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Abstract In this paper, we study the qualitative behavior of some systems of second-order rational
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icity behavior of positive solutions and rate of convergence of positive solutions of these systems.
Some numerical examples are given to verify our theoretical results.

34C99; 39A10; 39A99; 40A05

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction and preliminaries

Recently there has been a great interest in studying the quali-
tative properties of rational difference equations. For a system-
atic study of rational difference equations we refer [1-15] and
references therein. In Refs. [16-19] qualitative behavior of
some biological models is discussed. Recently there has been
a lot of interest in studying the global attractivity, bounded-
ness character, periodicity and the solution form of nonlinear
difference equations.
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Bajo and Liz [5] investigated the global behavior of differ-
ence equation:
Xn—1

Xnvl = 7
a+bx,_i1x,’

for all values of real parameters a, b.
Alogeili [6] discussed the stability properties and semi-cycle
behavior of the solutions of the difference equation:

Xn—1
u n=0,1,...,

Xnyl = >
a — Xp_1Xp
with real initial conditions and positive real number a.

Motivated by the above studies, our aim in this paper is to
investigate the qualitative behavior of following systems of
second-order rational difference equations:

oXy—1 9‘1)/,,71
Xntl =5 Ypr1 T 5 o f’l:O,l,..., (1)
ﬁ —VVuVn-1 ! ﬁl — V1XnXn-1
and
ayn—l ayXp—1
Xy = — Dl — W 0, (2
n+1 b— XX 1 yn+l b] — YV ( )
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where the parameters o, 8, v, o, By, 71, a, b, ¢, a1, by, ¢
and initial conditions xy, x_;, y,, y_, arepositive realnumbers.

Let us consider four-dimensional discrete dynamical system
of the form

Xn41 :f(xnvxn—l’ymyn—l)a (3)
Ynt1 :g(xmx”flvymyn—l)? l’l=071,...,

where f: P xJ* =1 and g: PP xJ* — J are continuously
differentiable functions and 7, J are some intervals of real
numbers. Furthermore, a solution {(x,,»,)}.— , of system
(3) is uniquely determined by initial conditions (x;,y;) € I x J
for ie {—1,0}. Along with system (3) we consider the
corresponding vector map F= (f,x,, Xu_1,8 Vs Vp_1)- AN

equilibrium point of (3) is a point (¥, ) that satisfies

X :f(77 xaﬁa?)?
.y = g('%7x7)77 7)
The point (X, 7) is also called a fixed point of the vector map F.

Definition 1. Let (¥, 7) be an equilibrium point of the system
3).

(i) An equilibrium point (¥,y) is said to be stable if for
every ¢ > 0 there exists ¢ > 0 such that for every initial
condition (x;,y,), i € {—1,0}||3)_ (xi,3) — &3] < &
implies ||(x,,»,) — (x,7)|| <& for all n >0, where || - ||
is the usual Euclidian norm in R?.

(ii) An equilibrium point (x,y) is said to be unstable if it is
not stable.

(iii) An equilibrium point (¥,7) is said to be asymptotically
stable if there exists # > 0 such that HZ?:_I(x,-,yi)—
(*y)|l <nand (x,,y,) — (x,y) as n — oo.

(iv) An equilibrium point (,y) is called global attractor if
(xn,,) = (%) as n — oo.

(v) An equilibrium point (%,y) is called asymptotic global
attractor if it is a global attractor and stable.

Definition 2. Let (X, ¥) be an equilibrium point of the map

F= (faxmxn—lvgvymyn—l)?
where f and g are continuously differentiable functions at
(X,7). The linearized system of (3) about the equilibrium point
(%.7) is
/Y)Hrl = F(Xn) = FJXVH

Xn

Xn—1

where X, = and F; is the Jacobian matrix of the

n

Yn-1
system (3) about the equilibrium point (¥, 7).

Lemma 1 [2]. For the system X,., = F(X,), n=0,1,... of
difference equations such let X be a fixed point of F. If all
eigenvalues of the Jacobian matrix Jp about X lie inside an open
unit disk |A| < 1, then X is locally asymptotically stable. If one of
them has norm greater than one, then X is unstable.

