

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

A note on fixed point theorems for fuzzy mappings

R. Mohanraj

Department of Mathematics, Regional Centre, Anna University Tirunelveli Region, Tirunelveli 627 007, India

Received 26 May 2014; revised 13 July 2014; accepted 16 July 2014 Available online 11 February 2015

KEYWORDS

Fixed point; Fuzzy set; Contraction fuzzy mapping; Common fixed point **Abstract** In this paper, a common fixed point theorem for contractive type fuzzy mappings in a complete metric space is proved due to Cho (2005) [1]. Further an example is given for the results of Cho (2005) [1, Theorem 3.1] and Park and Jeong (1997) [2, Theorem 3.2] which are not satisfying the condition "for all $x, y \in X$ " and have a fixed point.

AMS MATHEMATICS SUBJECT CLASSIFICATION: 47H10; 54H25

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction and preliminaries

Let (X,d) be a metric space. Fixed points for multivalued mapping $T: X \to 2^X$ are defined as $x \in Tx$ for some $x \in X$. Let $\mathcal{CB}(X)$ denote the set of all nonempty closed and bounded subsets of X. A multivalued mapping $T: X \to \mathcal{CB}(X)$ is called a contraction mapping if there exists $q \in (0,1)$ such that

$$H(T(x), T(y)) \le qd(x, y)$$
 for all $x, y \in X$,

where the Hausdroff metric H(A, B) on $\mathcal{CB}(X)$ is given by

$$H(A, B) = \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b) \},$$

where $d(x, C) = \inf_{a \in C} d(x, y)$

for any nonempty closed and bounded subsets A, B and C of X and for any point $x \in X$.

E-mail address: vrmraj@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

A fuzzy set in X is a function with domain X and values in [0,1]. If A is a fuzzy set and $x \in X$, then the function values A(x) are called the grade of membership of x in A. Let $\mathcal{F}(X)$ be the collection of all fuzzy sets on X and let ${}^{\alpha}A = \{x \in X : A(x) \ge \alpha\}$ denote the α -cut of $A \in \mathcal{F}(X)$. The zero-cut of A is defined as the closure of the set $\{x \in X : A(x) > 0\}$.

A mapping F from X to $\mathcal{F}(Y)$ is called a fuzzy mapping if for each $x \in X$, F(x) is a fuzzy set on Y and F(x)(y) denotes the degree of membership of y in F(x). Let X be a metric linear space and let $\mathcal{W}(X)$ denote the set of all fuzzy sets on X such that each of its α -cut is a nonempty compact and convex subset (approximate quantity) of X. A fuzzy mapping F from X to $\mathcal{W}(X)$ is called a fuzzy contraction mapping if there exists $q \in (0,1)$ such that

$$D(F(x), F(y)) \le qd(x, y)$$
 for each $x, y \in X$,
where $D(A, B) = \sup_{\alpha} H({}^{\alpha}A, {}^{\alpha}B)$

Define $p_{\alpha}(A, B) = \inf_{x \in {}^{\alpha}A, y \in {}^{\alpha}B} d(x, y)$ and $p(A, B) = \sup_{\alpha} p_{\alpha} (A, B)$ for any fuzzy sets $A, B \in \mathcal{W}(X)$. It is known that p_{α} is non-decreasing function of α .

Heilpern [3] first introduced the concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction 74 R. Mohanra

mappings which is a fuzzy analogue of the fixed point theorem of Nadler [4]. Bose and Sahani [5] extended the Heilpern's result for a pair of generalized fuzzy contraction mappings. Marudai and Srinivasan [6] generalized the Heilpern's result using the Nadler's result. They also obtained a nontrivial generalization of the Nadler's fixed point theorem for fuzzy contraction mappings under weaker settings. Further Vijayaraju and Marudai [7] generalize the result of Bose and Mukerjee [8] for contractive type fuzzy mappings in complete metric spaces. The significance of these results is assuming "each of its α-cut of fuzzy set is nonempty closed and bounded subset of X" instead of approximate quantity of X". Akbar Azam and Muhammad Arshad [9] proved the result of Vijayaraju and Marudai [7, Theorem 3.1] is incomplete and corrected the proof in right direction. In this paper a common fixed point theorem for contractive type fuzzy mappings in complete metric space due to Cho [1] is proved by using the concept of Vijayaraju and Marudai [7]. Further an example is given for the results of Cho [1, Theorem 3.1] and Park and Jeong [2, Theorem 3.2] which are not satisfying the condition "for all $x, y \in X$ ' and have a fixed point.

2. Main results

The following lemma due to Nadler [4] is the main key of our result.

Lemma 2.1 [4]. Let (X,d) be a metric space and $A, B \in \mathcal{CB}(X)$, then for each $a \in A, k > 0$ there exists an element $b \in B$ such that $d(a,b) \leq H(A,B) + k$.

