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Abstract The definition of weighted statistical convergence was first introduced by Karakaya and

Chishti (2009) [1]. After that the definition was modified by Mursaleen et al. (2012) [2]. But some

problems are still there; so it will be further modified in this paper. Using it some newly developed

definitions of the convergence of a sequence of random variables in probability have been intro-

duced and their interrelations also have been investigated, and in this way a partial answer to an

open problem posed by Das and Savas (2014) [3] has been given.
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1. Introduction

The notion of statistical convergence was introduced by Fast
[4], Steinhaus [5] and Schonenberg [6] and other authors inde-
pendently as follows: Let N denote the set of all natural num-

bers and A � N, then the asymptotic density of A is denoted
by dðAÞ and is defined by

dðAÞ ¼ lim
n!1

1

n
jfk 6 n : k 2 Agj;

provided the limit exists (where the vertical bars denote the
cardinality of the enclosed set). A number sequence fxngn2N
is said to be statistically convergent to x if for every � > 0,
the set Að�Þ ¼ fn 2 N : jxn � xjP �g has asymptotic density

zero and we write xn!
S
x or by S� limn!1xn ¼ x.

Now the idea of statistical convergence has turned out to be
one of the most active areas of research in summability theory
after the works of Šalát [7], Fridy [8] and Gürdal [9,10] and it
has several generalizations and applications like:

(i) weighted statistical convergence by Karakaya and Chis-
hti [1] (see the paper Mursaleen et al. [2] for modified

definition of weighted statistical convergence),
(ii) statistical convergence of order a by Çolak [11] (statisti-

cal convergence of order a was also independently intro-

duced by Bhunia et al. [12]),
(iii) k-statistical convergence of order a by Çolak and Bektas�

[13],

(iv) k-statistical convergence of order a of sequences of func-
tion by Et et al. [14],

(v) lacunary statistical convergence of order a by Sengül
and Et [15],

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.08.006&domain=pdf
mailto:sanjoykrghosal@yahoo.co.in
http://dx.doi.org/10.1016/j.joems.2014.08.006
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.08.006
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(vi) on pointwise and uniform statistical convergences of

order a by Cinar et al. [16],
(vii) extremal A-statistical limit points via ideals by Gürdal

and Sari [17],

(viii) topology induced by random 2-norms space by Gürdal
and Huban [18],

(ix) lacunary I -convergent sequences by Tripathy et al. [19],
(x) probability theory by Ghosal [20] and many other, dif-

ferent fields of mathematics.

In another direction, the history of strong p-Cesàro summa-

bility, being longer, is not so clear. As per author’s knowledge
in [21], it has been shown that if a sequence is strongly p-Ces-
àro summable (for 0 < p <1) to x, then the sequence must be

statistically convergent to the same limit. Both the authors
Fast [4] and Schonberg [6] noted that if a bounded sequence
is statistically convergent to x, then it is strongly Cesàro sum-
mable to x. Furthermore statistically convergent sequences do

not form a locally convex FK-space. Maddox noted that
strong p-Cesàro summable can be considered as a BK-space
if 1 6 p <1 and as a p-normable space if 0 < p < 1 (see

[22,23]).
In particular, in probability theory, a new type of conver-

gence called statistical convergence in probability was intro-

duced in [24], as follows: Let fXngn2N be a sequence of

random variables where each Xn is defined on the same sample
space W (for each n) with respect to a given class of events M
and a given probability function P : M! R. Then the sequence
fXngn2N is said to be statistically convergent in probability to a

random variable X :W ! R if for any �; d > 0

lim
n!1

1

n
jfk 6 n : PðjXk � XjP �ÞP dgj ¼ 0;

where the vertical bars denote the cardinality of the enclosed

set fk 6 n : PðjXk � XjP �ÞP dg. In this case we write

Xn ���!ðS;PÞ X. The class of all sequences of random variables

which are statistically convergent in probability is denoted
by ðS;PÞ. One can also see [25,26] for related works.

Maddox [27] and Ruckle [28] presented the following defi-

nition as follows: A modulus function / is a function from
½0;1Þ to ½0;1Þ such that (i) /ðxÞ ¼ 0 if and only if x ¼ 0,
(ii) /ðxþ yÞ 6 /ðxÞ þ /ðyÞ, forall x; y > 0, (iii) / is increasing,
(iv) / is continuous from the right at zero. A modulus function

may be bounded or unbounded. Tripathy and Sarma [29] and
other authors used modulus function to construct new
sequence spaces. Recently Savas� and Patterson [30] have

defined and studied some sequence spaces by using a modulus
function.

In this paper ideas of two types of convergences of a

sequence of random variables in probability, namely,

(i) weighted modulus statistical convergence of order a and

(ii) weighted modulus strong Cesàro convergence of order a
have been introduced and the interrelations among them
have been investigated. Also their certain basic proper-
ties have been studied.