Lemma 2 [3]. Assume that X, = F(X,), n=0,1,... is a
system of difference equations and X is the equilibrium point

of this system. The characteristic polynomial of this system
about the equilibrium point X is P(A) = ag' + a\ A" + -+
ay1 A+ a, =0, with real coefficients and ay > 0. Then all roots
of the polynomial P(1) lies inside the open unit disk |A| if and
only if Ay >0 for k=0,1,..., where Ay is the principal minor
of order k of the n x n matrix

ay daz das N 0
ayp dy Ay N 0

A, = 0 a a ... 0| (4)
0O 0 O ay

The following result gives the rate of convergence of
solution of a system of difference equations

Xy = (A + B(”))Xm (5)

where X, is an m-dimensional vector, 4 € C"*" is a constant
matrix, and B : Z* — C"™" is a matrix function satisfying
[ B(n)|| — 0 (6)

as n — oo, where ||-|| denotes any matrix norm which is
associated with the vector norm

G = Vo2 + 2

Proposition 1 (Perron’s Theorem [20]). Suppose that condition
(6) holds. If X, is a solution of (5), then either X,, =0 for all
large n or

: 1/n
p = lim (|lx, )" (7)
exists and is equal to the modulus of one the eigenvalues of
matrix A.

Proposition 2 [20]. Suppose that condition (6) holds. If X, is a
solution of (5), then either X, = 0 for all large n or

X
p = lim
oo HXn”

(®)

exists and is equal to the modulus of one of the eigenvalues of
matrix A.

2 = Ot
2. On the system x,,; = ﬁfvy,.yt.,l s Va1 = ﬂlfv'lx";’kl
In this section, we shall investigate the qualitative behavior of
the system (1). Let (X, ¥) be an equilibrium point of system (1),
then for f > o and f; > «; system (1) has following two

equilibrium points Py = (0,0), P; = <, /%, \ /@)

To construct corresponding linearized form of the system
(1) we consider the following transformation:

(xmxn—laynvyn—l)H(ﬁflvgvgl)a (9)

oLXy | X1 YVn—1

= ey jl =Xm &= Br=r1%nxp-1? & = The
Jacobian matrix about the fixed point (X, ¥) under the transfor-
mation (14) is given by

where f

0 0 0 0
FJ(X‘-»?) = 1 0 0 0 )

03 03 0 4

0 0 1 O
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where 0) = 5%, 6, = 5y =

LIWIR 5 — o
w2 (o) !

Br-ns)? 7T B

2.1. Main results

Theorem 1. Let o< f and oy < f5,, then every solution

{(xn,y,) Yooy Of the system (1) is bounded.

Proof. It is easy to verify that
o m+1
0<x,,<<7) x_y, ifn=2m+1,

) Xo, ifn=2m+2,

m+1
o, fn=2m+1,
(ﬁl) -

m+1
0<y, < ) Vo, fn=2m+2.

Taking ¢; = max{x_i,x0} and 0> =max{y_,,y,}. Then,
0<x,<0pand0<y, < foralln=0,1,2,... O

Theorem 2. If o< f and oy < f,, then equilibrium point
Py = (0,0) is locally asymptotically stable.

Proof. The linearized system of
point Py = (0,0) is given by

(1) about the equilibrium

Xn+1 = FJ(O7 O)Xn

X, 0 % 0 0
x| (100 0
where X, = E and F;(0,0) = 00 0 ;_]1
Yo 0010
The characteristic polynomial of F,(0,0) is given by
P :;f‘—<3+°")2+ﬁ 10
) 578) 10

The roots of P(2) are A==+,/%, 1=+

Lemma 1 the equilibrium point Py = (0,0) is locally asymptot-
ically stable if « < fand oy < ;. O

. Therefore, by

Theorem 3. The
S — /B~
(xvy) - ( 171 bl

Proof. The linearized system of (1) about the equilibrium

( //f, —u,

Xn+l = F/(Pl)Xm

positive equilibrium point

ﬁ%") of the system (1) is unstable.

