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1. Introduction

The notion of statistical convergence was introduced by Fast
[4], Steinhaus [5] and Schonenberg [6] and other authors inde-
pendently as follows: Let N denote the set of all natural num-
bers and 4 C N, then the asymptotic density of A4 is denoted
by d(A) and is defined by

d(4) = hm |{k n:ke A},

provided the limit exists (where the vertical bars denote the
cardinality of the enclosed set). A number sequence {x,},.y
is said to be statistically convergent to x if for every € > 0,
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the set A(e) ={n e N:|x, — x|

zero and we write X, S xor by S —lim,_x, = x.

Now the idea of statistical convergence has turned out to be
one of the most active areas of research in summability theory
after the works of Salat [7], Fridy [8] and Giirdal [9,10] and it
has several generalizations and applications like:

> ¢} has asymptotic density

(i) weighted statistical convergence by Karakaya and Chis-
hti [1] (see the paper Mursaleen et al. [2] for modified
definition of weighted statistical convergence),

(ii) statistical convergence of order o by Colak [11] (statisti-
cal convergence of order o was also independently intro-
duced by Bhunia et al. [12]),

(iii) A-statistical convergence of order o by Colak and Bektasg
[13],

(iv) A-statistical convergence of order o of sequences of func-
tion by Et et al. [14],

(v) lacunary statistical convergence of order o by Sengiil
and Et [15],

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.
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(vi) on pointwise and uniform statistical convergences of
order o by Cinar et al. [16],
(vii) extremal A-statistical limit points via ideals by Giirdal
and Sari [17],
(viii) topology induced by random 2-norms space by Giirdal
and Huban [18§],
(ix) lacunary Z-convergent sequences by Tripathy et al. [19],
(x) probability theory by Ghosal [20] and many other, dif-
ferent fields of mathematics.

In another direction, the history of strong p-Cesaro summa-
bility, being longer, is not so clear. As per author’s knowledge
in [21], it has been shown that if a sequence is strongly p-Ces-
aro summable (for 0 < p < o) to x, then the sequence must be
statistically convergent to the same limit. Both the authors
Fast [4] and Schonberg [6] noted that if a bounded sequence
is statistically convergent to x, then it is strongly Cesaro sum-
mable to x. Furthermore statistically convergent sequences do
not form a locally convex FK-space. Maddox noted that
strong p-Cesaro summable can be considered as a BK-space
if 1 <p<oo and as a p-normable space if 0 <p <1 (see
[22,23]).

In particular, in probability theory, a new type of conver-
gence called statistical convergence in probability was intro-
duced in [24], as follows: Let {X,}, be a sequence of
random variables where each X, is defined on the same sample
space W (for each n) with respect to a given class of events A
and a given probability function P : A — R. Then the sequence
{X.},en 18 said to be statistically convergent in probability to a
random variable X : W — R if for any €,6 > 0

.1

11m2|{k <n:P(|Xp—X| =€) =0} =0,

where the vertical bars denote the cardinality of the enclosed
set {k<n:P(|Xy—X| =¢€ =0} In this case we write

Xnﬂu\’. The class of all sequences of random variables

which are statistically convergent in probability is denoted
by (S, P). One can also see [25,26] for related works.

Maddox [27] and Ruckle [28] presented the following defi-
nition as follows: A modulus function ¢ is a function from
[0,00) to [0,00) such that (i) ¢(x) =0 if and only if x =0,
(i) ¢(x +y) < d(x) + ¢p(»), forall x,y > 0, (iii) ¢ is increasing,
(iv) ¢ is continuous from the right at zero. A modulus function
may be bounded or unbounded. Tripathy and Sarma [29] and
other authors used modulus function to construct new
sequence spaces. Recently Savas and Patterson [30] have
defined and studied some sequence spaces by using a modulus
function.

In this paper ideas of two types of convergences of a
sequence of random variables in probability, namely,

(i) weighted modulus statistical convergence of order o and

(i1) weighted modulus strong Cesaro convergence of order o
have been introduced and the interrelations among them
have been investigated. Also their certain basic proper-
ties have been studied.