The main object of this paper is to modify the definition of
weighted statistical convergence and establish some important

theorems related to the modes of convergences (i) and (ii),
which will effectively extend and improve all the existing
results in this direction [1,2,11,12,21,24,25,27]. Moreover,
intend to establish the relations among these two summability
notions and in this way, a partial answer to an open problem

posed by Das and Savas [3] has been given.

2. Weighted statistical convergence of order a

We first recall the definition of statistical convergence of order
a of a sequence of real numbers from [11,12] as follows:

Definition 2.1. A sequence fxngn2N of real numbers is said to

be statistically convergent of order a (where 0 < a 6 1) to a
real number x if for every � > 0, such that

lim
n!1

1

na
jfk 6 n : jxk � xjP �gj ¼ 0:

In this case we write xn ���!Sa

x and the set of all statistically

convergent sequences of order a is denoted by Sa.
Karakaya and Chishti [1] first defined the concept of

weighted statistical convergence as follows: Let ftngn2N be a

sequence of nonnegative real numbers such that t1 > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn where n 2 N and Tn !1 as n!1. A

sequence of real numbers fxngn2N is said to be weighted

statistically convergent to a real number x if for every � > 0,

lim
n!1

1

Tn

jfk 6 n : tkjxk � xjP �gj ¼ 0:

In this case we write xn ���!SN x.
Mursaleen et al. [2] modified the definition of weighted

statistical convergence as follows: Let ftngn2N be a sequence of

nonnegative real numbers such that t1 > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn where n 2 N and Tn !1 as n!1.

A sequence of real numbers fxngn2N is said to be weighted

statistically convergent (or, SN-convergent) to a real number x

if for every � > 0,

lim
n!1

1

Tn

jfk 6 Tn : tkjxk � xjP �gj ¼ 0:

In this case we write SN � lim xn ¼ x.

Both the above definitions are not well defined in general.
This follows from the following example.

Example 2.1. Let fxngn2N be any bounded sequence and tn ¼ 1
n

where n 2 N. Then Tn !1 as n!1. It is quite clear that

xn ���!SN
x and SN � lim xn ¼ x where x be any real number

(for both definitions), i.e., any bounded real sequence
fxngn2N is weighted statistically convergent to any real number

(if tn ¼ 1
n
forall n 2 N). Hence both the definitions of weighted

statistical convergence are not well defined. So both the defini-

tions of weighted statistical convergence need to be modified.

Now, we are going to modify the definition of weighted sta-
tistical convergence as follows:

Definition 2.2. Let ftngn2N be a sequence of real numbers such

that lim infn!1tn > 0 and Tn ¼ t1 þ t2 þ � � � þ tn forall n 2 N.
A sequence of real numbers fxngn2N is said to be weighted

statistically convergent of order a (where 0 < a 6 1) to x if for

every � > 0,
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lim
n!1

1

Ta
n

jfk 6 Tn : tkjxk � xjP �gj ¼ 0:

In this case we write xn ���!ðSa
N
;tnÞ

x. The class of all weighted sta-

tistical convergence sequences of order a is denoted by ðSa
N
; tnÞ.

For a ¼ 1, we say that fxngn2N is weighted statistically conver-

gent to x and is denoted by xn ���!ðS1
N
;tnÞ

x.

Theorem 2.1. If xn ���!ðSa

N
;tnÞ

x and xn ���!ðSa

N
;tnÞ

y then x ¼ y.

Proof. If possible let x – y. Choose � ¼ 1
2
jx� yj > 0 and

lim infn!1tn > d > 0. Then

T1�a
n 6

1

Ta
n

jfk 6 Tn : tkjx� yjP �dgj

6
1

Ta
n

k 6 Tn : tkjxk � xjP �d
2

� �����
����

þ 1

Ta
n

k 6 Tn : tkjxk � yjP �d
2

� �����
����;

which is impossible because the right hand limit is equal to
zero but not left hand limit. Hence the result.

If tn ¼ 1 8n 2 N, then statistical convergence of order a and
weighted statistical convergence of order a are same. So other
than this condition, if we assume that, the statistical conver-

gence of order a is a subset (or superset) of weighted statistical
convergence of order a holds, then by Theorem 2.2 and
Example 2.2 and 2.3, our assumption will not correct. h

Theorem 2.2. Let limn!1
tnþ1
Ta
n
¼ 0 and xn ���!ðSa

N
;tnÞ

x then xn ���!Sa

x.
Proof. Let xn ���!ðSa
N
;tnÞ

x, lim infn!1tn > c > 0 and n be a suffi-

ciently large number, then there exists a positive integer m such
that Tm < n 6 Tmþ1. Then for � > 0,

1

na
jfk 6 n : jxk � xjP �gj 6 1

Ta
m

jfk 6 Tmþ1 : tkjxk � xjP c�gj

¼ 1

Ta
m

jfk 6 Tm : tkjxk � xjP c�gj þ tmþ1
Ta

m

:

Since Tm !1 as n!1, it follows that limn!1
1
na jfk 6 n :

jxk � xjP �gj ¼ 0 and consequently xn ���!Sa

x.