point (X, ) 7“) is given by

X 0 1 uw
Xn—1 1 0 0 0
where X, = and F;(P;) =
Y S(P1) b ko 01
ynfl 0 0 1 0

The characteristic polynomial of F,(P;) is given by

P(2) = 2 = (24 ) A = 2 d+ 1 — pypy, (11)
1 [re=pu=p) . _ 1 /ne=plu-pF) : p
whereulfw/ﬁdnduzfmw/‘ = It s clear

that not all of Ay >0 for k =1,2,3,4. Hence by Lemma 2,

the positive equilibrium point (X,y) = (,/“'Vﬁ' /2 ﬁ)

unstable. [

2.2. Global character

Theorem 4. Let o < f§ and oy < B, then the equilibrium point
Py = (0,0) of system (1) is global attractor.

Proof. From Theorem 1, every positive solution {(x,,»,)}re

of the system (1) is bounded. Now, it is sufficient to prove that

{(xn, ) }oe | is decreasing. From system (1) one has
OXp—1 X p—1
Xpp1 = B < Xp-1-
" ﬁ = VYV n- ﬁ

This implies that x,,,; < x2,_; and xs,,3 < X2,41. Hence, the
subsequences {xz,11}, {X2:2} are decreasing, i.e., the
sequence {x,} is decreasing. Similarly, one has

o0y, oGy,
Yn-1 < Vn-1
Bl — Y1 XnXn—1 ﬁ]

yn+] = <yn—]'

This implies that y,, ;| < y,,_; and y,, 5 < yy,,. Hence, the
subsequences {y,,.,}, {V»..} are decreasing, i.e., the sequence
{y,} is decreasing. Hence, lim,_,x, = lim,_y, =0. O

Lemma 3. Let a < f§ and oy < f3,, then the equilibrium point
Py = (0,0) of system (1) is globally asymptotically stable.

Proof. The proof follows from Theorems 2 and 4. [

Theorem 5. The system (1) has no prime period-two solutions.

Proof. Assume that (p,,q,),(P2;¢), (P154,),... be prime
period-two solution of system (1) such that p,, ¢, # 0 and
p; # q; for i = 1,2. Then, from system (1) one has:

%Py )
. -~ (12)
" B— g B =749,
and

o1 g, %14,
9 = sy = . 13
: Bi — 712l ? Bi — v1p1P2 (13)

From (12) and (13), one has p;, ¢, =0 for i = 1,2. Which is a
contradiction. Hence, system (1) has no prime period-two
solutions. [

2.3. Rate of convergence

We investigate the rate of convergence of a solution that con-
verges to the equilibrium point (0,0) of the system (1).

Let {(xn,7,)}e_, be any solution of the system (1) such
that lim,_,«x, = X, and lim,_~y, = y. To find the error terms,
one has from the system (1)

1 1
Xpp1 — X = ZAII(XU*I‘ - )E) + ZB[(ynfi - Jj)a
=0 =0

1 1
Vgt =V = ZC,-(x,H - X)+ ZD:'(J’H -7)
=0 i=0

Set ¢! = x, — x and €2 = y, — 7, one has
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1 1
1 _ § 1 § 2
en+l - Aienfi + Bierhi’
n+l § :Cen z+ E :D Chis

where  Ag =0, 4y = By = e, ey B =

ayxXy A — o171 XV
(B=ypyu—1)(B—77? » Co = (Bi=71XnXn— 1)(ﬁ| 715%) » G = (Br=r1xnxu1)(Br—01%2)
Do = 0 D] = =l

Br=y1XnXn-1"

Taking the limits, we obtain hm,Hovo =0, lim,_, A4, =
Xy

ﬂ%‘ﬂ, lim, s By = lim,,_, B = - lim,_,Co = lim,_,o
— o /l)‘." 1 — 1 — 23]
C = T lim,_..Dy =0, lim,_ D = = So, the

limiting system of error terms can be written as

En+l = KEm

where and K=
o
0 p—ri?
1 0 C .
05 ) 5 0 " , which is similar to lin-
Br=n®?  (B-n=)’ Bi=y1®
0 0 1 0

earized system of (2) about the equilibrium point (¥, 7).
Using proposition (1), one has following result.