The main object of this paper is to modify the definition of
weighted statistical convergence and establish some important
theorems related to the modes of convergences (i) and (ii),
which will effectively extend and improve all the existing

results in this direction [1,2,11,12,21,24,25,27]. Moreover,
intend to establish the relations among these two summability
notions and in this way, a partial answer to an open problem
posed by Das and Savas [3] has been given.

2. Weighted statistical convergence of order o

We first recall the definition of statistical convergence of order
o of a sequence of real numbers from [11,12] as follows:

Definition 2.1. A sequence {x,},.y of real numbers is said to
be statistically convergent of order o (where 0 < a < 1) to a
real number x if for every € > 0, such that

n—o00

1
lim;|{k<n:|xk—x| > e} =0.

In this case we write x, 5—1>x and the set of all statistically
convergent sequences of order o is denoted by S*.

Karakaya and Chishti [1] first defined the concept of
weighted statistical convergence as follows: Let {7}, be a
sequence of nonnegative real numbers such that ¢, > 0 and
T,=ti+t+---+t,wherene Nand T, > coasn — oco. A
sequence of real numbers {x,}, is said to be weighted
statistically convergent to a real number x if for every € > 0,

1

lim T Hk <n:t|xe—x| = €}|=0.

Sy

In this case we write x, —— x.

Mursaleen et al. [2] modified the definition of weighted
statistical convergence as follows: Let {#,},.y be a sequence of
nonnegative real numbers such that ¢ >0 and
T,=t+tp+---+1t, where n€ N and T, — oo as n — oo.
A sequence of real numbers {x,},. is said to be weighted
statistically convergent (or, Sy-convergent) to a real number x
if for every € > 0,

lim L\{k < Ty telxe — x| = €} =0.
n—oo Ly
In this case we write Sy — limx, = x.

Both the above definitions are not well defined in general.
This follows from the following example.

Example 2.1. Let {x,},. be any bounded sequence and #, = %
where n € N. Then 7, — oo as n — oo. It is quite clear that

xnlx and Sy — limx, = x where x be any real number
(for both definitions), i.e., any bounded real sequence
{xu},en 1 weighted statistically convergent to any real number
(if 1, = % forall n € N). Hence both the definitions of weighted
statistical convergence are not well defined. So both the defini-
tions of weighted statistical convergence need to be modified.

Now, we are going to modify the definition of weighted sta-
tistical convergence as follows:

Definition 2.2. Let {#,},.y be a sequence of real numbers such
that liminf, ¢, >0and T, =, + >, +--- + ¢, forall n € N.
A sequence of real numbers {x,},.y is said to be weighted
statistically convergent of order o (where 0 < o < 1) to x if for
every € > 0,
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1
lim — {k < T, : te]xp — x| = €}| =0.
n—0o< Tﬁ
(8%tn)
In this case we write x, —— x. The class of all weighted sta-

tistical convergence sequences of order « is denoted by (5%, 7).
For oo = 1, we say that {x,},., is weighted statistically conver-

(SL,t)
gent to x and is denoted by x, —— Xx.

ne

(8%.tn) (SZ.tn)
Theorem 2.1. If x, —— x and x, ——y then x = y.

Proof. If possible let x #y. Choose e=1|x—y| >0 and
liminf,_ ., > 6 > 0. Then

1
T,” < eItk < Tstlx =yl > ed}|

1 €
SFH {kg Tn:[k|xk_x‘ = ?}‘
1 €
— kLT, : ti|lxk —y| = =7,
+T‘;{ X — 2}

which is impossible because the right hand limit is equal to
zero but not left hand limit. Hence the result.

If 1, = 1Vn € N, then statistical convergence of order « and
weighted statistical convergence of order « are same. So other
than this condition, if we assume that, the statistical conver-
gence of order o is a subset (or superset) of weighted statistical
convergence of order o holds, then by Theorem 2.2 and
Example 2.2 and 2.3, our assumption will not correct. [

. (SZtn) 5

Theorem 2.2. Let lim, .., %L = 0 and x, —— x then x, — x.
(S%.tn) L

Proof. Let x,—— x, liminf,_..t, > ¢ >0 and n be a suffi-

ciently large number, then there exists a positive integer m such

that 7,, < n < T,,;1. Then for e > 0,

1 1
;Hk <nilxe—x| = e} < F|{k < Thar s te|xe — x| = ce}
m

1 -
:Fm‘{kng:thkfx 2C€}|+%‘;.