The following example shows that in general the converse
of Theorem 2.2 is not true, as well as the first part of the
Theorem 2.3 (a) [2] (i.e., every statistically convergent sequence

is SN-statistically convergent) is not true. h

Example 2.2. Let the sequence fxngn2N be defined by

xn ¼
1 if n ¼ m2 where m 2 N;
1ffiffi
n
p if n – m2 where m 2 N:

(

It is quite clear that fxngn2N is statistically convergent

sequence of order a to 0, but not weighted statistically conver-
gent sequence of order a to 0 (if we choose tn ¼ n for all

n 2 N and 1
2
< a 6 1).

The following example shows that weighted statistical
convergence does not imply statistical convergence.
Example 2.3. Let tn ¼ 2n�1 8n 2 N, then Tn ¼ 2n � 1. We con-
sider the sequence fxngn2N is

xn ¼
1 if n is the first

ffiffiffi
2
p� �m�1h i

integers in the interval

ðTm�1;Tm� where m 2 N;

0 otherwise:

8>><
>>:

Then for each � > 0

1

Tn

jfk 6 Tn : tkjxk � 0jP �gj

6
1

2n � 1
f1þ ð1:5Þ1 þ ð1:5Þ2 þ � � � þ ð1:5Þn�1g

6
1:5

2

	 
n 2 1� 1
1:5

� �n� �
1� 1

2

� �n� � :

Let n be a sufficiently large number, then there exists a posi-
tive integer m such that Tm < n 6 Tmþ1. Then

1

n
jfk6 n : jxk� 0jP �gj> 1

n
f1þð1:1Þ1þð1:1Þ2þ�� �þ ð1:1Þm�2g

>
1

n
ð1:1Þm�1 � 1 >

1

n
ð1:1Þ

n
log 2
�2 � 1 since m >

n

log 2
� 1

	 

;

which shows that fxngn2N is weighted statistically convergent

to 0 but not statistically convergent to 0.

Remark 2.1. In general the symmetric difference between the

set of statistically convergent sequences and the set of weighted
statistically convergent sequences is non-empty (if
tn – 18n 2 N).

The following example shows that in general the set
ðSa

N
; tnÞ \m (where 0 < a 6 1), is not a closed subset of m

(the set of all bounded real sequences endowed with the
superior norm).

Example 2.4. Let tn ¼ n; n 2 N; 0 < a 6 1 and

x ¼ 1; 1
2
; 1
3
; . . . ; 1

n
; 1
nþ1 ; . . .

n o
then

xðnÞ ¼ f1; 1
2
;
1

3
; . . . ;

1

n
; 0; 0; 0 . . .g 2 ðSa

N
; tnÞ \m

ðwhere n ¼ 1; 2; 3; . . .Þ:

So limn!1jjxðnÞ � xjj ¼ limn!1
1

nþ1 ¼ 0. Then 1
Ta
n
jfk 6 Tn :

tkj 1k� ajP �gj ¼ T1�a
n where a is any constant and

� ¼
j1�aj
2

if a – 1
1
4
if a ¼ 1:

(

So x R ðSa
N
; tnÞ \m. This shows that the set ðSa

N
; tnÞ \m is not a

closed subset of m.
3. Weighted strong Cesàro convergence of order a

We first recall the definition of weighted strong Cesàro conver-

gence (or strong ðN; tnÞ-summable) of a sequence of real num-
bers from [1,2] as follows:
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Definition 3.1. Let ftngn2N be a sequence of nonnegative real

numbers such that t1 > 0 and Tn ¼ t1 þ t2 þ � � � þ tn where
n 2 N and Tn !1 as n!1. Then the sequence of real
numbers fxngn2N is said to be weighted strong Cesàro conver-

gence (or strongly ðN; tnÞ-summable) to a real number x if

lim
n!1

1

Tn

Xn
k¼1

tkjxk � xj ¼ 0:

In this case we write xn ���!jN;tn j x. The set of all strongly

ðN; tnÞ-summable real sequences is denoted by jN; tnj.