Theorem 6. Assume that {(x,,y,)}n_, be a positive solution of
the system (1) such that lim,_..x, = X, and lim,_,y, =7,
where (%,y) = (0,0). Then, the error vector E, of every solution
of (1) satisfies both of the following asymptotic relations

- - n+1 o — -
pre )l Jim el = p s,

where AF;(X,y) are the characteristic roots of the Jacobian
matrix F;(X,y) about (0,0).

. 1
lim ([|£,][)" =

arXp_1

ayn_
3. On the system x,.; = m7 Yol = 5 ey

In this section, we shall investigate the qualitative behavior of
the system (2). Let (X, y) be an equilibrium point of the system
(2), then system (2) has a unique equilibrium point Py = (0,0).
To construct corresponding linearized form of the system (2)
we consider the following transformation:

(xmxnfl:yn:ynfl) = (fvflvgvgl)7 (14)
where f: 1,:2;:1;1” 0 fl Xn> & #7 g1 = V- The Jaco-

bian matrix about the fixed point (¥, 7) under the transforma-
tion (14) is given by

G &4 0 &
F)(%,5) 1 0 0 O
x? = o )
7y 0 & &G &
0 0 1 0
where {; = ot 7 L= e , 3= ) a(]l)u l= (blal_?l'\;)z-

3.1. Main results

Theorem 7. Let {(x,,y,)}re_, be positive solution of system

(2), then for every m = 1 the following results hold.

33
®"! <;71) Ty ifn=dm,
& (Z—}> Ve i n=4m+2,
() 0<x, < (g)mﬂ (Z_1 mx,l, e dm 3,
(b)m“ (,,,)mxm if n=4m+ 4.
(%)%%)mﬂxfu if n=4m+1,
()" (Z_:)mlxoy ifn=4m+2,
i) 0<y, <
" ' " (Ei—:)m“y,l, if n=dm+ 3,
@ ()" o irn=dmra

Theorem 8. For the equilibrium point Py =
(2) following results hold true:

(0,0) of the system

(i) If @ < b and a; < by, then equilibrium point Py = (0,0)
is locally asymptotically stable.
(ii) If a > b or a; > by, then equilibrium point Py = (0,0) is
unstable.
Proof.

(i) The linearized system of (2) about the equilibrium point
Py = (0,0) is given by

/YIHrI = FJ(Ou O)Xm

Xn 0 0 0 ¢
Xn_1 1 0 00
where X, = , and F,(0,0) = )
i 0 5 00
Yn-1 0 0 1 0

The characteristic polynomial of F;(0,0) is given by

P(J) =2 — (15)

b_bl .

The roots of P(1) are A = :l:(““‘) A= :tz(ZZ‘) There-
fore, by Lemma 1 the equilibrium point Py = (0,0) is
locally asymptotically stable if a < b and a; < b;.

(i) It is easy to see that if @ > b or a; > by, then there exists
at least one root 4 of Eq. (15) such that || > 1. Hence,
by Lemma 1 if a > b or a; > by, then Py = (0,0) is
unstable. O

3.2. Global character

Theorem 9. Let a < b and a; < by, then the equilibrium point
Py =(0,0) of system (2) is global attractor.

Proof. From Theorem 7, it is easy to show that if ¢ < b and
ay < by then every positive solution {(x,,y,)}.-_, of the system
(2) is bounded. It is sufficient to prove that {(x,,»,)}e ;| is
decreasing. From system (2) one has
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aVp— < ay,—y
X
b — CXpXp— b

Xnt1 = <yn—l'

This implies that X441 < Yy, and Xgups < Vy,,3. Also

arx,—
_ 1An—1 <
bl — C1VnVn-1 b

ax,—

Yt < Xp-1-

This implies that y,., < X4 and  yg,.s < Xgy3. So,
Xants < Vappz < Xanpr and g, s < Xapy3 < V44, - Hence the sub-
sequences {x4n+1}7 {x4n+2}v {x4n+3}7 {X4n+4} and {y4n+l}ﬂ
{Vanints {Vanss}s {Vansat are decreasing. Therefore the
sequences {x,} and {y,} are decreasing. Hence,
lim, e, = lim, oy, =0. O

Lemma 4. If a<b and a; < b, then the equilibrium point
Py = (0,0) of system (2) is globally asymptotically stable.

