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equations in prime and semiprime I'-rings with involution 7 by means of the above results. More-

over, we discuss some more related results.
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1. Introduction

The notion of a I'-ring was first introduced by Nobusawa [6] as
a generalization of a ring and then Barnes [2] generalized the
definition of Nabusawa’s I'-ring in a more general nature.
For the I'-rings we refer to Barnes [2]. Let M and I" be additive
abelian groups. If there is a mapping M x I' x M — M (send-
ing (a,a,b)—axb) which satisfies the conditions (1)
(a+ b)ac = avc + boc,a(a + )b = aob + afb,ao(b + ¢) = aub
“+aac; (2) (aob)fe = an(bfc); for all a,b,c € M and o, € T.
Then, M is a I'-ring in the sense of Barnes [2]. Let M be a
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I-ring. A mapping 7: M — M is called an involution if (1)
Ia+b) = I(a) + I(b); (2) I(aub) = I(b)od(a); (3) P(a) = a;
for all a,b € M and o € I'. In the ring theory, Ali, Dar and
Vukman [1] proved that every Jordan left %-centralizer on a
semiprime ring with involution, of char R different from 2 is
a reverse left %-centralizer. They used this result to make it
possible to solve some fundamental equations in prime and
semiprime rings. Also, see [3.4,7]. This paper deals with the
study of Jordan left-/-centralizers of prime and semiprime
I'-rings with involution 7, and was motivated by the work of
[1]. Throughout, M will represent a I'-ring with center Z(M).
We shall denote by C(M) the extended centroid of a prime
I'-ring M. For the explanation of C(M) we refer to the reader
in the paper of Soyturk [8]. Given an integer n > 2, a I'-ring M
is said to be n-torsion free, if for x € M,nx = 0 implies x = 0.
As usual [x,y], and (x,y), will denote the commutator
xoy — yax and anti-commutator xay + yox, respectively for
all x,y € M and o € I'. An additive mapping 7: M — M is
called a left centralizer in case T(xoy) = T(x)oy holds for all
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X,y € M and o € I'. The definition of a right centralizer should
be self-explanatory. An additive mapping 7 is called a rwo-
sided centralizer in case T : M — M is a left and a right central-
izer. An additive mapping 7: M — M is called a Jordan left
centralizer if T(xox) = T(x)ox holds for all x € M and
a€l. Let M be a I'-ring with involution 7. An additive
mapping T: M — M is said to be a left-I-centralizer (resp.
reverse  left-I-centralizer) if  T(xay) = T(x)al(y) (resp.
T(xoy) = T(y)ad(x)) holds for all x,y € M and « € I'. An
additive mapping 7: M — M is called a Jordan left-I-central-
izer in case T(xox) = T(x)al(x) holds for all x,y € M and
o € I'. The definition of a right-I-centralizer and a Jordan
right-I-centralizer should be self-explanatory. For some fixed
element a € M, the map M — M defined by x+—aal(x) is a Jor-
dan left-/-centralizer and the map x—/I(x)aa is a Jordan right-
I-centralizer on M. Clearly, every left-I-centralizer on a I'-ring
M is a Jordan left-I-centralizer. Further, we establish a result
concerning additive mapping 7 : M — M satisfying the rela-
tion T(xoxox) = I(x)aT(x)al(x) for all xe M and a€T.
We showed that if M is a 2-torsion free semiprime I-ring
and S, T:M — M are left centralizers such that
[S(x), T(x)],BS(x) + S(x)p[S(x), T(x)], =0 for all x,ye M
and o, € I', then [S(x), T(x)], =0 for all x€ M and a € I.
In case M is a prime I'-ring and S#0 (77#0), then there exists
p,q € C(M) such that T = pS (S = ¢T). We shall restrict our
attention on Jordan left-I-centralizers, since all results pre-
sented in this article are also true for Jordan right-/-centraliz-
ers because of left-right symmetry. Throughout this paper, M
will represent a I'-ring and Z(M) will be its center. A I'-ring M
is prime if xI'MT'y = 0 implies that x = 0 or y = 0, and is semi-
prime if xI'MT'x =0 implies x =0. Let x,y € M and a € I,
the commutator xoy — yorx will be denoted by [x, y],. We know
that  [xpy.zl, = xBly.zl, + [v.2, By + xlBialy  and
[x, ypz], = yBlx, 2], + [x, Bz + y[B, o]z for all x,y,ze M
and o, f € I'. We shall take the assumption xoyfz = xfyoz
for all x,y,z € M and o, € I'. Using this assumption, the
above identities reduce to [xfy,z], = xB[y,z], + [x,z], By,
[x,yPz], = yPlx, 2], + [x,y], Pz, for all x,y,z € M and o, ff € y.
Also,  (x,¥pz), = (x,),Bz — yBlx, 2], = yB(x, ), + [x,¥],Bz,
(xBy.2), = XBU.2), — %21, By = (x,2) B+ xBly.=],, which
are used extensively in our results.

