features that
can enhance the general performance of mainstream metaheuristic algorithms. In particular, NiOA establishes
a contextual movement phase for the search and an exact expansion phase for the exploitation. This enables
NiOA to adapt and fine-tune the solutions provided for high-dimensional problems and successfully solve
complex optimization problems without premature convergence to a suboptimal solution. In contrast, the
quality of the solutions increases continuously [13–15].
Altogether, the Ninja Optimization Algorithm presents a new idea in the expanding area of metaheuristic opti-
mization and plays a vital role in developing more effective optimization algorithms that can solve significant,
complex problems in the real world.

2 Literature Review

Most metaheuristic algorithms are applied for solving worldwide optimization issues that are difficult to solve.
The initial strategies which formed the basis of classical methods include Genetic Algorithms (GA) and Par-
ticle Swarm Optimization (PSO) while the new strategies are characterized by efficiency in search and the
ability to solve large and complex problems. This section offers an evaluation of metaheuristic advancements
with a focus on the gaps that led to the concept development of the Ninja Optimization Algorithm (NiOA).
Deep neural networks, or DNNs, have become recognized as influential machine learning metaheuristics
adopted and embraced in many practice areas since they can learn features from big data sets independently.
DNNs are otherwise unique in terms of their structures and parameters, which may be optimized depending on
the task. Nevertheless, the training of DNNs may consume considerable time when training big data or when
used in a computationally intensive application. Moreover, finding a deep learning model’s best-performing
and feasible architecture within a limited time frame also appears more problematic. Thus, metaheuristics,
including swarm intelligence (SI) and evolutionary computing (EC), are excellent optimization approaches
based on specific theories and functions. Such approaches are general and have shown reasonable practicabil-
ity in various contexts, so they can be used to fine-tune DNN models. This paper aims to present a significant
review of the current state-of-the-art optimization techniques for the most essential tasks of DNNs, mainly SI
and EC methods. [16] also explores the importance of these optimization techniques in defining the correct

18

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

hyperparameters and architecture for DNNs, especially when dealing with big data. Moreover, it lists a few
directions in which evolutionary methods for DNNs can be improved, discussing some open problems and
future trends for this fast-growing sub-lineage in the field.
The paper [17] presents a novel nature-inspired meta-heuristic algorithm, the Spider Wasp Optimization
(SWO) algorithm. This algorithm is derived from female spider wasps’ hunting, nest construction, and mating
practices. Thus, the SWO algorithm includes several specific update techniques that adjust for various problem
classes and their necessities for exploration and exploitation. The performance of the proposed SWO algo-
rithm was evaluated through comparisons with nine recently developed and well-established meta-heuristic
algorithms across four different benchmarks. We evaluated the algorithm performance on four benchmarks,
including (1) a set of 23 essential benchmark functions that are unimodal and multimodal, (2) the CEC2017
benchmark, (3) the CEC2020 benchmark, and (4) the CEC2014 benchmark. These were some of the parame-
ters used in measuring the performances of the proposed SWO algorithm. Furthermore, the capability of the
SWO algorithm was tested on two engineering problems: the welded beam design problem and the pressure
vessel design problem, along with parameter estimations of single-diode, double-diode and triple-diode pho-
tovoltaic models. These real-world optimization techniques were further employed to assess the algorithm’s
performance. The experimental analysis confirms that the SWO algorithm performs well compared to some
of the most popular meta-heuristic techniques on four verified benchmarks and appears superior for solving
realistic optimization problems.
In [18], the authors propose a Light Spectrum Optimizer (LSO), a new metaheuristic algorithm based on the
physical phenomenon, for continuous optimization problems. The LSO algorithm is based on Light Dispersion
in which several light rays pass through the rain droplets at diffusion angles, producing the rainbow of colors
you see. This natural process is mimicked in the LSO to help search the multidimensional plane for an optimal
solution. Three tests were thoroughly provided to verify the usability of the introduced LSO algorithm. In the
first experiment, LSO was applied to the CEC 2005 benchmark suite and compared with many metaheuristic
benchmark algorithms. The second experiment assessed the performance of LSO on four single-objective op-
timization test functions from CEC competitions: CEC2014, CEC2017, CEC2020, and CEC2022. These were
then compared with the results from eleven essential optimization algorithms. Apart from benchmark testing,
the LSO algorithm is also used in several engineering design problems, where it compares with the different
algorithms identified in the literature. The obtained experiment results, confirmed by the subsequent statis-
tical analysis, revealed the LSO algorithm’s benefits and showed that it outperforms several representatives
of established and recent optimization algorithms. These findings show that the Light Spectrum Optimizer
has excellent potential as an efficient tool for addressing any optimization problem. Testing the algorithm on
various benchmark functions and real-life problems demonstrates its effectiveness and flexibility in achieving
better solutions for various optimization problems.
Solving optimization problems in different branches of science is a great challenge that has to be met us-
ing suitable optimization methods. In [19], the authors present the Waterwheel Plant Algorithm (WWPA), a
metaheuristic with a stochastic nature mimicked from natural processes. The basic idea of WWPA is based
entirely on the natural behavior of the waterwheel plant during the hunting process, in which plants are used as
searchers for prey. An overview of the mathematical structure of WWPA is discussed to solve the challenging
optimization issues comprehensively. The efficiency of the WWPA was evaluated using 23 objective func-
tions of the unimodal and multimodal types. The optimization analysis of unimodal functions shows WWPA’s
good exploitation capabilities to converge to the optimal solution of the given functions. However, optimizing
multimodal functions shows that WWPA can explore the environment and find a significant optimal solution
regarding the search space. In addition, to assess its applicability in practice, the WWPA was applied to three
engineering design tasks. In these contexts, the performance of the algorithm was evaluated using seven other
metaheuristic algorithms that are commonly used. Overall, the simulation results and analyses point to the
high efficiency of the WWPA application for solving various optimization problems and identify it as the best
quantitative method for reaching the optimum.
The paper [20] introduces a new metaheuristic algorithm for population-based search named the Gazelle Op-
timization Algorithm (GOA) that tries to mimic gazelles’ survival strategy in a world entirely of predators.
Each day, the gazelle understands that if it fails to outrun and out wit the predators, he becomes the dish of the
day, thus to survive the gazelles have to get away from their predators every time. This information is essential
for proposing a new metaheuristic algorithm based on the gazelle’s survival characteristics to solve global op-
timization issues. The exploitation phase of the algorithm models the gazelles, which graze when the predator
is not in sight or when the latter is following one of them. Interestingly, the operation of the GOA goes into
the exploration phase as soon as a predator is sighted. The exploration phase includes when the gazelle tries to
leave the path of a predator by moving faster and gaining a safety zone. These two phases are then performed
cyclically about the termination condition and the solution of optimal solutions concerning these optimization