Proof. The proof follows from Theorems 8 and 9. [
Theorem 10. The system (2) has no prime period-two solutions.
Proof. Assume that (uy,vy),(u2,v2), (u1,v1),... be prime

period-two solution of system (2) such that u;, v; # 0 and
u; # v; for i = 1,2. Then from system (2) one has:

avy av,
uy = y, U= ) (]6)
b — curuy b — cuyuy
and
azu ajuy
V) = ——, ) = . (17)
by —civmv by —civin,

From (16) and (17), one has u;, v; =0 for i = 1,2. Which is a
contradiction. Hence, system (2) has no prime period-two
solutions. [

3.3. Rate of convergence

We investigate the rate of convergence of a solution that con-
verges to the equilibrium point Py = (0,0) of the system (2).

Let {(xn,7,)}e_; be any solution of the system (2) such
that lim,_.,x, = X, and lim,_ .y, = y. To find the error terms,
one has from the system (2)

1

1
Xppl — X = ZAi(ani -X)+ ZBi(J’n—i -5,
=0

i=0

1
yﬂ+1 - ﬁ = Zci(xnfi - j) + ZDi(ynfi _.)7)
i=0

i=0

1 T 2 _ 5 :
Set e, = x, — X and e;, = y, — , one has

1 1
1 _ 1 2
€1 = E Aien—i + § B"gn—ﬁ
i=0 i=0
1 1
2 § 1 § 2
en+1 - C"enfi + Dienfﬂ
i=0 i=0

_ acx,_1y _ acxy
where 4y = (b—cxpxy_1)(b—cx?)? A = (b—cx,,x,,,l)(h—rxz)i
a Co=0.C = a Dy = A1y
b=cxpx O > LT by T0 T Bi—ann)Bi—ai?)
ajciXy
(br—c1yyu-1)(b1—a172)

Taking the limits, we obtain lim, . A4, = lim, ., 4,

acxy : : :
(,]jc;z)z, lim,_By =0, lim,_..B lim, ... Cy = 0,

By=0, B, =
D]Z

— _a
b—cx??

lim,_,,C; = #, lim,_, Dy = lim,_,,D; = -4 So, the
limiting system of error terms can be written as

G71+1 = MGVH

eﬂ
el
where G,=| 73! and M=
e
2’1
en—l
acxy acxy 0 a
(b—c2)?  (b—cx2)? b—cx?
1 0 0 0 . L
0 @ w57 wasy  |» which is similar to
0 bi—e1i? <h]—c1-1;2>2 (b1—c132)’

linearized system of (2) about the equilibrium point (¥, ).
Using proposition (1), one has following result.

Theorem 11. Assume that {(x,,y,)}_, be a positive solution
of the system (1) such that lim,_,x, = X, and lim,_..y, =¥,
where (%,7) = (0,0). Then, the error vector E, of every solution
of (1) satisfies both of the following asymptotic relations

lim (|| E,

)" = [2Es(% )], lim

where AF;(X,¥) are the characteristic roots of the Jacobian
matrix F;(X,7) about (0,0).

4. Examples

In order to verify our theoretical results and to support our
theoretical discussions, we consider several interesting numer-
ical examples in this section. These examples show that the
equilibrium point (0,0) of both systems (1) and (2) is globally
asymptotically stable.

Example 1. Consider the system (1) with initial conditions
x_1 =07, xo=15, y_;, = 1.9, y, = 1.2. Moreover, choosing
the parameters o=120, f=129,y=3.3, 0, =125, f, =135,
y; = 10. Then, the system (1) can be written as:

120x,_4 125y,
An =~ TAa 4 4. . n :7n7 :0717~~~7
YT 129 33y Y T 135~ 10x,x,
(18)
and with initial conditions x_; =0.7, xo = 1.5, y_, = 1.9,
¥y =1.2.