Cho [1] and Park and Jeong [2] proved some fixed point theorems for fuzzy mappings from X to W(X) under the contractive type conditions in complete metric space. The following example shows that the condition "for all $x, y \in X$ " fails for the results [1, Theorem 3.1] and [2, Theorem 3.2].

Theorem 2.2 [1]. Let $F,G:X\to W(X)$ be fuzzy mappings satisfying the following condition: There exists $k\in(0,1)$ such that

$$D(Fx, Gy) \le \frac{k}{\sqrt{2}} \{ p(x, Fx) p(y, Gy) + p(y, Gy) d(x, y) \}^{\frac{1}{2}}$$
 (*)

for all $x, y \in X$. Then F and G have a common fixed point.

Theorem 2.3 [2]. Let $F, G: X \to W(X)$ be fuzzy mappings satisfying the following condition: There exists $k \in (0,1)$ such that

$$D(Fx, Gy) \le k\{p(x, Fx)p(y, Gy)\}^{\frac{1}{2}}$$
 (**)

for all $x, y \in X$. Then F and G have a common fixed point.

Example 2.4. Let X = [0, 1]. For $x, y \in X$, d(x, y) = |x - y|, $\alpha \in (0, 1]$. Define $F, G : X \to W(X)$ by

$$F(0)(z) = \begin{cases} 1, & z = 0 \\ \frac{1}{2}, & 0 < z \le 1/50 \\ 0, & z > 1/50 \end{cases} \quad G(0)(z) = \begin{cases} 1, & z = 0 \\ 1/4, & 0 < z \le 1/100 \\ 0, & z > 1/100 \end{cases}$$

$$F(x)(z) = \begin{cases} \alpha, & 0 \le z \le x/25 \\ \frac{\alpha}{2}, & x/25 < z \le x/10 \\ 0, & z > x/10 \end{cases} G(x)(z) = \begin{cases} \alpha, & 0 \le z \le x/20 \\ \frac{\alpha}{2}, & x/20 < z \le x/10 \\ 0, & z > x/10 \end{cases}$$

Here ${}^{1}F(x) = {}^{1}G(x) = \{0\}$ and ${}^{\alpha}F(x) = [0, x/25]$ and ${}^{\alpha}G(x) = [0, x/20]$

$$D(F(x), G(y)) = \sup_{\alpha} H({}^{\alpha}F(x), {}^{\alpha}G(y)) = |x/20 - y/25|$$

$$\leq \frac{k}{\sqrt{2}} [|x - x/25|, |y - y/20| + |y - y/20||x - y|]^{\frac{1}{2}}$$

For x = y, F and G satisfy all the conditions of Theorem 2.2 and 0 is the common fixed point of F and G.

For $x \neq y$, the condition (*) fails for taking the values x = 1, y = 0.

Similarly the condition (**) of Theorem 2.3 fails also.

From the above example, we observe that Theorem 2.2 holds for assuming the condition for all $x \in X$ and for all nonzero values of y in X and Theorem 2.3 holds for assuming the condition for all nonzero values $x, y \in X$.

Next a common fixed theorem for fuzzy mappings is proved due to Cho [1].

Theorem 2.5 [1]. Let $F, G: X \to W(X)$ be fuzzy mappings satisfying the following condition: There exist $\alpha, \beta > 0$ such that $\alpha + \beta < 1$ and

$$D(Fx,Gy) \leqslant \frac{\alpha p(y,Gy))[(1+p(x,Fx))p(x,Fx)]^{\frac{1}{2}}}{1+2d(x,y)} + \beta d(x,y),$$

for all $x, y \in X$. Then F and G have a common fixed point.

Theorem 2.6. Let (X, d) be a complete metric space and let F_1 and F_2 be fuzzy mappings from X to $\mathcal{F}(X)$ satisfying the following condition:

(i) For each $x, y \in X$, there exists $\alpha(x), \alpha(y) \in (0, 1]$ such that $\alpha(x) F_1(x)$ and $\alpha(y) F_2(y)$ are nonempty closed bounded subsets of X.

(ii)

$$H(\alpha(x), F_1(x), \alpha(y), F_2(y))$$

$$\leq \frac{a_1d(y,^{\alpha(y)}F_2(y))[\{1+d(x,^{\alpha(x)}F_1(x))\}d(x,^{\alpha(x)}F_1(x))]^{\frac{1}{2}}}{1+2d(x,y)}+a_2d(x,y),$$

where $a_1, a_2 > 0$ and $a_1 + a_2 < 1$.

Then there exists $z \in X$ such that $z \in {}^{\alpha(z)}F_1(z) \cap {}^{\alpha(z)}F_2(z)$.