Next we introduce the definition of weighted strong Cesàro

convergence of order a (or strongly ðN; tnÞ-summable of order
a) of a sequence of real numbers as follows:

Definition 3.2. Let ftngn2N be a sequence of nonnegative real

numbers such that t1 > 0 and Tn ¼ t1 þ t2 þ � � � þ tn where

n 2 N and Tn !1 as n!1. Then the sequence of real num-
bers fxngn2N is said to be weighted strong Cesàro convergence

of order a (or strongly ðN; tnÞ-summable of order a) (where

0 < a 6 1) to a real number x if

lim
n!1

1

Ta
n

Xn
k¼1

tkjxk � xj ¼ 0:

In this case we write xn ���!jN;tn ja x. The set of all strongly ðN; tnÞ-
summable sequences of order a is denoted by jN; tnja. For

a ¼ 1, jN; tnja is denoted by jN; tnj.

Theorem 3.1. The set jN; tnj \m is a closed subset of m (the set

of all bounded real sequences endowed with the superior norm).

Proof. Let xðnÞ ¼ fxðnÞj gj2N 2 jN; tnj \m (where n ¼ 1; 2; 3; . . .),

limn!1x
ðnÞ ¼ xð¼ fxjgj2NÞ in m and for each n, xðnÞ ���!jN;tn j an.

Then limn!1jjxðnÞ � xjj ¼ 0. We shall prove that the sequence

fangn2N converges to a real number a and x ���!jN;tn j a.
For � > 0, there exists a positive real number n0 such that

jxðkÞj � x
ðrÞ
j j <

�

3
8k; r P n0 & j ¼ 1; 2; 3; . . .

1

Tn

Xn
j¼1

tjjxðkÞj � akj <
�

3
and

1

Tn

Xn
j¼1

tjjxðrÞj � arj <
�

3
8n P n0:

Now jak � arj 6 jxðkÞj � akj þ jxðkÞj � x
ðrÞ
j j þ jx

ðrÞ
j � arj.

Then for k; r P n0

jak � arj 6
1

Tn0

Xn0
j¼1

tjjxðkÞj � akj þ
�

3
þ 1

Tn0

Xn0
j¼1

tjjxðrÞj � arj < �:

So fangn2N fulfill the Cauchy’s condition for convergence and

hence there exists a real number a such that limn!1 an ¼ a.
For next part, let � > 0 so there exists a natural number n1

such that

jar � aj < �

4
; jxj � x

ðrÞ
j j <

�

4
for r P n1

and
1

Tn

Xn
j¼1

tjjxðrÞj � arj <
�

2
8n P n1:
Now for arbitrary j 2 N we have

jxj � aj 6 jxðn1Þj � xjj þ jxðn1Þj � an1 j þ jan1 � aj

<
�

2
þ jxðn1Þj � an1 j

) 1

Tn

Xn
j¼1

tjjxj � aj 6 �

2
þ 1

Tn

Xn
j¼1

tjjxðn1Þj � an1 j < � for n P n1:

This shows that jN; tnj \m is a closed subset of m.

Then it is easy to show that 1
Tn

Pn
j¼1tjjxj � aj < �8n P n1.

The following example shows that in general the set

jN; tnja \m (where 0 < a < 1), is a not closed subset of m
(the set of all bounded real sequences endowed with the

superior norm). h

Example 3.1. Let tn ¼ n; n 2 N; 0 < a 6 1
2

and x ¼
1; 1

2
; 1
3
; . . . ; 1

n
; 1
nþ1 ; . . .

n o
then

xðnÞ ¼ f1; 1
2
;
1

3
; . . . ;

1

n
; 0; 0; 0 . . .g 2 jN; tnja \m

ðwhere n ¼ 1; 2; 3; . . .Þ:
So limn!1jjxðnÞ � xjj ¼ limn!1

1
nþ1 ¼ 0. Then 1

Ta
n

Pn
j¼1tjj1j�ajP

2anð1�2aÞj1�aj
ð1þ1

nÞ
a P c where a and c are respectively any constant

and positive constant. So x R jN; tnja\m. This shows that the

set jN; tnja\m is not a closed subset of m. Similarly it can be

shown that the result is true for 1
2
< a< 1:
4. Applications in probability

First we like to introduce the definition of weighted modulus

statistical convergence of order a of a sequence of real numbers
as follows:

Definition 4.1. Let / be a modulus function and ftngn2N be a

sequence of real numbers such that lim infn!1tn > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn forall n 2 N. A sequence of real num-
bers fxngn2N is said to be weighted modulus statistical

convergence of order a (where 0 < a 6 1) to a real numbers
x if for any � > 0,

lim
n!1

1

Ta
n

jfk 6 Tn : tk/ðjxk � xjÞP �gj ¼ 0:

In this case we write xn ���!ðSa
N
;/;tnÞ

x and the class of all weighted
modulus statistical convergence sequences of order a is
denoted by ðSa

N
;/; tnÞ. If /ðxÞ ¼ x; x 2 ½0;1Þ then weighted

modulus statistical convergence of order a reduces to weighted
statistical convergence of order a.