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

problems. The efficiency and stability of the developed algorithm as a member of the optimization toolbox
were verified using optimization test functions and chosen engineering design problems (15 conventional,
10 combined functions and 4 problems based on mechanical engineering designs). The performance of the
proposed GOA is compared with nine other competing algorithms available in the literature. The simulation
results that were yielded in this study corroborate the efficacy and effectiveness of the GOA algorithm in
problem-solving as compared to the other nine competitive algorithms that are present in the literature. Also,
the standard statistical analysis test conducted on the result proved that GOA competently solves the selected
optimization problems. It also revealed that GOA was at least on par with, or in some instances quite close
to, some state-of-the-art algorithms. Furthermore, the results reveal that GOA is an effective optimization
algorithm that can be applied across various optimization in the domain.
Feature extraction is a critical step in a machine learning process, and although multiclass feature selection
is more challenging, many classifications are binary. The problem of feature selection is usually focused on
decreasing the dimensionality of the feature set and, at the same time, on the accuracy of the performance
model. Various classifications of datasets exist, which can be done in different ways. However, metaheuristic
algorithms receive a considerable amount of interest in solving a variety of problems in optimization. There-
fore, [21] aims to provide a systematic review of the literature for solving multiclass feature selection problems
using a metaheuristic algorithm that can help classifiers to select features closer, if not the best, in terms of
speed and accuracy. Metaheuristic algorithms have also been presented in four primary categories depending
on their behavior: Evolutionary-based algorithms, Swarm-Intelligence algorithms, Physics-based algorithms,
and human-based algorithms, although some of the literature contributed more to categorization. In addition,
the categories mentioned above-presented lists of metaheuristic algorithms. While searching for the solution
to the problems concerning multiclass feature selection, only the papers that view metaheuristic algorithms
as applied to the problems of multiclass feature selection published between 2000 and 2022 were considered
as to their various categories and descriptions in detail. Some application areas for some of the metaheuristic
algorithms applied for multiclass feature selection with their variations are described below.
When applying the recently developed and efficient swarm intelligence algorithms, finding the solution for
mechanical design problems is often challenging. There are too many challenges to be solved, including mixed
decision variables, different constraints, errors, objectives conflict, and many local optima. [22] evaluates nine
categories of metaheuristic algorithms involving SSA, MVO, MFO, ASO, EBO, QSA, EO, ES and HSOGA.
These algorithms are tested for efficiency on eight mechanical design problems based on solution quality and
convergence, confirming that these algorithms are well suited to be applied to application problems.
As can be observed, every metaheuristic optimization algorithm needs some form of initialization; generally,
the initialization step is done randomly for such optimizers. However, initialization can have some significant
impacts on the performances of such algorithms. [23] compares 22 different initialization methods on the
convergence and accuracy of five optimizers: DE, PSO, CS, ABC and GA. To discuss the possible effects
of initialization, population size and the number of iterations, we have employed 19 different test functions
with different properties and modalities. The result of the statistical ranking test, which shows considerable
ranking differences, proves that the estimated coefficient is valid at 43. Notably, 37% of the functions using
the DE algorithm indicate a high sensitivity when they are initialized differently; on the other hand, 73%. Of
the functions deployed in a function Algorithm that employs both PSO and CS algorithms, 68% are sensitive
to various initialization techniques. The simulations also reveal that initialization affects DE less than PSO and
CS. Second, it can be seen that the effect of the population size is even more substantial under the restriction
of the maximum feasible number of FEs. Particle swarm optimization usually involves a larger population size
of particles, while the cuckoo search requires a population of a few cuckoo birds. One must also note that the
differential evolution-solving capability relies more on the number of iterations, and yet a small population size
with more iterations yields a better solution. Moreover, compared with other algorithms, ABC’s convergence
is more sensitive to initialization, and such an initialization does not significantly impact GA. Probability
distribution includes beta, exponential and Rayleigh distributions, which can sometimes lead to improved
performance.
The paper [24] presents a novel metaheuristic optimization algorithm, called the K-means Optimizer (KO),
for solving optimization problems in numerical function optimization and engineering design problems. The
KO algorithm utilizes the K-means clustering technique to define the centroid vectors of cluster regions at
each iteration. They use two contrasting movement patterns to balance exploration (searching for new areas)
and exploitation (optimizing existing solutions). The feasibility of a strategy for exploration or exploitation
depends on a parameter that controls whether a search agent stays in a region without any improvement to
the self. One of the significant uses of KO was in solving the SDI issue for a complex 3D concrete structure,
a seven-story building with a total height of 25m. 2 meters. In this structure, the finite element (FE) model
was solved by using the SAP2000 software. For the first time, a sub-program was created that allows data

20

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

exchange between SAP2000 and MATLAB in real time using the Open Application Programming Interface
(OAPI) library to update the FE model. A statistical assessment of the KO algorithm was then made, and the
Wilcoxon rank-sum and Friedman ranking tests were used. The. The work results show that the KO algorithm
surpasses other algorithms on the mentioned benchmark functions. Thus, the results of this study support
the ability and efficiency of the K-means Optimizer to perform various optimization problems, especially in
structure damage identification (SDI).
Metaheuristics can, therefore, be described as computational techniques that are used to help control the search
in a particular search space to solve an optimization problem. Due to the widespread use of large data sets
in different fields, there is a constant demand to improve the metaheuristic algorithms and introduce new
ones with high accuracy and performance. Given these goals, [25] presents a new meta-heuristic optimization
algorithm called Crystal Structure Algorithm (CryStAl). The CryStAl algorithm is based on adding the basis
to the lattice points and the crystal shaping by the points’ symmetrical arrangement often observed in atoms,
molecules or ions of crystalline minerals such as quartz. This natural phenomenon is then used to create the
algorithm to achieve the right balance between the exploration of the search space and the exploitation. A total
of 239 mathematical functions were employed to assess the performance of the CryStAl algorithm, which
were dividedwaso four groups. In this study, the performance of the proposed CryStAl algorithm was tested
and compared with 12 other classical and modern metaheuristic algorithms taken from the literature. The
minimum, mean, and standard deviation of the KLD values and the number of function evaluations for a given
tolerance were computed and reported for CryStAl and the other competitors. These outcomes, accompanied
by detailed statistical analysis, proved that CryStAl algorithm has spectacular performance, which surpass
several other metaheuristic techniques in most cases.
In conclusion, lots of improvements have been made in metaheuristic optimization, but some of the present
algorithms have an issue like early convergence and a poor search for solutions in the large numbers of vari-
ables. These gaps are catered for by the proposed Ninja Optimization Algorithm (NiOA), which proposes a
more dynamic and balanced exploration and exploitation strategy and therefore the NiOA positions it as a new,
promising method in the field of optimization.