Since T}, — oo as n — oo, it follows that lim,,_., & |[{k < n:

5
Xr — x| = €}| = 0 and consequently x, — x.

The following example shows that in general the converse
of Theorem 2.2 is not true, as well as the first part of the
Theorem 2.3 (a) [2] (i.e., every statistically convergent sequence
is Sy-statistically convergent) is not true. [J

Example 2.2. Let the sequence {x,},., be defined by

neN

1

1 if n = m? where m € N,
= NG if n # m? where m € N.

It is quite clear that {x,},. is statistically convergent
sequence of order o to 0, but not weighted statistically conver-
gent sequence of order o to 0 (if we choose 7, =n for all
neNandi<a<l).

The following example shows that weighted statistical
convergence does not imply statistical convergence.

Example 2.3. Let 7, =2""' ¥n e N, then 7, = 2" — 1. We con-
sider the sequence {x,},.y is

1 if n is the first {(\/Z)mil] integers in the interval

Xn = (T-1, T,] where m € N,
0 otherwise.

Then for each ¢ > 0

1
k< T, s tilvc = 0] > €]

()20
2) (1-0B))
Let n be a sufficiently large number, then there exists a posi-
tive integer m such that 7,, < n < T,,.;. Then

1 l m—
SHk<n: =01 = ¢} >~ {1 (LD (L1 44 (L))

1 m—1 1 s : n

—(1.1 —1>—(L.1)e2 " — 1 ——1
>n( ) >n( ) (s1ncem>10g2 ),
which shows that {x,},. is weighted statistically convergent
to 0 but not statistically convergent to 0.

Remark 2.1. In general the symmetric difference between the
set of statistically convergent sequences and the set of weighted
statistically ~convergent sequences is non-empty (i
t, # 1Vn € N).

The following example shows that in general the set
(8%, tn) Nm (where 0 <o < 1), is not a closed subset of m
(the set of all bounded real sequences endowed with the
superior norm).

Example 2.4. Let t,b=nneN0<a<1 and
v={1L bk ) then
11 1
(n) — i — o
X {1,2,3,...,1/’707070..,}6(SN,I,,)ﬂm

(where n =1,2,3,...).

So  lim, o |[x™ — x|[ = lim, .o 755 =0. Then £|{k<T,:

le|+—a| > €}| = T,™* where a is any constant and

it a1
€ =

tifa=1.
So x ¢ (8%, t,) N m. This shows that the set (S%, #,) N m is not a
closed subset of m.

3. Weighted strong Cesaro convergence of order «

We first recall the definition of weighted strong Cesaro conver-

gence (or strong (N, t,)-summable) of a sequence of real num-
bers from [1,2] as follows:
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Definition 3.1. Let {#,},.y be a sequence of nonnegative real
numbers such that 4 >0 and 7, =1+t +---+1, where
neN and T, — oo as n — oo. Then the sequence of real
numbers {x,},cy is said to be weighted strong Cesaro conver-
gence (or strongly (N, ¢,)-summable) to a real number x if

1 n
lim — I
Jim 7 2
[Nt

In this case we write x,—— x. The set of all strongly
(N, t,)-summable real sequences is denoted by [N, 1,

xx — x| =0.

Next we introduce the definition of weighted strong Cesaro
convergence of order o (or strongly (N, t,,)-summable of order
o) of a sequence of real numbers as follows:

Definition 3.2. Let {7,},. be a sequence of nonnegative real
numbers such that t{ >0 and T,=1¢ +1t +---+1¢, where
n € N and T, — oo as n — oo. Then the sequence of real num-
bers {x,},cy is said to be weighted strong Cesaro convergence
of order o (or strongly (N, t,)-summable of order o) (where
0 < o< 1) to a real number x if

Jim 75 30

k=1

x; — x| =0.
. . N, | —
In this case we write x, Wl x. The set of all strongly (N, t,)-

summable sequences of order « is denoted by [N,¢,|”. For
o =1, |N,t,|" is denoted by [N, 1,].

