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Abstract This paper obtains solutions as well as other solutions to the 3D- Gross—Pitaevskii equa-
tion, which is called the non-linear Schrodinger equation under the conditions of Kudryashov
method that appear in various areas of mathematical physics. This equation describes Bose—
Einstein condensates in the low temperature regime. These new exact solutions will complement
previous results and help further to understand the physical structures.
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1. Introduction

In the recent years, seeking exact solutions of nonlinear partial
differential equations (NLPDEs) was very important, because
the nonlinear complex physical phenomena related to the
NLPDEs are widely useful in many fields from physics,
mechanics, biology, chemistry and engineering.

To this aim, a vast variety of powerful and direct methods
to find the exact significant solutions of NLPDEs though they
are difficult to find. Some of the most important methods are
tanh- extended tanh method By Wakil [2], Fan [3] and Wazwaz
[4], solitary wave ansatz method by Biswas [5-7], tanh method
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by Biswas [8,9], multiple exp-function method by Ma [10],
Kudryashov method by Malfliet [11], Ma [12], Hirota’s direct
method by Kudryashov [13,14].

The Gross—Pitaevskii equation (GPE) is a classical nonlin-
ear evolution equation. It is a variant of the famous nonlinear
Schrodinger equation (NLSE), which is a universal model gov-
erning the evolution of complex field envelopes in nonlinear
dispersive media. This article aims at considering the 3D-
Gross—Pitaevskii equation with space and time modulated
potential and nonlinearity by Manjun in [1],

i%h(s7 1) = —Vh(s, 1) + U(X)h(s, 1) + g|h|’h,
P P P (1)

VeorTop

+

where s € R*; ¢ > 0, V stands for the Laplacian operator. The
function U(x) describes the potential of the trap to confine the
condensate and s = (x, y, z) is the propagation variable and 7 is
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the transverse variable. The nonlinear coefficient g(s, 7) is the
real-valued functions of time and spatial coordinates. We study
nonlinear states for the NLS-type equation with additional peri-
odic potential U(x), also called the Gross—Pitaevskii equation,
GPE, in theory of Bose—Einstein Condensate, BEC. In theoret-
ical physics, the (one-dimensional) nonlinear Schrédinger equa-
tion (NLSE) is a nonlinear variation of the Schrodinger
equation. It is a classical field equation whose principal applica-
tions are to the propagation of light in nonlinear optical fibers
and planar waveguides and to Bose—Einstein condensates con-
fined to highly anisotropic cigar-shaped traps, in the mean-field
regime. Additionally, the equation appears in the studies of
small-amplitude gravity waves on the surface of deep inviscid
(zero-viscosity) water, the Langmuir waves in hot plasmas, the
propagation of plane-diffracted wave beams in the focusing
regions of the ionosphere, the propagation of Davydov’s
alpha-helix solitons, which are responsible for energy transport
along molecular chains, and many others. More generally, the
NLSE appears as one of universal equations that describe the
evolution of slowly varying packets of quasi-monochromatic
waves in weakly nonlinear media that have dispersion

2. Method applied

The purpose of this section is to present the algorithm of the
modified Kudryashov method to find exact solutions of the
nonlinear evolution equations. To do so we follow [15] by
Malfliet, Ma [16,17] by Kudryashov.

Let us consider the nonlinear partial differential equation in
the form

E(uj uy, ..., x,t) =0. (2)

We use the following ansatz

u= U&= x—ct, (3)

From Eq. (2) we obtain the ordinary nonlinear differential

equation

d)(_cU/(é)ei(axﬂit) 4 I-ﬁUei(ax+/ir)7 Ul(é)ei(:x.H»ﬂt) 4 ifoei(a'Hm), » )
(4)

Now we show how one could obtain the exact solution of the

Eq. (4) using the approach by modified Kudryashov method.

This method is consisted of the following steps [15] by Malfliet
and Ma [16].