3 Proposed Ninja Optimization Algorithm (NiOA)

The Ninja Optimization Algorithm (NiOA) is proposed here as a metaheuristic algorithm derived from the
ninja concepts involving stealthiness, accuracy, and flexibility. NiOA deals with major optimization issues,
namely how to prevent the algorithm from converging too early and how to escape local optima through a
proper balance between exploration and exploitation. The exploration phase replicates the ninja move; he
must always observe his environment and cover as many aspects of the target area as possible. On the other
hand, the exploitation phase follows the same surgical ethos of the ninjas and is more about enhancing and
perfecting high-potential solutions. This section discusses how NiOA was developed, where it is headed, and
how its mathematical model may surpass traditional optimization tools.

3.1 Inspiration and Mechanism

The basis of the NiOA is borrowed from the ninja fighters from Japan, who are famous for their secretive,
accurate, and adapting techniques. Traditionally, a ninja was a warrior who moved into a territory stealthily
and used tactics that entailed a lot of talent, discipline and finesse. These qualities can readily be mapped for
optimization problems since they consist of a search space with large areas to explore and focus on for speed
solutions.
Ninjas needed to move around the enemy terrains, within which they needed to assess dynamics and respond
appropriately to alterations. This ability to traverse without being detected represents how an optimizer has to
be flexible enough to scale the peaks of the search space and the plains without being stuck at a local maximum.
The NiOA embodies this in the exploration phase, replicating the ninja action where they move around areas
one has not explored or it is unsafe to tread, analogous to searching for opportunities without being noticed or
facing loss.
Likewise, ninjas master sophisticated and purposeful movements in a focused and calculated way to hit the
weakest points of an opponent with as little energy as possible to cause as much damage as possible. This
characteristic is explained in the exploitation phase of NiOA, where the algorithm categorizes its search around
promising solutions, which it then narrows down with precision and velocity – similar to a ninja who targets
the critical area of his body.
In addition, they can adapt to the tools in the environment, the knowledge of the environment, and deception,
which are also incorporated into NiOA. The algorithm’s architecture provides for transient alterations in its

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

behavior pattern based on the present situation in the search domain. This makes it possible for NiOA to
strike a nice balance between exploration and exploitation. Switching between the two should depend on the
problem level, just like how ninjas adjust depending on the operation.
In this way, NiOA uses the principles of stealth, precision and activity from the film about ninja fighters to de-
sign an optimization procedure that allows to solve high-dimensional optimization tasks while simultaneously
being efficient. With efficient exploration and subsequent exploitation planning, NiOA guarantees it will be
able to move in the problem space fluidly and purposefully, akin to the Japanese ninjas in their operations.

3.2 Experimental Setup

3.2.1 Exploration Phase

In the exploration phase, NiOA investigates diverse potential solutions across the search space to prevent
getting trapped in local optima. The following position update equation governs the exploration behavior for
a search agent Ls(t+ 1) at time step t+ 1:

Ls(t+ 1) =

{
Ls(t) + r1 · (Ls(t1)− Ls(t2)), if specific conditions are met,
Random Ls(t

′) ∈ FS(met), otherwise.
(1)

Here, r1 is a random factor that introduces variability in the movement of the search agent, while t1 and t2
refer to previous iterations of the algorithm. This equation ensures that the algorithm explores new regions
of the search space, thereby avoiding stagnation. If certain predefined conditions are met (such as insufficient
improvement in the fitness function), the algorithm randomly selects values within the feasible solution space
FS(met), further promoting exploration.
In addition, the position of the second variable, Ds(t+ 1), is updated according to the following equation:

Ds(t+ 1) = Ds(t) + |Ds(t) + r2 ·Ds(t)| · cos(2πt), (2)

Where r2 is another random scaling parameter. The cosine function introduces oscillatory behavior, encour-
aging exploration by varying the magnitude and direction of the search agent’s movements. This periodic
behavior helps NiOA avoid premature convergence by allowing for the exploration of both global and local
areas of the search space.
Mutation Mechanism
NiOA includes a mutation mechanism to enhance the diversity of the explored solutions. The mutation operator
introduces controlled randomness, which enables the algorithm to escape from local optima and discover new
potential solutions. The mutation equation is defined as:

N =

a∑
n=0

(−1)n

2n+ 1
x · (2n+ 1), (3)

Where a is a randomly generated integer, this mutation mechanism applies a perturbation to the current so-
lution, creating a more diverse set of candidate solutions for the next iteration. Using random integers and
alternating signs ensures that the mutation effect is varied, enhancing the algorithm’s ability to explore under-
explored regions of the search space.

3.2.2 Exploitation Phase

Once promising regions of the search space have been identified, NiOA enters the exploitation phase, where the
search intensifies around high-quality solutions. This phase aims to refine the solutions by focusing on a local
search around the best candidates found during exploration. The update equation for the solution Ms(t + 1)
during exploitation is given by:

Ms(t+ 1) = J1Ms(t) + 2J2 · (Ms(t) + (Ms(t) + J1)) ·
(
1− Ms(t)

Ms(t) + J1

)2

, (4)

where J1 and J2 are constants that control the intensification of the search. This equation encourages the
algorithm to focus on exploiting the local neighborhood around the best solutions, while the squared term
modulates the step size, preventing overexploitation and ensuring that the search remains adaptable.
Solution Update Mechanism
The solution update in NiOA is designed to adapt dynamically as the search progresses. The solution Rs(t+1)
is updated using the following equation:

22

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

Rs(t+ 1) = Rs(t) + (1 +Rs(t) + J2) · exp(cos(2π)), (5)

Where exp(cos(2π)) introduces non-linearity in the solution update, helping the algorithm to adapt dynami-
cally to changes in the fitness landscape. This update rule ensures that NiOA balances between intensifying the
search around promising solutions and maintaining sufficient exploration to discover new, potentially better
solutions.
Stagnation Handling and Update
To prevent the algorithm from stagnating when no improvement is observed over a certain number of iterations,
NiOA applies the following update mechanism to generate new potential solutions:

B(s(t+ 1)) = Ls(t+ 1) + i · n · (Ls(t+ 1)−Ds(t+ 1)) + i · n · (Ms(t+ 1) + 2vs ·Rs(t+ 1)), (6)

Where i, n, and vs are parameters that control the intensity and direction of the update. This equation ensures
that if the algorithm is stuck in a local optimum, a more aggressive update is applied to the solution, increasing
the chances of escaping the local optimum and continuing the search for a global solution.
Parameter Settings
The parameters used in NiOA are critical to its performance and must be carefully tuned. The following ranges
are typically used for these parameters:

• a ∈ [6, 10] – controls the mutation behavior.

• v1 ∈ [0, 1] – a scaling factor for exploitation.

• r2 ∈ [0, 1] – a random factor for exploration.

• r3 ∈ [0, 2] – a random factor for exploitation.

• J1 ∈ [0, 2] – adjusts the intensification step size.

• J2 ∈ [0, 2] – controls the dynamic adaptation of the solution.

• n ∈ [0, 2] – controls the update during stagnation.