Theorem 3.1. The set |N, t,| N m is a closed subset of m (the set
of all bounded real sequences endowed with the superior norm).

Proof. Let x = {x,(-")}/_EN € |N,t,|Nm (where n =1,2,3,...),

[N,

lim,_,x" = x(= {x,}/eN) in m and for each n, x" —a,.

Then lim,,_, ||x®™

¢ I numb d x 2!
{a,} e converges to a real number ¢ and x ——

For e > 0, there exists a positive real number 7y such that

xf-k)—x;’)| <§Vk,r =n &j=1,23,...

1<
> bl
]

Now |a, — a,| < |x;k)

€ 1 <& . €
—a]<=and =S t]x" —a| <-Vn=n
Kl <3 n;"'f <3 0

a] + 6 = 2+ x5 — al.

Then for k,r = ny

Zl |xl‘) —ar] + < +—Zt \x(' —al<e

ng =

| —

So {au},cn fulfill the Cauchy’s condition for convergence and
hence there exists a real number a such that lim,_, a, = a.

For next part, let ¢ > 0 so there exists a natural number 7,
such that

|a,‘—a\<E, lxj — x; >|< for r = n

1 . €
and i;zj\x;) —a <§Vn > n.

Now for arbitrary j € N we have

‘ ( V x,\+|x a’11|+|anl_a

(m)

<z +\x

:>Zz

This shows that [N, z,| Nm is a closed subset of m.

7a"1|

X — + Zt,\x("l —ay| <eforn >

Then it is easy to show that 7->7" 1;|x; — a| < e¥n > ny.

The following example shows that in general the set
[N, t,|* "m (where 0 < a < 1), is a not closed subset of m
(the set of all bounded real sequences endowed with the

superior norm). [

Example 3.1. Let ¢, =nneN0<o<i and x=
{14 bk ) then
11 1 _
X ={1,2, 5, .} e N/
X {7273 7}’1707070 }el 7ln| nm

(where n =1 2,3,...).

So lim,,_q|[x™

_ IRV
”"anrl 70 Thenﬁ jzlt]—|7—a| >
oy (1 — .

“Tl)‘l“‘ > ¢ where a and ¢ are respectively any constant
and positive constant. So x¢|N,z,|*Nm. This shows that the
set [N, ,|*Nm is not a closed subset of m. Similarly it can be

shown that the result is true for %< a<l.

4. Applications in probability

First we like to introduce the definition of weighted modulus
statistical convergence of order « of a sequence of real numbers
as follows:

Definition 4.1. Let ¢ be a modulus function and {z,},. be a
sequence of real numbers such that liminf, ...z, >0 and
T,=ti+t+---+t, forall n € N. A sequence of real num-
bers {x,},cn 1s said to be weighted modulus statistical
convergence of order o (where 0 < o < 1) to a real numbers
x if for any € > 0,

11m—\{k e} =0.

n fk(ﬁ(“fk - x‘

(SZ.,¢.tn)
In this case we write x, —— x and the class of all weighted

modulus statistical convergence sequences of order o is
denoted by (S%, ¢, 1,). If ¢(x) = x,x € [0,00) then weighted
modulus statistical convergence of order « reduces to weighted
statistical convergence of order a.

Now we like to introduce the definition of weighted
modulus statistical convergence of order o in probability of
random variables as follows:

Definition 4.2. Let ¢ be a modulus function and {z,},. be a
sequence of real numbers such that liminf,_ .z, >0 and
T,=ti+t+---+1t, forall ne N. A sequence of random
variables {X,},.y is said to be weighted modulus statistical
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convergence of order o (where 0 < o < 1) in probability to a 141 |
random variable X : W — R if for any €,6 > 0, f|{k WGP X —0] =€) = 0} < .
(11 e
and

lim — \{k

n—oo

L (P — X| > €)) > 8} = 0.

(s, P? ty)
In this case, X, ——— X and the class of all weighted mod-

ulus statistical convergence sequences of order « in probability
is denoted by (5%, Pt).

. . . (SZ.P? 1) (SZ,P? 1)
It is very obvious that if X;, —— X and X, —— Y then

P{X =Y} =1, for any «, 8.