1.2. Determination of the dominant term

To find dominant terms we substitute
U=¢&, ©)

into all terms of Eq. (4). Then we compare degrees of all terms in
Eq. (4) and choose two or more with the smallest degree. The min-
imum value of P define the pole of solution for Eq. (4) and we
denote it as N. We have to point out that method can be applied
when N is integer. If the value N is noninteger one can transform
the equation not only study the procedure but also repeat it.

2.2. The solution structure

We look for exact solution of Eq. (4) in the form

U=ay+a0(&) + a0’ (&) + - +av0" (&), (6)

where a; are unknown constants to be determined later, such
that ay # 0, while Q(¢) have the form

L 7)

NS
These functions satisfy to the first order ordinary differential
equations (Riccati equations)

0'(&) = 0%(&) - 0(9), (8)
Eq. (8) are necessary to calculate the derivatives of functions

Q(9)-

0(¢)

Remark 1. This Riccati equation also admits the following
exact solutions:

0,(%) :%(1 ~ tanh E— 8“;50]), & >0,

0:(6) =3 (1 -eomn |5 - 52}, <0,

3.2. Derivatives calculation

We should calculate all derivatives of functions Q(&). One can
do it by the computer algebra systems Maple or Mathematica.
For example, we consider the general case when N is arbitrary.
Differentiating the expressions (7) with respect to ¢ taking into
account (8) we have

Q'(¢) = ai(@ - 1)Q',
'3‘ (10)
Q"(&) = _aii((i+1Q* — (2i+ D@+

The high order derivatives of functionsQ(&)can be found in
Refs. [18] by Kudryashov and Hirota [19].

4.2. Defining the values of unknown parameters

We substitute expressions (10) in Eq. (6). After it we take Q(¢)
from (10) into account. Thus Eq. (6) takes the form

PIO(9)],

where P[Q(£)] is a polynomial of functions Q(¢). Then we col-
lect all terms with the same powers of functions Q(¢) and
equate these expressions equal to zero. As a result we obtain
system of algebraic equations. Solving this system we get the
values of unknown parameters.

3. Our method to the 3D- Gross—Pitaevskii equation with
periodic potential

To seek exact analytical wave solutions of Eq. (1) we take the
similarity transformation [15] by Malfliet,

h(xJH Z, t) = l//(&:)eik(wﬁﬁjurzprﬂ”7

We substitute Eq. (11) into Eq. (1) and obtain the following
ordinary differential equation

E=x+y+z—ct (11)

3 + k(a4 4 4) — Y — [ + 9> + 17)
+ kB 42Ul — gy’ =0, (12)
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The pole of the Eq. (12) is equal toN = 1, thus we look for
exact solution in the forms

U=a0+a|Q(f). (13)

Substituting (13) in Eq. (12) and taking (10) into account we
obtain the polynomial of functionsQ(&). Collecting all terms
with the same power of functionsQ(¢) and equate this expres-
sions to zero. Then we obtain the system of algebraic equa-
tions. By solving this system, we find that values of
parameters as follow cases:

Case 1:

6
a, = e
g

a _\/ (2 497+ 2) + kp+ U
0 — - )
g

¢ =2k(o+y4 2) = 2702 4 y* + A%) — 2Kkpi — 2iU — 3i.

(14)

Taking the solution set (14) along with (7) and (13) we have  Figure 1 ~ Complex solution corresponding to /i3(x, y, z, 1) in two
solutions of (12) as follows dimensional. For y=z= 1 and —10 <x< 10 and 0 <t< 10.