These parameters offer flexibility to NiOA because they enable participation in a wide range of optimization
problems. A tendency of parameters can greatly influence the result; thus, parameters are normally tuned
according to the problem solved.

3.3 Pseudo-code of the Ninja Optimization Algorithm

The Ninja Optimization Algorithm (NiOA) is a fresh metaheuristic optimization approach based on some
characteristics of ninjas such as flexibility and dexterity. NiOA is systematically planned to solve multifaceted
optimization problems thereby making exploration and exploitation phases optimized to enable global and
localized search in optimum manner. The algorithm starts with a generated population, where each element of
the population is an agent, a solution in a given problem space. At each step, the agents reposition themselves
according to exploration, mutation and exploitation exploration strategies. He mentioned that, these strategies
offer the means of escaping local optima and get closer to a global optimum. The best solution is constantly
modified in the process, which has a positive impact on team outcomes, he added. Algorithm 1 Below is the
detailed pseudo-code for NiOA:

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

Algorithm 1 Ninja Optimization Algorithm (NiOA)

1: Initialize parameters: population size N , maximum iterations T , random initial positions Ls,t, Ds,t, r1,
r2, J1, J2, n, a, vs, best solution Bs

2: While t < T :
3: Exploration Phase:
4: For each agent s:
5: Update position Ls,t+1:
6: Ls,t+1 = Ls,t + r1 · (Ls,t1 − Ls,t2) or random L′

s ∈ Fmet
s

7: Update position Ds,t+1:
8: Ds,t+1 = Ds,t + |Ds,t + r2 ·Ds,t| · cos(2πt)
9: End For

10: Mutation Phase:
11: Perform mutation:
12: N =

∑a−1
n=0(−1)n · 2n+1

2n+1
13: Exploitation Phase:
14: Update Ms,t+1:
15: Ms,t+1 = J1 ·Ms,t + 2J2 ·Ms,t +Ms,t + J1 · (1−Ms,t) ·Ms,t + J2

1

16: Resource Update:
17: Update Rs,t+1:
18: Rs,t+1 = Rs,t + 1 +Rs,t + J2 · exp(cos(2π))
19: Best Solution Update:
20: If no improvement for 3 iterations:
21: Update best solution Bs,t+1:
22: Bs,t+1 = Ls,t+1 + i · n · (Ls,t+1 −Ds,t+1) + i · n ·Ms,t+1 + 2vs ·Rs,t+1

23: End While when t = T or convergence is met
24: Return the best solution Bs

4 Solving Benchmark Functions

To compare the performance of the NiOA this section presents the result of solving a set of benchmark func-
tions which are widely used in the literature. Benchmark functions plays vital role in optimization field as
they give indications for measuring how efficient, how fast and how accurate the algorithm is. In particular,
we employ a set of function prototypes derived from the CEC 2005 benchmark set that consists of a num-
ber of function classes which are difficult for optimization algorithms, including unimodal, multimodal, and
composite functions.
Thus, by optimizing these benchmark functions, we shall show that the NiOA is an effective approach, flexible
between exploration and exploitation and of acceptable computational complexity. To demonstrate NiOA’s
effectiveness, we compare it with other existing algorithms in order to evaluate its performance. The measures
to be compared are the mean of the solution quality, variance, CPU time and number of FEs.

4.1 Benchmark Functions – CEC 2005

The CEC 2005 benchmark functions represent the state of art in optimization since they are used for the
evaluation of various optimization algorithms. They vary from elementary unimodal functions for which the
optimum is unique at the bottom of the global optimum, to highly complicated multimodal functions with
numerous local optima. The very presence of numerous functions also prevents the possibility to miss some
strong or weak aspects of an algorithm.
For this study, we focus on a subset of unimodal functions from the CEC 2005 suite. Unimodal functions are
particularly useful in assessing an algorithm’s ability to quickly and accurately converge to the global opti-
mum. These functions are less likely to mislead the algorithm with false optima, providing a clear test of the
optimizer’s convergence properties. However, even within unimodal functions, differences in dimensionality
and search range present varying levels of difficulty for optimization algorithms.

4.1.1 3-D Representation of Sample Benchmark Functions

Figure 1 shows the 3-D visual representation of sample benchmark functions from the CEC 2005 suite. These
representations help illustrate the structure of the search space, giving insights into the complexity and diffi-

24

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

culty of the optimization tasks. Functions with smooth surfaces and a single global minimum represent easier
challenges for optimization algorithms, while functions with steep gradients and narrow valleys can signifi-
cantly increase the difficulty of finding the global optimum.

Figure 1: 3-D representation of sample benchmark functions

4.1.2 Description of Benchmark Functions

Table 1 gives a brief description of the of the benchmark functions that have been used in this study. The index
of each function is the dimensionality (D) of the function, the outlined searching space and the globally optimal
solution. These functions form a basis for the validation of the accuracy and variability of the NiOA sequences.
From the table it can be seen that the dimensionality and range of search is different for the functions, which
puts the algorithm in a spectrum of difficulties it has to deal with.

Table 1: Descriptions of unimodal benchmark functions used in our experiments

Benchmark Function D Range fmin

f01(x) =
∑n

i=1 x
2
i 30 [-100, 100] 0

f02(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [-10, 10] 0

f03(x) =
∑n

i=1

(∑i
j=1 xj

)2

30 [-100, 100] 0

f04(x) = max (|xi|) , 1 ≤ i ≤ D 30 [-100, 100] 0
f05(x) =

∑D−1
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
30 [-30, 30] 0

f06(x) =
∑D

i=1

(
(xi + 0.5)

2
)

30 [-100, 100] 0

f07(x) =
∑D

i=1 ix
4
i + random[0, 1] 30 [-1.28, 1.28] 0

The CEC 2005 benchmark functions provide a competition yet standard set-up for benchmarking of NiOA.
In this way, we design all the problems to solely concern with unimodal functions, and therefore, to offer a
strict and robust challenge to the algorithm to periodically check that it is correctly finding the global optimum
in different circumstances. Furthermore, the dimensionality and search ranges of these functions are other
challenges that put the efficacy of the algorithm into further flexibility within optimization landscapes.

4.2 Benchmark Results and Discussion

This section demonstrates effectiveness and efficiency of NiOA on the benchmark functions selected with
reference to TSH, FHO and SAO algorithms. The measures that are applied include mean solution accuracy
together with the standard deviation of the outcomes, average computational time, and the number of FEs.
These measures will offer a clear picture of the algorithms in various problems of optimization.

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

4.2.1 Results of Mean and Standard Deviation

Table 2 presents the mean and st. deviation of the results for NiOA and the compared algorithms with regard
to the benchmark functions. This simply means that the parameter of mean shows the middle ground of how
correctly the algorithm was solved for all the problems its applied on while the standard deviation shows
the algorithm’s reliability. Lesser values of the standard deviation imply that the algorithm provides better
solutions, more frequently, while greater value of the standard deviation shows that the algorithm performs
better in random cases.