2. Basic results

Lemma 2.1. Let M be a prime I'-ring with the central closure
C(M). Suppose that the elements a;,b; € C(M) satisfying the
condition Y a;oxfb; = 0 for all x € M and o. € T'. If b; = 0 for
some i, then a;’s are C(M)-independent.

Proof. We show that g;’s are linearly independent over C(M).
If not, there are a minimal n elements a;, a,,...,a, € M line-
arly independent over C(M) such that > 7 auxpb; =0 for
all x € M and o, f € I', where b; are non-zero elements of M.
Since M is prime, n > 1. Suppose that x;, y; € M are such that
Soxyxdy; =0. If reM, then 377 aorfx;ybdy; =
o aorfbidy; = S aorf (3 x,yb;éyf) =0. Since >}  aor
px;yb; = 0, we obtain a shorter relation than n, we have that
Y1 Xiybidy; = 0 for all i. Hence, the map v, : MI'b, M —
M defined by (X0 upbiov) = S upbidvy =0 s well

defined. It is trivial that y, is an additive map of the ideal

MTb,I'M into M. Hence, , gives an element b; such that
V(b)) € C(M). Moreover, by definition ,(h;) = b;. Thus,
Z?:la,-ocxﬁbi = Z?Zla,-ax/)’lpi(b,-) = (Z?:l!//i(a,-))ocxﬁb,- =0. By
the primeness of M, we get that Y7 a,0xfb; = 0, since a; are
linearly independent over C(M), we must have i; = 0. But
then by definition of ,, MI'b;,’M = 0, gives a contradiction
b,‘ = 0 D

Lemma 2.2. Let M be a prime I'-ring with involution I satisfying
the condition xoyfz = xfyaz, for all x,y,z € M,o, €' and
let ' T:M— M be a Jordan left-I-centralizer on M. If
T(x) € Z(M) for all x € M, then T = 0.

Proof. By the assumption we have [T(x),y], =0 for all
X,y € M and o € I'. Substituting xfx for x in the above rela-
tion, then we obtain 0= [T(xpx),y], = [T(x)pI(x),y], =
[T(x), ], pI(x) + T(x)plI(x), ] .for all x,y e M and o, € I.
In view of our hypothesis, the last expression yields that
T(x)p[I(x),y], =0forall x,y € M and o, f € I'. Since the cen-
ter of a prime I'-ring is free from zero divisors, either 7(x) = 0
or [I(x),y],=0 for all x,yeM and ael. Let
A={xeM|T(x)=0} and B={xe M| [I(x),y],=0 for
all y € M and o € I'}. It can be easily seen that 4 and B are
two additive subgroups of M whose union is M and hence
by Brauer’s trick, we get 4 = M or B= M. If B= M, then
M is commutative, which gives a contradiction. Thus, the only
possibility remains that 4 = M. That is, T(x) =0 for all
x € M. This completes the proof. [

Theorem 2.3. Let M be a semiprime I'-ring with involution I sat-
isfying the condition xoyfz = xPyaz for all x,y,z € M and
o, €T, of characteristic different from two and T: M — M
an additive mapping which satisfies T(xox) = T(x)ad(x) for all
x€M and o € I'. Then, T is a reverse left-I-centralizer, that
is, T(xay) = T(y)ad(x) for all x,y € M and x € T.