Now we like to introduce the definition of weighted
modulus statistical convergence of order a in probability of

random variables as follows:

Definition 4.2. Let / be a modulus function and ftngn2N be a

sequence of real numbers such that lim infn!1tn > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn forall n 2 N. A sequence of random

variables fXngn2N is said to be weighted modulus statistical
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convergence of order a (where 0 < a 6 1) in probability to a

random variable X :W ! R if for any �; d > 0,

lim
n!1

1

Ta
n

jfk 6 Tn : tk/ðPðjXk � XjP �ÞÞP dgj ¼ 0:

In this case, Xn ����!ðSa
N
;P/ ;tnÞ

X and the class of all weighted mod-
ulus statistical convergence sequences of order a in probability

is denoted by ðSa
N
;P/; tnÞ.

It is very obvious that if Xn ����!ðSa

N
;P/;tnÞ

X and Xn ����!ðSa

N
;P/;tnÞ

Y then
PfX ¼ Yg ¼ 1, for any a; b.

The following example shows that there is a sequence

fXngn2N of random variables which is ðSb

N
;P/; tnÞ to a random

variable X but it is not ðSa
N
;P/; tnÞ to X, for 0 < a < b 6 1.

Example 4.1. Let r
s
be a rational number between a and b. Let

the probability density function of Xn be given by,

fnðxÞ ¼
1 where 0 < x < 1

0 otherwise; if n ¼ m
s
r½ � for any m 2 N;

�

fnðxÞ ¼
nxn�1

2n
where 0 < x < 2

0 otherwise; if n – m
s
r½ � for any m 2 N:

(

Let 0 < �; d < 1; tn ¼ n; 8n 2 N, /ðxÞ ¼
ffiffiffi
x
p

; 8x 2 ½0;1Þ
then

PðjXn � 2jP �Þ ¼
1 if n ¼ m

s
r½ � for any m 2 N;

1� �
2

� �n
if n – m

s
r½ � for any m 2 N:

(

Now we have the following inequalities,

1

Tb
n

jfk 6 Tn : tk/ðPðjXk � 2jP �ÞÞP dgj 6 2b ð1þ 1
n
Þ
2r
s

n2ðb�
r
sÞ

and

1

5
n2ð

r
s�aÞ � 1 6

n
2r
s � 2

r
s

2
r
sn2að1þ 1

n
Þa

6
1

Ta
n

jfk 6 Tn : tk/ðPðjXk � 2jP �ÞÞP dgj

So we have Xn ����!ðSb

N
;P/ ;tnÞ

2 but fXngn2N R ðSa
N
;P/; tnÞ.

The following example shows that there is a sequence

fXngn2N of random variables which is weighted statistical

convergence of order a to a random variable X but it is not

weighted modulus statistical convergence of order a.

Example 4.2. Let the sequence of random variables fXngn2N is

defined by,

Xn 2

f�1; 1g with p:m:f PðXn ¼ �1Þ ¼ PðXn ¼ 0Þ
if n ¼ m2 where m 2 N;

f0; 1g with p:m:f; PðXn ¼ 0Þ ¼ 1� 1
n2
;

PðXn ¼ 1Þ ¼ 1
n2
; if n – m2 where m 2 N:

8>>><
>>>:

Let 0 < �; d < 1, 1
2
< a 6 1; tn ¼ 2n; 8n 2 N and /ðxÞ ¼ffiffiffi

x
p

; 8x 2 ½0;1Þ ) Tn ¼ n2 þ n8n 2 N. Then
1

Ta
n

jfk 6 Tn : tkPðjXk � 0jP �ÞP dgj 6

ffiffiffiffiffiffiffiffiffiffi
1þ 1

n

q
1þ 1

n

� �a 1

nð2a�1Þ

and

1

Ta
n

jfk 6 Tn : tk/ðPðjXk � 0jP �ÞÞP dgjP T1�a
n

So fXngn2N 2 ðSa
N
;P; tnÞ but not in ðSa

N
;P/; tnÞ.

Theorem 4.1. Let 0 < a 6 b 6 1 and g : R! R be a continuous

function on R. If Xn ����!ðSa

N
;P/ ;tnÞ

X and PðjXjP aÞ ¼ 0 for some

positive real number a, then gðXnÞ ����!ðSb

N
;P/ ;tnÞ

gðXÞ.