Table 2: Mean and standard deviation (StDev) of NiOA and compared algorithms over the benchmark func-
tions

Func Metric NiOA TSH FHO SAO

F1 Mean 0 4.54E-174 1.41E-30 6.57E-30
StDev 0 0 4.91E-30 6.32E-07

F2 Mean 0 3.43E-92 1.06E-21 7.15E-19
StDev 0 6.10E-92 2.39E-21 0.00029

F3 Mean 0 1.65E-129 5.39E-07 3.28E-08
StDev 0 8.61E-129 2.93E-06 0.78869

F4 Mean 0 1.15E-77 0.00072 5.59E-09
StDev 0 2.44E-77 0.00396 0.01310

F5 Mean 0 0.28272 0.27767 0.26717
StDev 0 0.00581 0.00761 0.69657

F6 Mean 0 1.54221 1.22207 0.32023
StDev 0 0.16932 0.20880 4.94E-05

F7 Mean 0 0.00902 0.00143 0.00087
StDev 0 0.00861 0.00045 0.03933

4.2.2 Results of Computational Time and Function Evaluations

Table 3 summarizes the average computation time (avg time), standard deviation of time (std time), and the
average number of function evaluations (avg FEs) for NiOA and the compared algorithms. These metrics are
crucial for assessing the efficiency of the algorithms, particularly in scenarios where computational resources
are limited or where quick convergence is desired.
The following set of boxplots (Figure 2) shows the comparison of four optimization algorithms (TSH, FHO,
SAO, and NijOA) across benchmark functions F1 to F4. The Y-axis represents the objective function values,
and the X-axis compares the results for each algorithm. The spread of the data is captured by the boxplot, with
NijOA consistently performing better in minimizing the objective function values.
Figure 3 presents the comparative performance of the optimization algorithms (TSH, FHO, SAO, and NijOA)
for benchmark functions F5 to F7. NijOA shows a more stable behavior with consistently lower objective
function values, indicated by the more compressed boxplots compared to other algorithms.

4.2.3 Discussion of Results

The results shown in Tables 2 and 3 have also clearly illustrated the effectiveness and efficiency of the NiOA
metrics. More often than not, NiOA yields the best possible result, Mean = 0, with an accompanying zero
standard error, thus making this tool a very accurate means of optimizing results.
Furthermore, when calculation time is examined, all compared algorithms are clearly surpassed by NiOA in
average computation time. Nevertheless, NiOA requires less computational resources since it has a lower
comparative computational overhead and, by design, performed the same number of FEs as the other methods.
It is especially advantageous in high time-to-solution applications, for instance, applications that use real-time
information or extensive optimization issues.
Another observed point about them is that as with other small simple functions, both TSH and FHO respond
fairly accurately But, besides the fact that they took more time than others, both of them have higher standard
deviations – thus implying that algorithms like TSH and FHO are much more variable intensively than the other
intensity calculations. These variations are due to the incapability of maintaining a right level of exploration
and exploitation, which results in a greater likelihood of fixed point or unsound searching in tough fitness
space.

26

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

Table 3: Average computation time, standard deviation of time, and average function evaluations (FEs) for
NiOA and compared algorithms

Func Metric NiOA TSH FHO SAO

F1
avg time 0.0983 0.5870 0.5716 0.8041
std time 0.0045 0.0139 0.0248 0.0307
avg FEs 15000 15000 15000 15000

F2
avg time 0.2799 0.6220 0.8574 0.8441
std time 0.0248 0.0079 0.4915 0.0152
avg FEs 15000 15000 15000 15000

F3
avg time 0.7383 1.5165 1.5199 1.7140
std time 0.0625 0.0155 0.0323 0.0370
avg FEs 15000 15000 15000 15000

F4
avg time 0.2647 0.5898 0.5693 0.7971
std time 0.0226 0.0297 0.0090 0.0117
avg FEs 15000 15000 15000 15000

F5
avg time 0.2957 0.6036 0.5849 0.8124
std time 0.0026 0.0154 0.0128 0.0095
avg FEs 15000 15000 15000 15000

F6
avg time 0.3117 0.6414 0.5214 0.8151
std time 0.0109 0.0038 0.0042 0.0042
avg FEs 15000 15000 15000 15000

F7
avg time 0.3145 0.6521 0.6110 0.8476
std time 0.0032 0.0331 0.0436 0.0103
avg FEs 15000 15000 15000 15000

The stability of NiOA is also confirmed by the stable results for all the types of benchmark functions tested. It
can be seen that the algorithm is fairly flexible, capable of optimally solving both smooth unimodal functions,
as well as steeper peak functions. This adaptiveness is mainly due to the fact that NiOA has the capability for
dynamic balance between the Exploitation and the Exploration, where sufficient search space satisfies while
ensuring that all the search is focused on fine-tuning the best solution.

Table 4 below shows the Analysis of Variance test that was done in order to compare the means of the different
groups in the various categories. The test enables comparing if there are statistically significant differences of
groups by dividing total variance into variance consequent of treatment and residual variance. The F-statistic
and its p-value suggest the observed difference is significant or not.

Table 4: ANOVA Table for Comparing Group Means

Source of Variation SS DF MS F (DFn, DFd) P value
Treatment (between columns) 614.4 3 204.8 F (3, 116) = 35.50 P ¡ 0.0001
Residual (within columns) 669.2 116 5.769
Total 1284 119

The plots in Figure 4 present the residual analysis and model validation statistics for the optimization algo-
rithms. The residual plot shows the differences between predicted and actual values, the homoscedasticity plot
measures the spread of residuals, and the QQ plot helps visualize the distribution of residuals. Additionally,
the heatmap illustrates the overall performance of each algorithm across different datasets.

All in all, the benchmark results help to conclude that NiOA not only provides greater accuracy in finding
the global optima but also do it in less time than with other algorithms. Generally, NiOA performs quite
well in all benchmark functions and it spends a relatively low amount of computing time which makes it a
suitable method for solving large and complicated optimization problems. The performance proved by NiOA
in unimodal and multimodal problems make it a universal algorithm that can be applied for a rather broad
range of practical tasks.

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

Figure 2: F1 to F4: Comparison of TSH, FHO, SAO, and NijOA

5 Feature Selection

Feature selection is one of the most essential processes in the machine learning process since it allows improv-
ing models by decreasing the dimensionality of data. It is designed to remove useless or marginal attributes
so that model accuracy is increased by minimising the model’s size and the time required for computation
in addition to preventing overfitting. The principal goal in feature selection is to identify the best number of
features that can provide maximum classification performance. In this section, we present an analysis of the
Binary Ninja Optimization Algorithm (bNiOA), used for feature selection as well as the assessment of the
algorithm results in comparison with other recognized algorithms, namely bTSH, bFHO, bSAO, and bWAO.