The following example shows that there is a sequence
{X,},cn of random variables which is (SﬂN, P?.t,) to a random
variable X but it is not (S%, PPt to X, for0<a< <1

Example 4.1. Let ! be a rational number between o and f. Let
the probability density function of X, be given by,

1 where 0 < x < 1

hw={

0 otherwise, if n = [ni] for any m € N,

=1
25— where 0 < x <2
fi(x) =4 2 o .
0 otherwise, if n # [mr] for any m € N.
Let 0<ed<1,t,=nVYneN, ¢(x)=+x,Vxe]0,00)
then
1if n = [n7] for any m € N,
(%22 9= (o
—9)"if n # [m7] for any m € N.

Now we have the following inequalities,

(1+d7

> ) 2 3} <25

k< T g (P(X 2]

n
and

1 e nt =28
(t-a)
)
5 = 27n2“(1 +%)“

—I{k (ud(P(| X = 2| =€) = 6}

s/‘ P 1,
So we have X, (—> 2 but {X,},en ¢ (5%, P, 1).

The following example shows that there is a sequence
{Xu},en of random variables which is weighted statistical
convergence of order o to a random variable X but it is not
weighted modulus statistical convergence of order o

Example 4.2. Let the sequence of random variables {X,},cy is
defined by,

{~1,1} with p.m.f P(X, = —1) = P(X, = 0)
if n =m? where me N,
{0,1} with pm.f, P(X, =0)=1—-1,

P(X,=1)=%, if n# m* where m € N.

DS

Let 0<ed<l, iI<a<lt,=2nVneN
VX, Vx €1[0,00) = T, =n*+nVn € N. Then

and ¢(x) =

1
ik < T, e (P16~ 0] > €

So {X.},en € (S%, P, t,) but not in (S“‘N,Pd’7 Iy).

Theorem 4.1. Let0 <o < < landg: R — R be a continuous

(s, PO.1,)
function on R. If X, =—— X and P(|X| = o) =0 for some
(SLP’/’J )
positive real number «, then g(X,) —— g(X).

Proof. Since g is uniformly continuous on [—u,
interval, for each ¢ > 0 there exists ¢ such that

a], then in this

lg(x,) — g(x)| < eif |x, — x| < 0.

It follows that

P(lg(X,) — g(X)| = €)) < ¢(P(|X, —
Then for > 0,

X| = 9)).

71,;|{k (uep(P(1g(Xe) — g(X)| =€) = n}

<

{k < T : tup(P(| X = X| = 0)) = n}|.

:ﬁ%

Hence the result. [

(S%,P% 1)
LX, 2 — xandg:R—R
(SL.P*.1)
is a continuous function, then g(X,) ~— g(x).

Corollary 4.1. Let 0 <a < f <

Proof is straight forward, so omitted.

The following example shows that in general the converse
of Theorem 4.1 (or, Corollary 4.1) is not true.

Example 4.3. Consider a sequence of random variables:
X, € {a,b} with pm.f P(X, =a) = P(X, =b)Vn e N.

Choose g(x) = (x —a)(x —b)¥Vx € R.

For any modulus function ¢ and {7,},.y be any sequence
of real numbers such that liminfz, > 0 it is easy to get

Z Pt
g(X,) 3" g(a) but {X.},cn is not (8%, P?.1,) to ¢ (where ¢

be any real number)

Now we like to introduce the definitions of weighted
modulus strong Cesaro convergence of order o of a sequence
of real numbers and weighted modulus strong Cesaro conver-
gence of order o in probability of a sequence of random
variables as follows:

Definition 4.3. Let ¢ be a modulus function and {z,},., be a
sequence of nonnegative real numbers such that # > 0 and
T,=ti+t,+---+1t, where n€ N and T, — oo as n — oo.
Then the sequence of real numbers {x,},. is said to be
weighted modulus strong Cesaro convergence of order o
(where 0 < « < 1) to a real number x if
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. 1 n
lim ﬁ21k¢(|xk —x[)=0

n—oo =

. . (N* )
In this case we write x, —— Xx.