Proof. We have T(xax) = T(x)ol(x) forall x e Mand o € T
Applying involution 7 both sides to the above expression, we
obtain I(T(xax)) = xal(T(x)) for all x € M and a € I'. Define
anew map S: M — M such that S(x) = I(7T(x)) for all x e M
and a €. Then, we see that S(xox)=I(T(xox))=
I(T(x)ol(x)) = xal(T(x)) = xaS(x) for all x€ M and o € T.
Hence, we obtain S(xox) = xaS(x) for all x € M and o € I'.
Thus, S is a Jordan right-centralizer on M. In view of [5], S
is a right-centralizer that is, S(xoy) = xaS(y) for all x,y € M
and o € I'. This implies that /(7(xoy)) = xal(T(y)) for all
X,y € M and o € I'. By applying involution to the both sides
of the last relation, we find that T(xay) = T(y)al(x) for all
X,y € M and o € I'. This completes the proof. [

Lemma 2.4. Let M be a prime I'-ring with involution I satisfying
the condition xayfz = xpPyouz for all x,y,z € M and o, p € T', of
characteristic different from two and T : M — M an additive
mapping which satisfies T(xoxox) = I(x)aT(x)al(x) for all
X €M and o € I'. Then, T(xay) = T(y)al(x) = I(y)aT(x) for
all x,y € M and o € T', that is, T is a reverse I-centralizer on M.

Proof. By the given hypothesis, we have
T(xoxox) = I(x)aT(x)ol(x) for all x € M and o € I'. Applying
involution 7/ on both sides to the above expression, we get
I(T(xoxax)) = xad(T(x))ox for all x € M and « € I'. Define
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anew map S: M — M such that S(x) = I(7(x)) for all x € M.
Then, we see that S(xoxox)= I(I(T(xoxax))) = I(I(x)
aT(x)ol(x)) = xal(T(x))ox = xaS(x)ax for all x € M and
o € I'. Hence, we conclude that S(xoxox) = xaS(x)ox for all
x € M and « € I'. Thus, S is an additive mapping such that
S(xoxox) = xaS(x)ox. In view of [5], we are forced to
conclude that S is a two sided centralizer that is,
S(xoy) = xaS(y) = S(x)ay for all x,y € M and « € I'. This
implies that I(T(xay)) = xal(T(y)) = I(T(x))oy for all
x,y € M and o € I'. Again applying involution both sides to
the last relation, we find that T(xop) = T(y)ad(x)=
I(y)aT(x) forall x,ye Mand o e I'. O

Lemma 2.5. Let M be a prime I'-ring with involution I satisfying
the condition xoyfz = xfyaz for all x,y,z € M and o, € T,
and let S, T : M — M be Jordan left-1-centralizers. Suppose that
[S(x), T(x)], = 0 holds for all x € M and « € I'. If T =0, then
there exists p € C(M) such that S = pT.

Proof. By Theorem 2.3 we conclude that S and 7 are reverse
left-I-centralizers on M. In view of the hypothesis, we have

[S(x), T(x)], = 0, ()

o

for all x € M and « € I'. Linearizing (1) and using it, we get
[S(x), T(y)], + [S(), T(x)], = 0, 2

for all x,y € M and o € I'. Replacing x by zfix in (2), we
obtain

[S(x), TW)],BI(z) + S(x) I (2), T(y)],
+[SW), TO)],I(2) + T(x)BIS(»), 1(2)],
=0. 3)
Application of (2) yields that

S()BU(), TW)], + T()BIS(), 1(2)], = 0. (4)
Replacing x by wdx in (4), we get

S(x)BIw)3[1(2), TW)], + T(x)BI(w)o[S(v), I(z)], = 0. ®)
Replacing w by I(w) and z by I(z) in (5), we obtain

S(x)Bwslz, T, + T(x)pwslS(r), 2], = 0. (6)

It follows from Lemma 2.2 that there exists y,z € Manda € T’
such that [T(y), (z)], = 0, since T50. In view of Lemma 2.1
and from relation (6) we conclude that S(x) = pT(x), where
p is from C(M). Thus, the relation (6) forces that for some
p.q € C(M),0 = pT(x)pwd[T(y), 2], — T(x)pwolgT(r).2], = p
T()BwOIT(), 2], — T(x)pwoq(T(v), 2], = (p — @) T(x)pw[T
(»),z],, for all y,z € M and o, 8,0 € I'. Since M is a prime I'-
ring, the above expression yields that either (p — ¢)7(x) =0
or [T(y),z], = 0. Since [T(y),z],#0, we have (p —¢q)T(x) =0
for all x € M and o € I'. This implies that pT(x) = ¢T(x) for
all x € M. This gives S(x) = pT(x) for all x € M as desired.
If we replace the commutator by anti-commutator in Lemma
2.5, the corresponding result also holds. [

Lemma 2.6. Let M be a prime I'-ring with involution I satisfying
the condition xoayfz = xpyaz for all x,y,z€ M and a,f €T,
andlet S, T : M — M be Jordan left-I-centralizers. Suppose that
(S(x), T(x)), = 0 holds for all x € M and o € T'. If T#0, then
there exists p € C(M) such that S = pT.