5.1 Binary Feature Selection Using bNiOA Optimization Algorithm

The binary feature selection focuses on a binary feature map which has been developed to define the search
space of the algorithm; all the features in the dataset are either selected or non-selected in which case they are
represented by either 1 or 0 respectively. Indeed in bNiOA the NiOA generates continues solutions which are
restricted to binary forms through the use of the sigmoid transfer function. This is necessary and helpful to the
algorithm because it enables it to manage features selection as a binary condition flawlessly. The objective is
to reduce classification error in a way that can be achieved by choosing the right set of features.

28

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

Figure 3: F5 to F7: Comparison of TSH, FHO, SAO, and NijOA

The criteria used to evaluate the performance of the feature selection algorithms are presented in Table 5.
Such performance measures as fitness, classification error, and standard deviation offer a sufficient tool for
evaluating the quality and steadiness of the solutions given by the developed algorithms.

Table 5: Criteria for Evaluating Feature Selection Results

Metric Formula
Best Fitness minMi=1 S

∗
i

Worst Fitness maxMi=1 S
∗
i

Average Error 1
M

∑M
j=1

1
N

∑N
i=1 mse

(
V̂i − Vi

)
Average Fitness 1

M

∑M
i=1 S

∗
i

Average fitness size 1
M

∑M
i=1 (S

∗
i)

Standard deviation
√

1
M−1

∑M
i=1 (S

∗
i − Mean)2

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

Figure 4: ANOVA test: Residual and statistical plots for model validation and comparison.

5.2 Feature Selection Results and Discussion

In this subsection, we present and discuss the performance results of the bNiOA algorithm in comparison
to other algorithms. The evaluation is carried out on multiple datasets, and the performance metrics include
average error, average selected feature size, and fitness. The results provide insights into the efficiency and
accuracy of each algorithm in selecting the most relevant features for classification tasks.
Table 6 presents the average classification error for each algorithm across different datasets. Lower error
rates indicate better performance, as the goal of feature selection is to minimize the classification error while
selecting a subset of features.

Table 6: Average Error for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 0.1013 0.1072 0.1085 0.1033 0.1023

Breast Cancer 0.1926 0.2049 0.1972 0.2056 0.2256
Blood 0.2159 0.2178 0.2222 0.2235 0.2220

Segment 0.0909 0.1080 0.1015 0.1251 0.0931
Space-ga 0.4513 0.4619 0.4873 0.4849 0.4547

WaveformEW 0.3298 0.3271 0.3150 0.3343 0.3337
Diabetes 3.3243 3.4873 3.3741 3.5556 3.6567

Mofn 0.1199 0.1750 0.1963 0.1916 0.1850
HAR Using Smartphones 0.4723 1.0461 0.9461 0.8778 1.6327

ISOLET 0.7376 0.9443 0.7483 0.9710 1.0585
Average 0.6036 0.7080 0.6696 0.7073 0.7964

Table 7 lists the average number of selected features for each algorithm. A smaller subset of selected features
generally indicates more effective feature selection, as it reduces the dimensionality of the dataset without

30

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

compromising classification accuracy.

Table 7: Average Selected Feature Size for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 0.4917 0.3467 0.2495 0.4550 0.4800

Breast Cancer 0.2308 0.3331 0.3535 0.4649 0.4717
Blood 0.2717 0.2917 0.3117 0.3317 0.2967

Segment 0.7717 0.7717 0.8384 0.7884 0.8217
Space-ga 0.6117 0.8242 0.8217 0.6617 0.9492

WaveformEW 0.4169 0.5003 0.4860 0.5527 0.8669
Diabetes 0.4328 0.5050 0.4463 0.5828 0.7217

Mofn 0.1534 0.5717 0.1693 0.6367 0.8317
HAR Using Smartphones 0.5388 0.8562 0.7469 0.8511 0.8752

ISOLET 0.6704 0.8488 0.7502 0.7858 0.9368

Table 8 presents the average fitness value for each algorithm on the datasets. Higher fitness values indicate
better overall feature selection performance, where the algorithm has managed to optimize the balance between
classification accuracy and feature reduction.

Table 8: Average Fitness for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 3.0436 3.3921 4.3578 3.4598 3.5598

Breast Cancer 0.1321 0.1442 0.1485 0.1450 0.1648
Blood 1.3592 1.3611 0.1335 1.3667 1.3652

Segment 2.6366 2.6598 2.6873 2.6463 2.6438
Space-ga 1.1458 1.2523 1.4128 1.2692 1.2376

WaveformEW 1.1525 1.1630 1.3986 1.1858 1.1558
Diabetes 0.5800 0.5953 0.7600 0.5923 0.5794

Mofn 0.4736 0.5272 0.4879 0.5436 0.5370
HAR Using Smartphones 0.5143 0.8267 0.7591 0.8256 0.8835

ISOLET 0.6471 0.8143 0.7456 0.8512 0.9156
Average 1.1685 1.2736 1.2891 1.2885 1.3043

Table 9 shows the best fitness results achieved by each algorithm across different datasets. The best fitness
indicates the most optimal solution found by each algorithm, which corresponds to the most effective selection
of features with the lowest classification error.

Table 9: Best Fitness for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 1.9693 1.9087 2.8582 1.9087 1.4844

Breast Cancer 0.0924 0.0924 0.1228 0.0924 0.1076
Blood 1.3711 1.3723 1.3868 1.3860 1.3839

Segment 2.6458 2.6458 2.6377 2.6458 2.6458
Space-ga 1.1951 1.2727 1.2691 1.2751 1.2635

WaveformEW 1.1190 1.1564 1.2034 1.1505 1.1297
Diabetes 0.5654 0.5654 0.5840 0.5685 0.5809

Mofn 0.4529 0.4866 0.4798 0.5000 0.5247
HAR Using Smartphones 0.5020 0.8351 0.7642 0.8162 0.9123

ISOLET 0.6122 0.8064 0.7130 0.8475 0.9142
Average 1.0525 1.1142 1.2019 1.1191 1.0947

Table 10 presents the worst fitness values obtained by each algorithm. The worst fitness provides insight into
the variability of the algorithm’s performance and its worst-case scenario when selecting features.

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

Table 10: Worst Fitness for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 0.3019 0.3462 0.3005 0.3614 0.3919

Breast Cancer 1.4747 1.4767 1.4835 1.4879 1.4839
Blood 2.5587 3.1814 2.7506 2.8060 2.8532

Segment 1.2387 1.3715 1.3558 1.4133 1.3607
Space-ga 1.2616 1.3636 1.3232 1.3416 1.2839

WaveformEW 0.7320 0.7668 0.7575 0.8227 0.7327
Diabetes 0.4198 0.4697 0.4137 0.4525 0.4353

Mofn 0.6532 0.7013 0.6452 0.7125 0.6789
HAR Using Smartphones 0.6406 0.9394 0.9408 0.9506 1.0607

ISOLET 0.7529 0.9341 0.8863 0.9629 1.0375
Average 1.0034 1.1551 1.0857 1.1311 1.1319

Table 11 shows the standard deviation of the fitness values for each algorithm. A smaller standard deviation
indicates more consistent performance, meaning the algorithm is stable across multiple runs.