Definition 4.4. Let ¢ be a modulus function and {z,},., be a
sequence of nonnegative real numbers such that 7, > 0 and
T,=ti+t+---+1t, where n€ N and T, — oo as n — oo.
Then the sequence of random variables {X,},. is said to be
weighted modulus strong Cesaro convergence of order o
(where 0 < o < 1) in probability to a random variable X if
for any € > 0,

1 n
lim Fszd)(PﬂXk - X =¢€)=0.
nmee Ly, k=1

lr1

In this case, X X and the class of all weighted modulus
strong Cesaro convergence sequences of order o in probability

is denoted by (N*, P?, 1,).

N _pb
Theorem 4.2. If X”uX and Xnu» Y then

P{X=Y}=1, for any o, p where 0 < o, f < 1.

Proof. Without any loss of generality assume that f < o. If
possible let P{X = Y} # 1. Then there exists a positive real
number e such that P(|X — Y| = €) > 0. Then

0< @(P(X— Y] > ) <%sz¢w<|xk x>

€

ﬁZlk(p (X — Y] = i))

n k=1

which is impossible because the right hand limit is equal to
zero. Hence the result. [

Lemma 4.1 (/27,28]). Let ¢ be any modulus function and
0<d<1. Then ¢p(x) < 2¢(1)0~

,\

where |x| = 6

Theorem 4.3. Let 0 <o < <1 and {t,},.n be a bounded
sequence  of  positive  real  numbers  such that
limsup,_, . 7 < 00 Then 1im, 7= 3 5 1P (| Xk — X] = €) =0

(NP.P? 1)
implies X, —

Proof. Let ¢, < M;,Vn € N and limsup,_, # = M,. For any

€ > 0 there exists a positive real number ¢ with 0 < § < 1 such
that ¢(x) < eVx € [0,6]. Then,

szd) (1Xi = X| =€) =

n k=

Y wd(P(IX—X| > €))

k=1
P(X—X|=c)>6

-

b 3 PN X 2 )

n

2(15

k=1
P X —X|ze)<d

szp | X — X| =€)+ My (My+ 1)e,

n k=

(by using the Lemma 4.1). Since € is arbitrary, so the result
follows. [

Theorem 4.4. Let 0<a<f<1. Then (N*, P’ 1,)C
(NP, P?, ). This inclusion is strict for any o < f.

Proof. The first part of this theorem is straightforward, so
omitted. For the second part we will give an example

Let ¢ be a rational number between 2o and 2. We consider
a sequence of random variables:

{-1,1} with pm.f P(X,, =1) = P(X, = —-1),
if n= [nﬁ] where m € N,

X, €
{0,1} with pm.f P(X, =0) =1—% and
P(X,=1)=%, ifn# [m%} where m € N,

where [x] is the greatest integer not greater than x. Then we
have, for 0<e 0<1,t,=nVneN and ¢(x)=/x,
Vx €0, oo).

[n] -
lim —— < 11m— tp(P(| Xk — 0] = €
'Hx(n—l—l lim 7 Z P(IXc ~ 0] > €))

lim —Zw (1Xc—0] > o))

<1 n‘+1 1 /1 1 1
\nLH;J 1125 +}’IT/} 13+23+ +$

This shows that X, u 0 but not (N*, P?, t,) to 0.

In the following, the relationships between (S%, Pd’7 t,) and

(N*, P? 1,) are investigated. [

Theorem 4.5.f 0O0<oa<p<l,liminf,_ ¢t >0 and
liminf,_. 2 > 1, then (N*, P?,1,) C (S5, P?, 1,).

Proof. Let ¢,0 > 0. Then

[
75 LY X1 > 0) > 72 (PN = X1 > )

k=1

i

o
= WHk < T k(P Xk — X| =€) = 0}

Hence the result follows. [

For bounded sequence of real numbers, statistical conver-
gence is equivalent to strongly Cesaro summable (see
[4,6,21]). But in weighted convergence, for bounded sequence
weighted statistical convergence of order o may not equivalent
to weighted strongly Cesaro summable of order o see Exam-
ples 4.4 and 4.5 (since ¢(P(A4)) is a real numbers and is
bounded forall 4 C W). In fact none of the cases occur i.e.,
weighted statistical convergence is not subset nor superset of
weighted strong Cesaro summable.

The following example shows that, the sequence of random
variables {X,},cy 1s (S%7 P?.1,) to X but it is not (N*, P?, 1,) to
Xwhere 0 <a< f<1.