Proof. Let $x_0 \in X$. Then by condition (i), there exists $\alpha_1 \in (0,1]$ such that $\alpha_1 F_1(x_0)$ is a nonempty closed bounded subset of X.

Choose
$$x_1 \in {}^{\alpha_1}F_1(x_0)$$
.

For this x_1 , there exists $\alpha_2 \in (0,1]$ such that ${}^{\alpha_2}F_2(x_1)$ is a nonempty closed bounded subset of X. Since ${}^{\alpha_1}F_1(x_0)$ and ${}^{\alpha_2}F_2(x_1)$ are nonempty closed bounded subsets of X and by Lemma 2.1, there exists $x_2 \in {}^{\alpha_2}F_2(x_1)$ such that

$$\begin{split} d(x_1,x_2) &\leqslant H(^{x_1}F_1(x_0),^{x_2}F_2(x_1)) + a_2 \\ &\leqslant \frac{a_1d(x_1,^{x_2}F_2(x_1))[\{1+d(x_0,^{x_1}F_1(x_0))\}d(x_0,^{x_1}F_1(x_0))]^{\frac{1}{2}}}{1+2d(x_0,x_1)} + a_2d(x_0,x_1) + a_2 \\ &\leqslant \frac{a_1d(x_1,x_2)[\{1+d(x_0,x_1)\}d(x_0,x_1)]^{\frac{1}{2}}}{1+2d(x_0,x_1)} + a_2d(x_0,x_1) + a_2 \\ &\leqslant \frac{a_1d(x_1,x_2)[2\{1+d(x_0,x_1)\}d(x_0,x_1)]^{\frac{1}{2}}}{1+2d(x_0,x_1)} + a_2d(x_0,x_1) + a_2 \\ &\leqslant \frac{a_1d(x_1,x_2)[1+2d(x_0,x_1)]}{1+2d(x_0,x_1)} + a_2d(x_0,x_1) + a_2 \\ &\leqslant \frac{a_1d(x_1,x_2)[1+2d(x_0,x_1)]}{1+2d(x_0,x_1)} + a_2d(x_0,x_1) + a_2 \\ &= a_1d(x_1,x_2) + a_2d(x_0,x_1) + a_2. \end{split}$$

Therefore $d(x_1, x_2) \leq \frac{a_2}{1-a_1} d(x_0, x_1) + \frac{a_2}{1-a_1} = k d(x_0, x_1) + k$, where $k = \frac{a_2}{1-a_1}$.

For this x_2 , there exists $\alpha_3 \in (0,1]$ such that $\alpha_3 F_1(x_2)$ is a nonempty closed bounded subset of X.

Since $\alpha_3 F_1(x_2)$ and $\alpha_2 F_2(x_1)$ are nonempty closed bounded subsets of X, there exists $x_3 \in \alpha_3 F_1(x_2)$ such that

$$d(x_2, x_3) \leq H(^{\alpha_3}F_1(x_2), ^{\alpha_2}F_2(x_1)) + ka_2$$

and we obtain

$$d(x_2, x_3) \le kd(x_1, x_2) + k^2$$

 $\le k^2 d(x_0, x_1) + 2k^2.$

Continuing this process there exists sequence $\{x_n\}$ of X such that

$$x_{2n+1} \in {}^{\alpha_{2n+1}}F_1(x_{2n})$$
 and $x_{2n+2} \in {}^{\alpha_{2n+2}}F_2(x_{2n+1})$ and

$$d(x_{2n+1}, x_{2n+2}) \leq H(^{\alpha_{2n+1}}F_1(x_{2n}), ^{\alpha_{2n+2}}F_2(x_{2n+1})) + k^{2n}a_2$$

$$\leq kd(x_{2n}, x_{2n+1}) + k^{2n+1} \leq \dots$$

$$\leq k^{2n+1}d(x_0, x_1) + (2n+1)k^{2n+1}.$$

It follows that for each n = 1, 2, 3...

$$d(x_n, x_{n+1}) \leqslant k^n d(x_0, x_1) + nk^n.$$

Since k < 1, it follows from Cauchy's root test that $\sum nk^n$ is convergent and hence $\{x_n\}$ is a Cauchy sequence in X, then there exists $z \in X$ such that $x_n \to z$ as $n \to \infty$.

Corollary 2.7. Let (X,d) be a complete metric space and let F_1 and F_2 be fuzzy mappings from X to $\mathcal{F}(X)$ satisfying the condition(i) of Theorem 2.6 and

$$H(^{\alpha(x)}F_1(x),^{\alpha(y)}F_2(y)) \leq \frac{a_1d(y,^{\alpha(y)}F_2(y))[d(x,^{\alpha(x)}F_1(x))]^{\frac{3}{4}}}{1+2d(x,y)} + a_2d(x,y),$$

where $a_1, a_2 > 0$ and $a_1 + a_2 < 1$. Then there exists $z \in X$ such that $z \in {}^{\alpha(z)}F_1(z) \cap {}^{\alpha(z)}F_2(z)$.