Table 11: Standard Deviation of Fitness for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 1.0469 1.1075 1.0865 1.3425 1.0533

Breast Cancer 0.2468 0.2515 0.2505 0.2556 0.2619
Blood 0.2128 0.2145 0.2160 0.2139 0.2155

Segment 0.2209 0.3058 0.2215 0.2331 0.2382
Space-ga 0.2121 0.2148 0.2126 0.2224 0.2127

WaveformEW 0.2273 0.2377 0.2267 0.2355 0.2316
Diabetes 0.2265 0.2406 0.2457 0.2298 0.2355

Mofn 0.2360 0.2445 0.2469 0.2523 0.2396
HAR Using Smartphones 0.2230 0.2395 0.2360 0.2373 0.2605

ISOLET 0.2294 0.2475 0.2439 0.2460 0.2684
Average 0.3082 0.3304 0.3186 0.3468 0.3217

Table 12 presents the computational time in seconds taken by each algorithm to complete the feature selection
task on different datasets. This measure reflects the efficiency of each algorithm in terms of computational
speed.

Table 12: Time (in seconds) for Each Algorithm on Different Datasets

Dataset bNiOA bTSH bFHO bSAO bWAO
Australian 13.4825 14.4925 15.1115 13.9745 15.8015

Breast Cancer 9.3985 9.9435 10.3215 11.0905 12.1205
Blood 13.5295 14.7755 14.9815 13.5765 16.0815

Segment 57.5435 111.4385 121.9015 86.3795 141.7815
Space-ga 17.4785 22.2525 20.2815 20.8145 25.2315

WaveformEW 105.7525 138.1915 142.7615 147.6785 156.2115
Diabetes 38.8335 58.4825 69.0615 64.8865 90.3215

Mofn 15.8855 17.3775 17.5515 17.3655 16.4215
HAR Using Smartphones 329.6615 466.2315 446.0415 477.0115 609.7915

ISOLET 435.9815 499.4215 487.3315 465.7315 624.2315

Table 13 displays the p-values associated with the statistical comparison of the bNiOA algorithm against other
algorithms. A lower p-value indicates a significant difference in performance between the algorithms.

32

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

Table 13: P-values for Comparing bNiOA with Other Algorithms on Different Datasets

Dataset bTSH bFHO bSAO bWAO
Australian 1.59E-03 4.16E-04 4.06E-04 4.07E-04

Breast Cancer 1.59E-03 4.16E-04 4.06E-04 4.07E-04
Blood 1.59E-03 4.16E-04 4.16E-04 4.16E-04

Segment 1.59E-03 4.16E-04 4.06E-04 4.07E-04
Space-ga 1.59E-03 4.16E-04 4.06E-04 4.07E-04

WaveformEW 1.59E-03 4.16E-04 4.16E-04 4.16E-04
Diabetes 1.59E-03 4.06E-04 4.06E-04 4.07E-04

Mofn 1.59E-03 4.06E-04 4.06E-04 4.06E-04
HAR Using Smartphones 1.59E-03 4.06E-04 4.06E-04 4.07E-04

ISOLET 1.59E-03 4.06E-04 4.06E-04 4.07E-04

5.3 Discussion of Results

The results presented in the tables provide a comprehensive comparison of bNiOA and other algorithms across
different datasets. In terms of average error, bNiOA generally performs better, especially on datasets like
Australian, Breast Cancer, and Segment, where it achieves lower classification errors. Additionally, bNiOA
tends to select fewer features on average, indicating that it effectively reduces the dimensionality of the datasets
while maintaining accuracy. The best fitness results further confirm that bNiOA consistently finds high-quality
solutions compared to the other algorithms. However, in terms of computational time, bNiOA is not always
the fastest, especially on larger datasets such as HAR Using Smartphones and ISOLET, where it lags behind
in speed.
From the present approach Binary Ninja Optimization Algorithm (bNiOA) is established to be useful in feature
selection where there is trade-off between the number of features to be selected and the accuracy of classifica-
tion. Thus, its performance on several datasets affirms its fitness for use and versatility. Although it may not
be the most efficient in terms of time complexity, it is rarely outperformed on the quality of solutions that it
provides, delivering either optimal or near-optimal solutions to feature selection problems. That is why, further
work could be devoted to enhancing its computational complexity when generating functions for big data sets.

6 Conclusion

In the current paper, we initiated the Ninja Optimization Algorithm, a newly developed metaheuristicbased
on physical ninjas’ nature, including agility, precision, and adaptability. This motivated the formulation of
NiOA to solve optimization problems whenever the four critical elements of exploration and exploitation
could not be adequately balanced in the search space. On the positive side, the algorithm, because of its
structure, showed flexibility in minimizing local optima and rapidly converging to global solutions in different
optimization topographies. The performance of NiOA was measured for all benchmark functions of the CEC
2005 suite. The findings also showed that NiOA once again outperformed other efficient algorithms such
as TSH, FHO, SAO in solution accuracy and computation time. The impressive performance of NiOA in
reducing the classification error and the selection of fewer features was evident especially in feature selection
applications confirming the model’s stability and generality.
In the feature selection problem, bNiOA outperformed several comparative algorithms in term of not only
decreasing the classification error but also in finding much smaller and realistic number of relevant features.
The ‘loss’ of dimensionality which is achieved here without a significant decline in the performance of the
algorithm is the primary strength in dealing with high-dimensional data sets and can contribute to the fact
that bNiOA is a helpful tool in data preprocessing for machine learning applications. However, these results
bring out the fact that NiOA has the possibilities of further enhancements and lacks only in the large data sets
where the computational time is of great concern. Its other potential applications may focus on improving its
time complexity and proposing an accurate assessment of the feature selection. Moreover, other extensions
and optimization to NiOA’s multimodal functions and constraint could be included in the real life optimization
problems as well.
In summary, NiOA is introduced competitively, as a powerful and flexible optimisation algorithm suitable for
solving not only classic benchmark problems but also real-life application problems. For these reasons, it can
be concluded that the flexibility and robustness of the proposition as well as the results of the analysis make it
a significant addition to the metaheuristic optimization algorithm field.

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

References

[1] L. Abualigah, M. A. Elaziz, A. M. Khasawneh, M. Alshinwan, R. A. Ibrahim, M. A. A. Al-qaness,
S. Mirjalili, P. Sumari, and A. H. Gandomi. Meta-heuristic optimization algorithms for solving real-world
mechanical engineering design problems: A comprehensive survey, applications, comparative analysis,
and results. Neural Computing and Applications, 34(6):4081–4110, 2022.