Example 4.4. For o # f: Choose « =1 and B =14 Let the
probability density function of X, be given by,
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1 where 0 < x < 1,
fulx) = 0 otherwise, if n = [mg], where m € N

" N1 1

5
0 otherwise, if n # [mﬂ, where m € N

Take t,=n,VneN, ¢(x)=/x,Vxe[0,00)
Now we have the inequality,

where 0 < x < 2,

Ju(x) =

and 0<eod<l.

%nfuk < Tt (P(Xe—2] > ) > 3} < ZMC

(S2.P% 1)
So we have X, +—— 2

Another inequality is,

%
uwp(P(| Xk — 2| = €))
7 <
So this inequality shows that X, is not (N*, P?,¢,) summa-
ble to 2.
For o = : Let t,=n,VneN, ¢(x)=+/x,Vx € [0,00)

and a sequence of random variables {X,},. is defined by,

{~1,1} with probability 1, if n = {T,,,}T”' for any m e N,

X, €< {0,1} with p.m.f P(X,, =0) =
ifn = {Tm} " for any m € N.

— L P(X, =1)=%

Let 0 < e < 1, then,

1if n={T,}" for any m € N,
P(|X, = 0] > €) = T,
L if n# {T,} " for any m € N.

(5% PPt
This implies X, ——— 0 forall 0 < ¢ < 1.

Now let H={neN:n##{T,}' where me N}. Now
we have the inequality,

Zlkd)(
k=1
=> " ud(P(IXe 0] = o) + Z (P

k=
keH /«211

>z“+z >y

A( l1

>/n (Since we know that ZL >/nvn = 2)
= Vk

_ _Vn
= MZM# (1Xx = 0] =€) > )"

P(|Xx = 0] = ¢))

(1Xk = 0] = €))

This inequality shows that {X,},. is not (

N*, P? t,) sum-
mable to 0 of order o in probability for 0 < o <

1
4
Theorem 4.6. Let 0<oa< f<1,{ty},en be a bounded

sequence of real numbers such that liminf, ., >0 and
limsup, .. 77 < 00. Then (8%, P?,1,) C (NP, P9, 1,).

Proof. Let z, < M, Vn € N and limsup,_, # = M,. For any

€, 0>0 setting H={k<T,: t,¢(P(|Xx—X| =€) > 0}
and H° = {k < T, : t(P(| X — X| > €)) < 8}. Then,

1 n

D (PN~ X] > ) =

k=1

T,/;Z tk

kEH‘

M;i”‘ {k < T, : tep(P(

n

Y (X~ X1 > 0)

keH

P(|X; — X| = €))

< (X — X = €)) = o} + (M2 +1)9,

where M5 is a positive constant. Since o is arbitrary, so the
result follows. [

Note 4.1. It is known that in [31] “If {x,},.y is a bounded
sequence then Z-lacunary statistical convergence is equivalent
to Ny(Z)-convergence.” However, for order «, this is not clear
and it is an open problem in Remark 2.18 [3]. Theorem 4.6 is a
partial answer of the open problem Remark 2.18 [3], if
¢(x) = x forall x € [0, c0).

Theorem 4.7. Let {t,},.n be a bounded sequence and
liminf, 1, > 0. Then (Sk, P?.1,) C (N', P*,1,).

Proof is straight forward, so omitted.
The following example shows that the sequence of random

variables {X,},cy is (N*, P?, ,) to X but it is not (S%, P, 1,) to
X.

Example 4.5. We consider a sequence of random variables
{Xu}pen 1s defined by,

{~1,0} with p.m.f P(X,, = —1) = L,
P(X,=0)=1—L% if n=m> where meN,
{0,1} with p.m.f, P(X, =0)=1—%,
P( n:l)znfs,lfn#m

X, €
where m e N.

Let 0 <e,d< 1,5, =nVneN, ¢(x)=/x,Vx € [0,00).

Then =500 u(P(Xk — 0] > ) <2{5 41 (§+
1 1
»t+o ek
Next #‘,,Hkg To:txp(P(| X —0] =€) = 0} = 5%1 >1
(W)
So X, — % 0 but {X,},. ¢ ( ant
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