Proof. By the assumption, we have

(8(x), T(x)), =0, ()
forall x € M and o € I'. Replacing x by x + y in (7), we obtain
(8(x), T(x)), + (S(x), T(»)), + (), T(x)),

+ (S0, T(v)),

=0. (8)

Using (7) in (8), we get

(8(x), T»)), + (S(), T(x)), = 0. ©)
Substituting zfy for y in (9) and using the fact that S and T
are reverse left-I-centralizers, we find that 0 = (S(x), T(zfy)),
+(S(zhy), T(x)), = (S(x), T;)BI(2)), + (T(x), SG)BI(2)), =
(S(x), T)),BI(z) = T()BIS(x), 1(2)], + (T(x), SW)),BI(z)—
S(y)plT(x),1(z)],- Application of (9) yields that

T(y)BIS(x), I(2)], + SO)BIT(x), 1(2)], = 0. (10)
Replacing y by wdy in (10), we obtain

T()BI(w)o[S(x), 1(2)], + SW)BI(W)o[T(x), 1(2)], = 0. (11)
Replacing w by I(w) and z by I(z) in (11), we get

T(y)pwo[S(x),z], + S(y)pwo[T(x), z], = 0. (12)

Henceforth using similar approach as we have used after
Eq. (6) in the proof of Lemma 2.5, we get the required result.
This finishes the proof of the lemma. [

3. Main results

The main result of the present paper is the following theorem
which is inspired by [1].

Theorem 3.1. Let M be a 2-torsion free semiprime I'-ring with
involution 1 satisfying the condition xoyfz = xPyaz for all
x,y,z€ M and o, €T, and S,T: M — M be Jordan left-I-
centralizers. Suppose that (S(x), T(x)),BS(x) — S(x)p{S(x),
T(x)), =0 holds for all xeM and o,f €. Then,
[S(x), T(x)], =0 for all x € M and o. € I'. Moreover, if M is
a prime I'-ring and S#0 (T#0), then there exists p € C(M) such
that T=pS (S=4qT, g€ C(M)).

Proof. In view of Lemma 2.3, we conclude that S and T are
reverse left-/-centralizers. By the hypothesis, we have

(S(x), T(x)),fS(x) = S(x)B{S(x), T(x)), = 0, (13)

for all x € M and «, § € I'. Linearization of the relation (13)
yields that
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(8(x), T(x)),BS(y) + (S(x), T(»)),BS(x) + (S(x), T(»)),BS(¥) Replacing y by yyI(T(x)) in (20), we obtain
+(SU), T(x)),BS(x) + (SW), T(x)),BS(»)
T (S0), T))AS(x) — S)B(S(), T(x)) SEOTCVIO)AIS(x), T(x)LuS(x)
— SBS(), T, = SOIFS). TO)) ~ SEIBSITEIIGIS ), Tk, =0 el
— S(x)B(S(y), T(x)), — SO B(S(y), T(x)) Left multiplying (20) by T(x) gives
— S(X)B(S(y), T()), = 0, 14
ST M s T, st st
forall x,y € M and o, f € I'. Replacing x by —x in (14), we get — T(x)pS(x)BS(x)SI()u[T(x), S(x)], = 0. (22)
(S(), T(x)),BS() + (S ) ( )> BS(x) = (S(x), T()).AS() On combining (21) and (22), we obtain
+ (S), T(x)),BS(x) = (S(y), T(x)),BS(y)
(S(y) T(y)),BS(x) — ( ) B(S(x), T(x)), [S(x), T(x)],21(»)S[S(x), T(x)], 1S (x)
S(x)B(S(x), T(»)), + SWB{S(x), T(»)), = [S(x)S(x), T(x)]pI(y)u[S(x), T(x)], = 0. (23)
SRS, T()), + SOIB(S(), T(v)), By our hypothesis, we have
B(S ,=0. 15
+ LIRS ) 0= (S(x), T(x)),S(x) = S(x)B(S(x), T(x)), = S(x)aT(x)B
Combmmg (14) and (15), we obtain 2(S(x), T(x)),fS(»)+ S(x) 4+ T(x)aS(x)pS(x) — S(x)BS(x)aT(x) — S(x)BT(x)aS(x)
2(S(x),  T()),BS(x) +2(S(¥), T(x)),BS(x) =2S()B(S(x), = T(x)aS(x)BS(x) — S(x)BS(x)aT(x). The above expression
T(x)), —2S(x)B(S(x),  T(»)), —2S(x)B(S(»), T(x)),=0. can be further written as
Since M is 2-torsion free, the above relation reduces to
(S(x), T()),BS0) + (S(x), T()),BS() + (S0, T), p5(x)  [SCIFSCI. T, =0, 29
= SMBS(x), T(x)), = S(x)B(S(x), T(3)), Using (24) in (23), we get
~ SCOBSK). T(x)), = 0. U (50, 7001, 110981(6), TS () 0. (25)