¥ = \/ (K02 + 9% + 2%) + kf + U]
=1/
g

6
+\/;(l+exp(x+y+z(2k(oc+y+}u)

— 20%i(o2 + 7 + 22) — 2kpi — 20U — 3i)1)) ",

Thus, we have the solitary wave solution of the 3D- Gross—
Pitaevskii equation with space and time modulated potential
and nonlinearity is in the following form:

h](x7y’zyl): |:\/ [k2(a2+’y2+;"2)+kﬁ+U}

g

6
+\£(1+exp(x+y+z(2k(a+y+z)

— 2I%i(o 4 9 4 72) — 2kpi — 20U — 3i)1)) !

x exp(ik(ox +yy + 2z + p)), Figure 2 Complex solution corresponding to 7i4(x, y,z, 1) in two
dimensional. For y=z=1and —10 < x <10 and 0 < ¢ < 10.

Case 2:
1 =9+ 2k a+ 2ik y + 2ik A — i(2k(x+y + 4) — 2K7i(o? + 9% + %) — 2kPi — 20U — 3i)

3 [ R kU ’
8

) _\/_ P2+ + ) + kB + U] (1)
0 g )
¢ =2k(o 4y 4 1) = 2K%i(o? 4 9* + 27) — 2kPi — 2iU — 3i.

ap
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Using the conditions (15) and (7) in (13), we obtain the
solution of (1)

hz(x,y’;[): l\/_ [kz(o(2+w/2 +g)‘2)+kﬂ+[]}

1 =9 + 2ik o+ 2k y + 2ik A — i2k(a+y + 4) = 2k%i(o? + 3> + 4*) — 2kpi — 2iU — 3i)

3 | APk U
g

) (1+exp(x+p+2— (2k(a+ 7+ 2) — 2202 + 7> + 22) — 2kpi — 2iU — 3i)1)) "

x exp(ik(ox + py + Az + pr)),

Case 3:
6
ay = —(\/—-
&g
ay = \/ (2 497+ ) + kp+ U
0 — = - b
&g

¢ =2k(oa+y+ 1) — 2K%i(o? 4+ 97 + ) — 2kPi — 2iU — 3i.
(16)

Now, taking the solution set (16) along with (7) into account,
Eq. (13) becomes

Tis(x,p,2,1) = l_\/_ [P (e + 72 +;2) +kp+ U

6
—\/;(1+exp(x+y+z—(2k(oc+v+/1)

—20%i(o + 77 + 27) — 2kPi — 2iU — 3i) z))l]
x exp(ik(ox + yy + Az + Br)),
Case 4:

4. Conclusion

Complex wave behavior showed in Figs. 1 and 2 when param-
eters given special values. In this article we constructed the new
exact solitary wave solutions for the 3D-GP equation by means
of Kudryashov approach. This equation is a general version of
the dissipative Gross-Pitaevskii equation. These results show
that the four-wave type of ansatz approach is effective and
simple method for analyzing three-wave solutions and
two-wave solutions of higher dimensional nonlinear evolution
equations.

Acknowledgments

With the special thanks from the Editor and the referee(s)
for their careful reading and for their comments which
greatly improved the paper. I really appreciate your clear
and accurate guidance as well as your helpful comments
on my work.

1 =9+ 2k a+ 2ik y + 2ik A — i(2k(x+y + 4) — 2K%i(? + 9% + %) — 2kBi — 20U — 3i)

al - 2 2
3 _ 1224k k2 72k p+U
g

@~ _\/_ (02 49+ 7) + K+ U]
0 g B
¢ =2k(o+y 4 2) = 2k%i(0% 4 y* + 2%) — 2kpi — 2iU — 3i.

As above the solution of the 3D-GPE under the condition
(17) along with (7) and (13) is

2 . 2
() - W Fie 7+ A e+ 0

)

(17)

1 =9+ 2ik o+ 2ik y + 2ik A — i(2k(a+y + 2) = 2%i(0? + 3> + 2*) — 2kpi — 2iU — 3)

3 PP K 2 kU

g

) (1+exp(x+y+2— (2k(a+7y+2) — 2202 + 72 + 22) — 2kpi — 2iU — 3i)1)) "

x exp(ik(ox + yy + Az + Br)),
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