Example 2.8. Let X = [0, 1]. For $x, y \in X$, d(x, y) = |x - y| and $\alpha, \beta \in (0, 1]$. Define $F_1, F_2 : X \to \mathcal{F}(X)$ by

For x = 0,

$$F_1(0)(z) = \begin{cases} 1, & z = 0 \\ \frac{1}{2}, & 0 < z \le 1/50 \\ 0, & z > 1/50 \end{cases} \quad F_2(0)(z) = \begin{cases} 1, & z = 0 \\ 1/4, & 0 < z \le 1/100 \\ 0, & z > 1/100 \end{cases}$$

For $x \neq 0$,

$$F_1(x)(z) = \begin{cases} \alpha, & 0 \leqslant z < x/15 \\ \frac{\alpha}{2}, & x/15 \leqslant z \leqslant x/2 \\ 0, & z > x/2 \end{cases} F_2(x)(z) = \begin{cases} \beta, & 0 \leqslant z < x/8 \\ \frac{\beta}{4}, & x/8 \leqslant z \leqslant x/2 \\ 0, & z > x/2 \end{cases}$$

Here
$${}^{\alpha}F_1(0) = {}^{\alpha}F_2(0) = \{0\}$$
 if $\alpha = 1$ and

$$\frac{\alpha}{2}F_1(x) = \frac{\beta}{4}F_2(x) = [0, x/2]$$

$$\begin{split} d(z, {}^{\alpha(z)}F_2(z) &\leqslant d(z, x_{2n+1}) + d(x_{2n+1}, {}^{\alpha(z)}F_2(z)) \\ &\leqslant d(z, x_{2n+1}) + H({}^{\alpha_{2n+1}}F_1(x_{2n}), {}^{\alpha(z)}F_2(z)) \\ &\leqslant d(z, x_{2n+1}) + \frac{a_1d(z, {}^{\alpha(z)}F_2(z))[\{1 + d(x_{2n}, {}^{\alpha_{2n+1}}F_1(x_{2n})\}d(x_{2n}, {}^{\alpha_{2n+1}}F_1(x_{2n}))]^{\frac{1}{2}}}{1 + 2d(x_{2n}, z)} \\ &+ a_2d(x_{2n}, z) \\ &\to 0 \text{ as } n \to \infty. \end{split}$$

Hence $z \in {}^{\alpha(z)}F_2(z)$.

Similarly $z \in {}^{\alpha(z)}F_1(z)$.

Therefore $z \in {}^{\alpha(z)}F_1(z) \cap {}^{\alpha(z)}F_2(z)$. \square

For x = v, $H(\alpha(x)F_1(x), \alpha(y)F_2(y)) = 0$.

For $x \neq v$,

76 R. Mohanraj

$$H(^{\mathbf{x}(x)}F_1(x),^{\mathbf{x}(y)}F_2(y)) < \frac{1/5|y - y/2|[(1+|x - x/2|)|x - x/2|]^{\frac{1}{2}}}{1+2|x-y|} + 3/4|x-y|$$

Therefore F and G satisfy all the conditions of Theorem 2.6 for taking the values $a_1 = 1/5$ and $a_2 = 3/4$ and 0 is the common fixed point of F and G.

Acknowledgement

The author is grateful to the referees for their valuable comments and suggestions.

References

[1] Seong-Hoon Cho, Fixed point theorems for fuzzy mappings, J. Appl. Math. Comput. 19 (2005) 485–492.

- [2] J.Y. Park, J.U. Jeong, Fixed point theorems for fuzzy mappings, Fuzzy Sets Syst. 87 (1997) 111–116.
- [3] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981) 566–569.
- [4] S.B. Nadler, Multi valued contraction mappings, Pacific J. Math. 30 (1969) 475–488.
- [5] R.K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets Syst. 21 (1987) 53–58.
- [6] M. Marudai, P.S. Srinivasan, Some remarks on Heilpern's generalization of Nadler's fixed point theorem, J. Fuzzy. Math. 12 (1) (2004) 137–145.
- [7] P. Vijayaraju, M. Marudai, Fixed point theorems for fuzzy mappings, Fuzzy Sets Syst. 135 (2003) 401–408.
- [8] R.K. Bose, R.M. Mukerjee, Common fixed points of some multivalued mappings, Tamkang J. Math. 8 (2) (1977) 245–249.
- [9] Akbar Azam, Muhammad Arshad, A note on Fixed point theorems for fuzzy mappings by P. Vijayaraju and M. Marudai, Fuzzy Sets Syst. 161 (2010) 1145–1149.