Moreover, in Fig. 1 the plot of x, is shown in Fig. la, the
plot of y, is shown in Fig. 1b, and an attractor of the system
(18) is shown in Fig. Ic.

Example 2. Consider the system (1) with initial conditions
x_1 =29, xo=18, y_, =0.07, y, =0.1. Moreover, choos-
ing the parameters o= 538, f =550, y=14, a; = 600,
f, = 625, y, = 16. Then, the system (1) can be written as:

538x,-1 600y,_,
) yn+l: ) :0717“'7
550 - 14y,»,_, 625 — 16x,x,_;
(19)

and with initial conditions x_; =2.9, xo = 1.8, y_, =0.07,
¥y =0.1.

Xnyl =
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x() y0)
14
12

1.0
0e
0.6

04

02

0.5

. e
T n T

50 100 150 — )
(a) Plot of z,, for the system (18)

Figure 1

yo)
0.30

025
0.20

0.15

(b) Plot of y,, for the system (18)

i, n L L L L L x(n)
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(c) An attractor of the system (18)

Plots for the system (18).
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0.15F
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x(n)

I 20 40 6 80 100 120 140
(a) Plot of z,, for the system (19)

20 40 60 80

(b) Plot of y,, for the system (19)

05 10 15 20 15
(c) An attractor of the system (19)

100 120 140

Figure 2 Plots for the system (19).

150 200 250 300 350 50 100

50 100

(a) Plot of x,, for the system (20)

150 200 250 300

(b) Plot of yy, for the system (20)

n . . . . L ) 2 ()
350 1 2 3 4 s o

(c) An attractor of the system (20)

Figure 3  Plots for the system (20).

Moreover, in Fig. 2 the plot of x, is shown in Fig. 2a, the
plot of y, is shown in Fig. 2b, and an attractor of the system
(19) is shown in Fig. 2c.

Example 3. Consider the system (2) with initial conditions
x_1 =49, xo=3.8, y_, =3.08, y, =5.99. Moreover, choos-
ing the parameters a= 1105 b= 1126, ¢ =0.008, a; =
1100, by = 1146, ¢; = 2.01. Then, the system (2) can be writ-
ten as:

o 1105y, ,
171126 — 0.008x,x,
1100x,_,
- =0.1,... 20
Tl T 1146 — 201y, 0 T (20)
and with initial conditions

x_1 =49, xy=3.8, y_, =3.08, y, =5.99.

Moreover, in Fig. 3 the plot of x, is shown in Fig. 3a, the
plot of y, is shown in Fig. 3b, and an attractor of the system
(20) is shown in Fig. 3c.

Example 4. Consider the system (2) with initial conditions
x_; =489, xo=3.8, y_, =2.08, y, =0.89. Moreover,
choosing the parameters a= 1101, b=1116, ¢ =0.3,
a; = 1090, by = 1136, ¢; = 5.01. Then, the system (2) can
be written as:

1101y, ,
1116 — 0.3%, %,
~1090x,_,

Tl = 1136 — 501y,

Xpy1 =
n=0,1,..., (21)

and with initial conditions x_; = 4.89, x, =3.8, y_, = 2.08,
o = 0.89.
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x(n) y0n)

100

100

200 300

(a) Plot of z,, for the system (21)

200

(b) Plot of y, for the system (21)

n

300 400

(c) An attractor of the system (21)

Figure 4 Plots for the system (21).

Moreover, in Fig. 4 the plot of x, is shown in Fig. 4a, the
plot of y, is shown in Fig. 4b, and an attractor of the system
(21) is shown in Fig. 4c.

5. Conclusion

This work is a natural extension of [6]. In this paper we have
investigated the qualitative behavior of some systems of sec-
ond-order rational difference equations. Each system has only
one equilibrium point which is stable under some restriction to
parameters. The most important finding here is that the unique
equilibrium point (0,0) is a globally asymptotically stable for
the systems (1) and (2). Moreover, we have determined the
periodicity behavior of positive solutions and the rate of con-
vergence of a solution that converges to the equilibrium point
(0,0) of the systems (1) and (2). Some numerical examples are
provided to support our theoretical results. These examples are
experimental verifications of theoretical discussions.
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