[2] M. A. A. Al-qaness, A. A. Ewees, L. Abualigah, A. M. AlRassas, H. V. Thanh, and M. Abd Elaziz.
Evaluating the applications of dendritic neuron model with metaheuristic optimization algorithms for
crude-oil-production forecasting. Entropy, 24(11):Article 11, 2022.

[3] F. N. Al-Wesabi, M. Obayya, M. A. Hamza, J. S. Alzahrani, D. Gupta, and S. Kumar. Energy aware
resource optimization using unified metaheuristic optimization algorithm allocation for cloud computing
environment. Sustainable Computing: Informatics and Systems, 35:100686, 2022.

[4] M. Cikan and B. Kekezoglu. Comparison of metaheuristic optimization techniques including equilibrium
optimizer algorithm in power distribution network reconfiguration. Alexandria Engineering Journal,
61(2):991–1031, 2022.

[5] M. Dehghani and H. Samet. Momentum search algorithm: A new meta-heuristic optimization algorithm
inspired by momentum conservation law. SN Applied Sciences, 2(10):1720, 2020.

[6] K. S. Guedes, C. F. de Andrade, P. A. C. Rocha, R. dos S. Mangueira, and E. P. de Moura. Performance
analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed
distributions. Applied Energy, 268:114952, 2020.

[7] A. H. Halim, I. Ismail, and S. Das. Performance assessment of the metaheuristic optimization algorithms:
An exhaustive review. Artificial Intelligence Review, 54(3):2323–2409, 2021.

[8] M. Hamza Zafar, N. Mujeeb Khan, A. Feroz Mirza, M. Mansoor, N. Akhtar, M. Usman Qadir,
N. Ali Khan, and S. K. Raza Moosavi. A novel meta-heuristic optimization algorithm based mppt control
technique for pv systems under complex partial shading condition. Sustainable Energy Technologies and
Assessments, 47:101367, 2021.

[9] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany. Archimedes optimiza-
tion algorithm: A new metaheuristic algorithm for solving optimization problems. Applied Intelligence,
51(3):1531–1551, 2021.

[10] J. Katebi, M. Shoaei-parchin, M. Shariati, N. T. Trung, and M. Khorami. Developed comparative anal-
ysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with
Computers, 36(4):1539–1558, 2020.

[11] S. Mahajan, L. Abualigah, A. K. Pandit, M. R. Al Nasar, H. A. Alkhazaleh, and M. Altalhi. Fusion
of modern meta-heuristic optimization methods using arithmetic optimization algorithm for global opti-
mization tasks. Soft Computing, 26(14):6749–6763, 2022.

[12] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian. A hybrid multi-objective meta-
heuristic optimization algorithm for scientific workflow scheduling. Cluster Computing, 24(2):1479–
1503, 2021.

[13] M. H. Qais, H. M. Hasanien, and S. Alghuwainem. Transient search optimization: A new meta-heuristic
optimization algorithm. Applied Intelligence, 50(11):3926–3941, 2020.

[14] H. Tran-Ngoc, S. Khatir, H. Ho-Khac, G. De Roeck, T. Bui-Tien, and M. Abdel Wahab. Efficient arti-
ficial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in
laminated composite structures. Composite Structures, 262:113339, 2021.

[15] J. Zhou, X. Shen, Y. Qiu, X. Shi, and M. Khandelwal. Cross-correlation stacking-based microseismic
source location using three metaheuristic optimization algorithms. Tunnelling and Underground Space
Technology, 126:104570, 2022.

[16] M. Abd Elaziz, A. Dahou, L. Abualigah, L. Yu, M. Alshinwan, A. M. Khasawneh, and S. Lu. Ad-
vanced metaheuristic optimization techniques in applications of deep neural networks: A review. Neural
Computing and Applications, 33(21):14079–14099, 2021.

34

Journal of Artificial Intelligence in Engineering Practice (JAIEP) Vol. 1, No. 2, PP. 17-36, 2024

[17] M. Abdel-Basset, R. Mohamed, M. Jameel, and M. Abouhawwash. Spider wasp optimizer: A novel
meta-heuristic optimization algorithm. Artificial Intelligence Review, 56(10):11675–11738, 2023.

[18] M. Abdel-Basset, R. Mohamed, K. M. Sallam, and R. K. Chakrabortty. Light spectrum optimizer: A
novel physics-inspired metaheuristic optimization algorithm. Mathematics, 10(19):Article 19, 2022.

[19] A. A. Abdelhamid, S. K. Towfek, N. Khodadadi, A. A. Alhussan, D. S. Khafaga, M. M. Eid, and
A. Ibrahim. Waterwheel plant algorithm: A novel metaheuristic optimization method. Processes,
11(5):Article 5, 2023.

[20] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah. Gazelle optimization algorithm: A novel nature-
inspired metaheuristic optimizer. Neural Computing and Applications, 35(5):4099–4131, 2023.

[21] O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, and L. Abualigah. Multiclass feature se-
lection with metaheuristic optimization algorithms: A review. Neural Computing and Applications,
34(22):19751–19790, 2022.

[22] S. Gupta, H. Abderazek, B. S. Yıldız, A. R. Yildiz, S. Mirjalili, and S. M. Sait. Comparison of meta-
heuristic optimization algorithms for solving constrained mechanical design optimization problems. Ex-
pert Systems with Applications, 183:115351, 2021.

[23] Q. Li, S.-Y. Liu, and X.-S. Yang. Influence of initialization on the performance of metaheuristic optimiz-
ers. Applied Soft Computing, 91:106193, 2020.

[24] H.-L. Minh, T. Sang-To, M. Abdel Wahab, and T. Cuong-Le. A new metaheuristic optimization based on
k-means clustering algorithm and its application to structural damage identification. Knowledge-Based
Systems, 251:109189, 2022.

[25] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. Sareh. Crystal structure algorithm (crystal): A
metaheuristic optimization method. IEEE Access, 9:71244–71261, 2021.

https://doi.org/10.21608/jaiep.2024.386693
Received: April 22, 2024 Revised: September 9, 2024 Accepted: October 15, 2024

	introduction
	Literature Review
	Proposed Ninja Optimization Algorithm (NiOA)
	Inspiration and Mechanism
	Experimental Setup
	Exploration Phase
	Exploitation Phase

	Pseudo-code of the Ninja Optimization Algorithm

	Solving Benchmark Functions
	Benchmark Functions – CEC 2005
	3-D Representation of Sample Benchmark Functions
	Description of Benchmark Functions

	Benchmark Results and Discussion
	Results of Mean and Standard Deviation
	Results of Computational Time and Function Evaluations
	Discussion of Results

	Feature Selection
	Binary Feature Selection Using bNiOA Optimization Algorithm
	Feature Selection Results and Discussion
	Discussion of Results

	Conclusion