Proof. Since g is uniformly continuous on ½�a; a�, then in this
interval, for each � > 0 there exists d such that

jgðxnÞ � gðxÞj < � if jxn � xj < d:

It follows that

/ðPðjgðXnÞ � gðXÞjP �ÞÞ 6 /ðPðjXn � XjP dÞÞ:

Then for g > 0,

1

Tb
n

jfk 6 Tn : tk/ðPðjgðXkÞ � gðXÞjP �ÞÞP ggj

6
1

Ta
n

jfk 6 Tn : tk/ðPðjXk � XjP dÞÞP ggj:

Hence the result. h

Corollary 4.1. Let 0 < a 6 b 6 1, Xn ���!ðSa

N
;P/ ;tnÞ

x and g : R! R

is a continuous function, then gðXnÞ ���!ðSb

N
;P/ ;tnÞ

gðxÞ.

Proof is straight forward, so omitted.

The following example shows that in general the converse
of Theorem 4.1 (or, Corollary 4.1) is not true.

Example 4.3. Consider a sequence of random variables:
Xn 2 fa; bg with p.m.f PðXn ¼ aÞ ¼ PðXn ¼ bÞ8n 2 N.

Choose gðxÞ ¼ ðx� aÞðx� bÞ8x 2 R.

For any modulus function / and ftngn2N be any sequence

of real numbers such that lim inf tn > 0 it is easy to get

gðXnÞ ���!ðSa
N
;P/;tnÞ

gðaÞ but fXngn2N is not ðSa
N
;P/; tnÞ to c (where c

be any real number)

Now we like to introduce the definitions of weighted
modulus strong Cesàro convergence of order a of a sequence
of real numbers and weighted modulus strong Cesàro conver-

gence of order a in probability of a sequence of random
variables as follows:

Definition 4.3. Let / be a modulus function and ftngn2N be a

sequence of nonnegative real numbers such that t1 > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn where n 2 N and Tn !1 as n!1.

Then the sequence of real numbers fxngn2N is said to be

weighted modulus strong Cesàro convergence of order a
(where 0 < a 6 1) to a real number x if
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lim
n!1

1

Ta
n

Xn
k¼1

tk/ðjxk � xjÞ ¼ 0:

In this case we write xn ����!ðNa ;/;tnÞ
x.

Definition 4.4. Let / be a modulus function and ftngn2N be a

sequence of nonnegative real numbers such that t1 > 0 and
Tn ¼ t1 þ t2 þ � � � þ tn where n 2 N and Tn !1 as n!1.

Then the sequence of random variables fXngn2N is said to be

weighted modulus strong Cesàro convergence of order a
(where 0 < a 6 1) in probability to a random variable X if
for any � > 0,

lim
n!1

1

Ta
n

Xn
k¼1

tk/ðPðjXk � XjP �ÞÞ ¼ 0:

In this case, Xn ���!ðNa ;P/ ;tnÞ
X and the class of all weighted modulus

strong Cesàro convergence sequences of order a in probability

is denoted by ðNa;P/; tnÞ.

Theorem 4.2. If Xn ����!ðNa ;P/ ;tnÞ
X and Xn ����!ðNb ;P/ ;tnÞ

Y then

PfX ¼ Yg ¼ 1, for any a; b where 0 < a; b 6 1.

Proof. Without any loss of generality assume that b 6 a. If
possible let PfX ¼ Yg – 1. Then there exists a positive real
number e such that PðjX� YjP �Þ > 0. Then

0 < /ðPðjX� YjP �ÞÞ 6 1

Ta
n

Xn
k¼1

tk/ðPðjXk � XjP �

2
ÞÞ

þ 1

Tb
n

Xn
k¼1

tk/ðPðjXk � YjP �

2
ÞÞ

which is impossible because the right hand limit is equal to
zero. Hence the result. h

Lemma 4.1 ([27,28]). Let / be any modulus function and

0 < d < 1. Then /ðxÞ 6 2/ð1Þd�1jxj, where jxjP d.

Theorem 4.3. Let 0 < a 6 b 6 1 and ftngn2N be a bounded

sequence of positive real numbers such that

lim supn!1
n

T
b
n

<1. Then limn!1
1
Ta
n

Pn
k¼1tkPðjXk�XjP �Þ¼0

implies Xn ����!ðNb ;P/ ;tnÞ
X.

Proof. Let tn 6M1; 8n 2 N and lim supn!1
n

T
b
n

¼M2. For any

� > 0 there exists a positive real number d with 0 < d < 1 such

that /ðxÞ < �8x 2 ½0; d�. Then,

1

Tb
n

Xn
k¼1

tk/ðPðjXk�XjP �ÞÞ ¼ 1

Tb
n

Xn

k¼1
PðjXk�XjP�ÞPd

tk/ðPðjXk�XjP �ÞÞ

þ 1

Tb
n

Xn

k¼1
PðjXk�XjP�Þ<d

tk/ðPðjXk�XjP �ÞÞ

6
2/ð1Þ
dTa

n

Xn
k¼1

tkPðjXk�XjP �ÞþM1ðM2þ 1Þ�;

(by using the Lemma 4.1). Since e is arbitrary, so the result
follows. h
Theorem 4.4. Let 0 < a 6 b 6 1. Then ðNa;P/; tnÞ �
ðNb;P/; tnÞ. This inclusion is strict for any a < b.