Replacing y by yox in (16), we obtain (S(x), T(x)),pS
(x)31(y) + (S(x), T(x)dy),BS(x) + (S(x)ST(y), T(x)),BS(x)—
S(x)SI(y)B(S(x), T(x)), = S()B(S(x), T(x)31(y)), = S(x)B(T

(x),S(x)dI(y)), = 0. By using anti-commutator identity, the
above relation can be written as

<() S(x)),08(x)BI(y) + (S(x), T(x)),01(y) BS(x)
[S(x), 1)L, BS(x) + (T(x), S(x)),1(y) BS(x)
[T(x), A(»)], BS(x) = S(x)BI(y)5(S(x), T(x)),
(S(x), T(x)),01(y) + S(x) BT (x)3[S(x), 1()],
(T(x), $(x)),01(y) + S(x) BS(x)0[T(x), 1(y)], = 0.
(17)

A

S(x

T(x)d
S(x)
)
)

/-\/\/\

b
B I
B T(x), I

S(x x),

In view of (13) and (17) reduces to

(
(S(x), T(x)),01(y) BS(x) = T(x)0[S(x), 1(y)], BS(x)
+(S(x), T(x)),01(n) BS(x) = S(x)0[T(x), I(y)],BS(x)
= S(x)SI(y)B(S(x), T(x)), = S(x) B{S(x), T(x)),01(»)
+S()BT(x)0[S(x),1(»)], + S(x) BS(x)d[T(x), 1(y)], = 0. (18)

Upon substituting I(S(x))uy for y in (18), we get (S
(3), T 10 uS(BS(x) — T(0R(SEx), TSCOLASCo+
(T(x),  S(0),010)uS(x)BS(x) — SOT(), 10)uS(x)],BS
(x) — SCIIOIHS(X)BS(¥), T(x)), — SC)BIS(), T(x)),01(»)
HS(x) + SC)BT)IS(), IS, + SCORSCISIT(X), 1)
uS(x)], = 0. This implies that
(S(x), T(x)),01(y) pS(x) BS(x) = T(x)0[S(x), 1 ()], S (x)

+(S(x), T(x)), 01(0) S (x) BS(x) = S(x) BT (), 1(y)], 1S (x) BS ()

= S(x)01(y)B[T(x), S(x)],1S(x) = S(x)1(y)uS(x) B{S(x), T(x)),

= S(x)B(S(x), T(x)),01(y)wS(x) + S(x) BT(x)[S(x), 1 ()], 1S (x)

+S()BS(X)S[T(x), 1(y)], 1S (x) + S(x)BS(x)SI(y)u[T(x), S(x)], = 0.
19)

Application of (18) yields that
S(x)01(y) [T (x), S(x)],uS(x) = S(x) S(x)01(y)u[T(x), S(x)], = 0.

Replacing y by yyI(S(x)) in (25), we obtain

T(x)],7S(x)ud(y)o[S(x), T(x)],uS(x) = 0. (26)

Since M is a semiprime I'-ring it follows from relation (26)
that

[S(x),

[S(x), T(0)],S(x) = 0. (27)

In view of relation (24) and (27), we have

S(OuIS(x), T()], = 0. (28)

Replacing x by x + y in (28) and using the same techniques
as we used to obtain (16) from (13), we get

SWIH[S(x), T(x)), + S(x)ulS(y), T(x)],
+ S(x)ulS(x), T(y)], = 0. (29

Substituting yfx for y in (29), we obtain S(x)pI(y)

u[S(x), T(x)], + S(x)uS(x)BlU(y), T(x)], + S(x)u[S(x), T(x), B
1(y) + S(x)u[S(x), T(x)],A1(y) + S(x)uT(x) B[S(x), 1(y)], = 0.
This implies that

~

SE)BIG)u[S(x), T(X)], + S()uS(x) (), T(x)],
+ S()uT(x)BIS(x), ()], = 0. (30)

Thus we have the relation

S()BIOIHIS(x), T()], + S(x)uS
+ S(x)uT(x)B[S(x),1(y)], = 0,
which can be further written in the form
S)BIG)uS(x), T(X)], + S(x)uS(x)BI(y)aT(x)
= SE)uT(x)I(y)S(x) + S()FT(x), S(x)LAIY) =
Application of (28) forces that

()BUW), T(x)],
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SOBIYIKS(x), T(x)], + S(x)uS(x) BI(y) T (x)
= S(x)uT(x)pl(y)2S(x) = 0. (1)

Left multiplication of (31) by T(x) gives

T(x)ouS(x) BI(y) u[S(x),
— T(x)aS(x)u

SO S(x)B1(y)aT(x)

T(x)], + T(x)x
=0. (32)

T(x)BI(y)aS(x)

On substituting yod(7(x)) for y in (31), we have
SE)UT(x)BI(y)a[S(x), T(x)], + S(x)uS(x) BT (x)ed (y)oT(x)

— SCORT(X)BS(X)al (7)aS(x) = 0. (33)

Combining (32) and (33), we obtain

[S(x), T(x)]d(») B[S(x),
+[T(x), S()LBT(x)n

Using (24), the above expression reduces to

T(x)], + [S(x)aS(x), T()] A1) T (x)
1(y)aS(x) = 0. (34)

[S(x), T(x)],BI(y)u[S(x), T(x)],
+ [T(x), S(x)LBT(x) ul (y)aS(x) = 0. (35)
Substituting zfS(x)I(y) for y in (35), we get

[S(x), T(x ]ﬁl uS(x)pI(2)o[S(x), T(x)],
+ [T(x), S(x)], ﬁT( )81(y)uS(x)pI(2)0S(x) = 0. (36)

On the other hand right multiplying to (35) by 1(z)dS(x),
we get

[S(x), T(x)],BI(») BIS(x),
+[T(x), S, BT(x)pd ()

On comparing (36) and (37), we obtain

T(x)],01(z) pS(x)
S(x)31(2)6S(x) = 0. (37)

[S(x), T(x)],BI(»)A(x,z) = 0, (38)
where
A(x,z) = [S(x), T(x)],BI(2)uS(x) — S(x)ud(2) B[S(x), T(x)],-

Substituting yoI(S(x))uz for y in (38) gives

[S(x), T(x)],B1(2)5S(x)ud (y)6A4(x, 2) = 0. (39)
Left multiplying to (38) by S(x)ul(z), we get
S(x)BI(2)0[S(x), T(x)],BI(y)uA(x,z) = 0. (40)

From (39) and (40), we arrive at A(x,z)uydA(x,z) = 0.
That is, A(x,z)MI'A(x,z) =0. The semiprimeness of M
forces that A(x,z) = 0. In other words, we have

[S(x), T(x)],1(2)6S(x) = S(x)01(2) u[S(x), T(x)],.- (41)
Replacing z by yul(T(x)) in (41), we obtain

[S(x), T()]LBT(x)ud (y)5S(x)
= S(x)0T(x)BI(y)u[S(x), T(x)],- (42)

Combining (35) and (42), we obtain [S(x),T(x)],p
1(y)6[S(x), T(x)], — S(x)0T(x)BI(y)u[S(x), T(x)], = 0.  This
further reduces to

T(x)oS(x)BI(y)u[S(x), T(x)], = 0. (43)
If we substitute yo/(7(x)) for y in (43), we find that