Proof. The first part of this theorem is straightforward, so
omitted. For the second part we will give an example

Let c be a rational number between 2a and 2b. We consider

a sequence of random variables:

Xn 2

f�1; 1g with p:m:f PðXn ¼ 1Þ ¼ PðXn ¼ �1Þ;

if n ¼ m
1
c

h i
where m 2 N;

f0; 1g with p:m:f PðXn ¼ 0Þ ¼ 1� 1
n8

and

PðXn ¼ 1Þ ¼ 1
n8
; if n – m

1
c

h i
where m 2 N;

8>>>>>>>><
>>>>>>>>:

where ½x� is the greatest integer not greater than x. Then we

have, for 0 < �; d < 1; tn ¼ n; 8n 2 N and /ðxÞ ¼
ffiffiffi
x
p

;
8x 2 ½0;1Þ.

lim
n!1

½nc� � 1

ðnþ 1Þ2a
6 lim

n!1

1

Ta
n

Xn
k¼1

tk/ðPðjXk � 0jP �ÞÞ

lim
n!1

1

Tb
n

Xn
k¼1

tk/ðPðjXk � 0jP �ÞÞ

6 lim
n!1

nc þ 1

n2b
þ 1

n2b
1

13
þ 1

23
þ � � � þ 1

n3

	 
� �

This shows that Xn ����!ðNb ;P/ ;tnÞ
0 but not ðNa;P/; tnÞ to 0.

In the following, the relationships between ðSa
N
;P/; tnÞ and

ðNa;P/; tnÞ are investigated. h

Theorem 4.5. If 0 < a 6 b 6 1; lim infn!1 tn > 0 and

lim infn!1
n
Tn

P 1, then ðNa;P/; tnÞ � ðSb

N
;P/; tnÞ.

Proof. Let �; d > 0. Then

1

Ta
n

Xn
k¼1

tk/ðPðjXk � XjP �ÞÞP 1

Ta
n

X½Tn �

k¼1
tk/ðPðjXk � XjP �ÞÞ

P
d

Tb
n

jfk 6 Tn : tk/ðPðjXk � XjP �ÞÞP dgj:

Hence the result follows. h

For bounded sequence of real numbers, statistical conver-
gence is equivalent to strongly Cesàro summable (see

[4,6,21]). But in weighted convergence, for bounded sequence
weighted statistical convergence of order a may not equivalent
to weighted strongly Cesàro summable of order a see Exam-

ples 4.4 and 4.5 (since /ðPðAÞÞ is a real numbers and is
bounded forall A � W). In fact none of the cases occur i.e.,
weighted statistical convergence is not subset nor superset of

weighted strong Cesàro summable.
The following example shows that, the sequence of random

variables fXngn2N is ðSb

N
;P/; tnÞ to X but it is not ðNa;P/; tnÞ to

X where 0 < a 6 b 6 1.

Example 4.4. For a – b: Choose a ¼ 1
5 and b ¼ 1

2. Let the

probability density function of Xn be given by,
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fnðxÞ ¼
1 where 0 < x < 1;

0 otherwise; if n ¼ m
20
9

h i
; where m 2 N

(

fnðxÞ ¼
nxn�1

2n
where 0 < x < 2;

0 otherwise; if n – m
20
9

h i
; where m 2 N

8<
:

Take tn¼n;8n2N;/ðxÞ¼
ffiffiffi
x
p

;8x2 ½0;1Þ and 0<�;d<1.
Now we have the inequality,

1

Tb
n

jfk 6 Tn : tk/ðPðjXk � 2jP �ÞÞP dgj 6 2
ffiffiffi
2
pffiffiffi
n10
p :

So we have Xn ����!ðSb

N
;P/ ;tnÞ

2.

Another inequality is,ffiffiffi
n20
pffiffiffi
25
p 6

1

Ta
n

Xn
k¼1

tk/ðPðjXk � 2jP �ÞÞ

So this inequality shows that Xn is not ðNa;P/; tnÞ summa-
ble to 2.

For a ¼ b : Let tn ¼ n; 8n 2 N, /ðxÞ ¼
ffiffiffi
x
p

; 8x 2 ½0;1Þ
and a sequence of random variables fXngn2N is defined by,

Xn 2
f�1;1g with probability 1

2
; if n¼ fTmgTm for any m 2N;

f0;1g with p:m:f PðXn ¼ 0Þ ¼ 1� 1
n3
;PðXn ¼ 1Þ ¼ 1

n3
;

if n ¼ fTmgTm for any m 2N:

8><
>:

Let 0 < � < 1, then,

PðjXn � 0jP �Þ ¼ 1 if n ¼ fTmgTm for any m 2 N;
1
n3

if n – fTmgTm for any m 2 N:

(

This implies Xn ����!ðSa
N
;P/ ;tnÞ

0 for all 0 < a 6 1.