T(x)0S(x) BT(x)od (y)ulS(x), T(x)], = 0. (44)
Multiplying (43) from the left side by 7(x), we get
T(x)0T(x)uS(x)BI(y)a[S(x), T(x)], = 0. (45)

Subtracting (45) from (44), we get

T(x)o[S(x), T(x)],ud () B[S(x), T(x)], = 0. (46)

Replacing I(7T(x))dy for y in (46), we obtain

T(x)8[S(x), T(x)L,BI(y)dT(x)u[S(x), T(x)], = 0. (47)
That is, T(x)I'[S(x), T(x)], I'MI'T(x)[S(x), T(x)], =0 for

all x € M. The semiprimeness of M yields that

T(x)I'[S(x), T(x)], = 0. (48)

Replacing y by I(T(x))oy in (42) gives, because of (48)

[S(x), T, pI()OT(x)uS(x) = 0. (49)

Substituting x+y for x in (27) and using the same
approach as we used to obtain (16) from (13), we get

[S(x), T, AS(v) + [S(x), T()],AS(x)
+[80), T(¥)L,BS(x) = 0. (50)
On substituting y x for y in (50), we obtain [S(x), T(x )]
BS()BI(y) + T(x)BIS(x), 1(y)],AS(x) + [S(x) (] )], PIy)BS

(x) + [S(x), T(X)]qﬁl(y)ﬁS(X) F SEOBU), (), BS(x) =
Application of (27) yields that

[S(x), T BS(x) + T(x)BIS(x), 1(y)],BS(x)

+ [S(x), T(x)L,BI(»)BS(x) + S(x)Bl(y), T(x)],BS(x) =
(51)
This implies that
2[S(x), T(x)],BI(»)BS(x) + T(x)B[S(x), 1(»)],BS(x)
+ S(x)BI(»), T(x)],BS(x) = 0. (52)
This can be further written as
2[S(x), T(x)],B1(y) BS(x) + T(x) BS(x) BI(y)eS(x) — T(x)od

()BS(X)BS(x) + S(x)od (v)
S(x) = 0, which reduces to

BT(x)BS

=
—

[S(x), TO)LAI(W)BS(x) + S(xB)I(y)aT(x) BS(x)
— T(x)BI()aS(1)BS(x) = 0. (53)
Using (41) in (53), we obtain 0=S(x)pl(y)
BIS(x), T(x)], + S(x) 1) e T(x) BS(x) — Tx) BI(y) BS(x) S (x) =
S(x)BI(y)aS(x)aT(x) — T(x)BI(y)aS(x) pS(x). The above
expression yields that
S()ad(y)BS(x)BT(x) = T(x)BI(y)2S(x)BS(x). (54)

Substituting yal(T(x)) for y in (54), we have
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S(x)aT(x)BI(y) BS(x)aT(x) = T(x) BT (x)ed (y)2uS(x) BS(x). — S(x)BI(y)oS(x)u[S(x), T(x)],
(55) = S()BT(x)0[S(x), 1(y)],1S(x)
Left multiplication to (54) by T(x) leads to — S(x)B[S(x), T(x)],01(y) S (x)
B —S(X)uS(X) ( ) [ (X)7T( )
o . Using (61) in (62), we conclude that
By combining (55) and (56), we arrive at
S(x)BI(y)o[S(x), T(x)],uS(x)

S(x), T(x)], S(x)aT(x) = 0. ’
156), TELAI)S(x)aTtx) =0. BT SRS IS (S(x), T(x)], = 0. (63)

From (49) and (57), we obtain [S(x), (x)} BI(y)pIS o ) )
(x), T(x)], = 0. That is, [S(x), T(x)], I MI[S(x), T(x)], = 0. Substituting yI(7(x)) for y in the above relation, we

The semiprimeness of M yields that [S(x), T( )} =0 for
allx e M and o € I'. If M is prime, then in view of Lemma
2.5 we get the required result. Thereby the proof of theorem
is completed. [

Theorem 3.2. Let M be a 2-torsion free semiprime I'-ring with
involution I satisfying the condition xayfz = xfyoz for all
x,y,z€ M and o, €T, and S,T: M — M be Jordan left-
I-centralizers. Suppose that [S(x), T(x)],pS(x) — S(x)B[S(x),
T(x)],=0 holds for all xeM and o,pcl. Then,
[S(x),T(x)], =0 for all x e M and o € I'. Moreover, if M is
a prime I'-ring and S#0 (T#0), then there exists p € C(M)
such that T =pS (S=4qT, g€ C(M)).