Now let H ¼ fn 2 N : n – fTmgTm where m 2 Ng. Now

we have the inequality,Xn
k¼1

tk/ðPðjXk � 0jP �ÞÞ

¼
Xn

k¼1
k2H

tk/ðPðjXk � 0jP �ÞÞ þ
Xn

k¼1
kRH

tk/ðPðjXk � 0jP �ÞÞ

>
Xn

k¼1
k2H

1ffiffiffi
k
p þ

Xn

k¼1
kRH

1 >
Xn
k¼1

1ffiffiffi
k
p

>
ffiffiffi
n
p

Since we know that
Xn
k¼1

1ffiffiffi
k
p >

ffiffiffi
n
p
8n P 2

 !

) 1

Ta
n

Xn
k¼1

tk/ðPðjXk � 0jP �ÞÞ >
ffiffiffi
n
p

ðnþ 1Þ2a

This inequality shows that fXngn2N is not ðNa;P/; tnÞ sum-

mable to 0 of order a in probability for 0 < a 6 1
4
.

Theorem 4.6. Let 0 < a 6 b 6 1; ftngn2N be a bounded

sequence of real numbers such that lim infn!1tn > 0 and

lim supn!1
n

Tb
n

<1. Then ðSa
N
;P/; tnÞ � ðNb;P/; tnÞ.

Proof. Let tn 6M1; 8n 2 N and lim supn!1
n

T
b
n

¼M2. For any

�; d > 0 setting H ¼ fk 6 Tn : tk/ðPðjXk � XjP �ÞÞP dg
and Hc ¼ fk 6 Tn : tk/ðPðjXk � XjP �ÞÞ < dg. Then,
1

Tb
n

Xn
k¼1

tk/ðPðjXk�XjP �ÞÞ ¼ 1

Tb
n

Xn

k¼1
k2H

tk/ðPðjXk�XjP �ÞÞ

þ 1

Tb
n

Xn

k¼1
k2Hc

tk/ðPðjXk�XjP �ÞÞ

6
M1M3

Ta
n

jfk6 Tn : tk/ðPðjXk �XjP �ÞÞP dgj þ ðM2 þ 1Þd;

where M3 is a positive constant. Since d is arbitrary, so the
result follows. h

Note 4.1. It is known that in [31] ‘‘If fxngn2N is a bounded

sequence then I -lacunary statistical convergence is equivalent

to NhðIÞ-convergence.’’ However, for order a, this is not clear
and it is an open problem in Remark 2.18 [3]. Theorem 4.6 is a
partial answer of the open problem Remark 2.18 [3], if

/ðxÞ ¼ x forall x 2 ½0;1Þ.

Theorem 4.7. Let ftngn2N be a bounded sequence and

lim infn!1tn > 0. Then ðS1

N
;P/; tnÞ � ðN1;P/; tnÞ.

Proof is straight forward, so omitted.

The following example shows that the sequence of random

variables fXngn2N is ðNa;P/; tnÞ to X but it is not ðSa
N
;P/; tnÞ to

X.

Example 4.5. We consider a sequence of random variables
fXngn2N is defined by,

Xn 2

f�1; 0g with p:m:f PðXn ¼ �1Þ ¼ 1
n2
;

PðXn ¼ 0Þ ¼ 1� 1
n2

if n ¼ m2 where m 2 N;

f0; 1g with p:m:f; PðXn ¼ 0Þ ¼ 1� 1
n8
;

PðXn ¼ 1Þ ¼ 1
n8
; if n – m2 where m 2 N:

8>>><
>>>:

Let 0 < �; d < 1; tn ¼ n; 8n 2 N, /ðxÞ ¼
ffiffiffi
x
p

; 8x 2 ½0;1Þ.
Then 1ffiffiffiffi

Tn

p
Pn

k¼1tk/ðPðjXk � 0jP �ÞÞ 6 2
ffiffi
n
p
þ1
n þ 1

n
1
13
þ


n
1
23
þ � � � þ 1

n3
Þg.

Next 1ffiffiffiffi
Tn

p jfk6Tn : tk/ðPðjXk�0jP �ÞÞPdgjP
ffiffiffiffi
Tn

p
�1ffiffiffiffi
Tn

p P 1
2.

So Xn ����!N
1
2;P/ ;tn

� �
0 but fXngn2N R S

1
2

N
;P/; tn
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.
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