Proof. We notice that S and T are reverse left-/-centralizers by
Lemma 2.3. By the assumption we have the relation

[S(x), T(x)],BS(x) = S(x)BIS(x), T(x)], = 0, (58)

for all x € M and «, f € I Replacing x by x + y in (58) and
using similar techniques as we used to obtain (16) from (13),
we find that

[S(x), T)LAS() + [S(x), TW)],BS(x) + [S(), T(X)],AS(x)
= SWBIS(x), T(x)], = S(x)BIS(x), T(v)],
= S()BIS), T(x)], = 0. (59)

Substituting ydx for y in (59), we obtain

a(y)/a[s 0T,
BIS(x), T(x)],01(5)
x)]m:o. (61)

Substituting 7(S(x))py for y in (61), we have

2[S(x), T(x)],ud () S(x)0S(x) + T(x)B[S(x),
+ S(x)BU(), T(x)],1S(x)3S(x)
p s T(x)],08(x)

1()],1S(x)3S(x)

obtain

S()BT(x)BI(y)o[S(x), T(x)], 1S (x)
= S(x)BS(x)0T(x)BI(y)u[S(x), T(x)], = 0. (64)

On the other hand left multiplication of (63) by T(x) gives

T(x)0S(x)pI(y)o[S(x), T(x)],BS(x)
— T(x)BS(x)0S(x)1(y)B[S(x), T(x)], = 0. (65)
By comparing (64) and (65), we obtain 0 = [S (x) ( \)],B1
(1)0[S(x), T(x)],08(x) = [S(x)BS(x), T(x)],I(») BIS(x), T(x)], =
[S(x), T(x)L,1(y)B[S(x), T(x)],BS(x) — ([S(x), T(x )] BS(x)+
S(x)pIS(x), T(x)],)I(y)pIS(x), T(x)], In view of the hypothe-
sis, the above expression reduces to

[S(x), T(x)],01(y) B[S(x), T(x)],S(x)
— 28(x)0B[S(x), T(x)],BI(y)0[S(x), T(x)],- (66)
If we multiply (66) by S(x) from left, we get

S(x)8[S(x), T(x)],01(y) B[S(x), T(x)],S(x)
= 28(x)0S(x) B[S(x), T(x)] 1) BIS(x),

On the other hand putting y[S(x),
arrive at

T(x)], = 0. (67)
T(x)], for y in (63), we

S()BIS(x), T(x)],BI()BIS(x), T(x)],BS(x)
— S(x)BS(x)o[S(x), T(x)],pI(»)d[S(x), T(x)], = 0. (68)

By combining (67) and (68), we obtain

S()BIS(x), T, () BIS(x), T(x)],BS(x) = (69)

Using (58) in the above expression, we obtain

S()BIS(x), T(x)],61(y) BS(x) B[S (x), T(x)], = 0. (70)

Since M is semiprime, it follows that S(x)p[S(x),
T(x)],=0. From (69) and (58), we get [S(x),T(x)],
pS(x) =0. The last two expressions are same as Eqs. (27)
and (28) and hence, by using similar approach as we have used
after (27) and (28) in the proof of Theorem 3.1, we get the
required result. The theorem is thereby proved. [

Corollary 3.3. Let M be a 2-torsion free semiprime I'-ring with
involution 1 satisfying the condition xoyfz = xPyaz for all
x,y,z€M and a,p €T, and T: M — M a Jordan left-I-
centralizer.
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(1) Suppose that (T(x),1(x)),BI(x) — [(x)B(T(x), 1(x)), = 0
holds for all x € M and o, € I'. Then, T is a reverse
I-centralizer on M.

(2) Suppose that (T(x),1(x)),BT(x) — T(x)B(T(x),1(x)), = 0
holds for all x € M and o, € I'. Then, T is a reverse
I-centralizer on M.

(3) Suppose that [T(x),(x)],BI(x) —I(x)B[T(x),1(x)], =0
holds for all x e M and o, € I'. In this case, T is a
reverse I-centralizer on M.

(4) Suppose that [T(x),I(x)],fT(x) — T(x)p[T(x),I(x)],=0
holds for all xe M and o, € I'. In this case, T is a
reverse I-centralizer on M.
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