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Abstract Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed
in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of
elasticity. Three displacement potential functions are introduced to uncouple the equations of
motion, electric and magnetic induction. The frequency equations that include the interaction

plate; between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel
Transducers; functions. The numerical calculations are carried out for the non-dimensional frequency, phase
Sensors/actuators; velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves.
MEMS/NEMS

The results reveal that the proposed method is very effective and simple and can be applied to other

bar of different cross section by using proper geometric relation.
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1. Introduction

The smart composite material such as a magneto-electro-
elastic material exhibits the desirable coupling effect between elec-
tric and magnetic fields and has gained considerable importance
since last decade. These materials have the capacity to convert
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one form of energy namely, magnetic, electric and mechanical
energy to another form of energy. The composite consisting of
piezoelectric and piezomagnetic components has found
increasing application in engineering structures, particularly
in smart/intelligent structure system. In addition, magnetoelec-
troelastic materials have been used extensively in the design of
light weighted and high performance sensors and transducers
due to direct and converse piezoelectricity effects. The direct
piezoelectric effect is used in sensing applications, such as in
force or displacement sensors. The converse piezoelectric
effects are used in transduction applications, such as in motors
and device that precisely control positioning, and in generating
sonic and ultrasonic signals. This study may be used in appli-
cations involving nondestructive testing (NDT), qualitative
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nondestructive evaluation (QNDE) of large diameter pipes and
health monitoring of other ailing infrastructures in addition to
check and verify the validity of FEM and BEM for such
problems.

Pan [1] and Pan and Heyliger [2] have discussed the three-
dimensional behavior of magnetoelectroelastic laminates
under simple support. An exact solution for magnetoelectro-
elastic laminates in cylindrical bending has also been obtained
by Pan and Heyliger [3]. Pan and Han [4] derived the exact
solution for functionally graded and layered magneto-
electro-elastic plates. Feng and Pan [5] discussed the dynamic
fracture behavior of an internal interfacial crack between
two dissimilar magneto-electro-elastic plates. Buchanan [6]
developed the free vibration of an infinite magneto-electro-
elastic cylinder. Dai and Wang [7,8] have studied thermo-
electro-elastic transient responses in piezoelectric hollow
structures and hollow cylinder subjected to complex loadings.

Later Wang with Kong et al. [9] presented the thermo-
magneto-dynamic stresses and perturbation of magnetic field
vector in a non-homogeneous hollow cylinder. Annigeri et al.
[10-12] studied respectively, the free vibration of clamped-
clamped magneto-electro-elastic cylindrical shells, free vibration
behavior of multiphase and layered magneto-electro-elastic
beam, free vibrations of simply supported layered and multi-
phase magneto-electro-elastic cylindrical shells. Hon et al.
[13] analyzed a point heat source on the surface of semi-infinite
transversely isotropic electro-magneto-thermo-elastic materials.
Sharma and Mohinder Pal [14] developed the Rayleigh-Lamb
waves in magneto-thermo-elastic homogeneous isotropic plate.
Later Sharma and Thakur [15] studied the effect of rotation on
Rayleigh-Lamb waves in magneto-thermo-elastic media. Gao
and Noda [16] presented the thermal-induced interfacial
cracking of magnetoelectroelastic materials. Bin et al. [17]
studied the wave propagation in non-homogeneous magneto-
electo-elastic plates.

Sinha et al. [18] made an investigation about the axisym-
metric wave propagation in circular cylindrical shell immersed
in a fluid, in two parts. In Part I, the theoretical analysis of the
propagation modes is discussed and in Part II, the axisymmet-
ric modes excluding tensional modes are obtained both
theoretically and experimentally and are compared. Berliner
and Solecki [19] investigated wave propagation in a fluid
loaded transversely isotropic cylinder. In that paper, Part I
consists of the analytical formulation of the frequency equa-
tion of the coupled system consisting of the cylinder with inner
and outer fluid and Part II gives the numerical results.

Ponnusamy [20] has studied the wave propagation in a gen-
eralized thermoelastic cylinder of arbitrary cross-section
immersed in a fluid using the Fourier expansion collocation
method. Recently, Ponnusamy and Selvamani [21,22] have
studied respectively, the three dimensional wave propagation
of transversely isotropic magneto thermo elastic and general-
ized thermo elastic cylindrical panel in the context of the linear
theory of thermo elasticity.

In this problem, the wave propagation in a transversely
isotropic magneto-electro-elastic solid bar immersed in an
inviscid fluid is studied using Bessel function. Three displace-
ment potential functions, electric field vector and magnetic
fields are used to uncouple the equations of motion. The
frequency equations are obtained from the perfect slip bound-
ary conditions. The computed non-dimensional frequencies,

phase velocity and attenuation coefficient are plotted in the
form of dispersion curves and their characteristics are
discussed.

2. Formulation of the problem

The constitutive equations of a transversely isotropic linear
magneto-electro-elastic material, involving stresses ¢;, strain
Sj, electric displacements Dy, electric field Ej, magnetic induc-
tion B; and magnetic field H, are considered in the lines of
Buchannan [6],

0; = CiSi — e Ex — qi;Hy M
D; = ¢Sk + & Ex + my H (2)
B = q Sk + mu By + 1 Hy (3)

where Cj.ei and uy are the elastic, dielectric and magnetic
permeability coefficients respectively; ey, gi; and my, are the
piezoelectric, piezomagnetic and magnetoelectric material
coefficients.

The strain Sj; is related to the displacements corresponding
to the cylindrical coordinates (r,0,z) which are given by

S, =2 sy =1 (" i %), 5. = 2

or r 700 ST 0z
(1 0u  Oup uy _ (Ou. | Ou,
S = (; a0 +E’7)’S” = (E*E)’
1 Ou. Ouy
So: = (; a0t a*) “)

where u,,up and u. are the mechanical displacements corre-
sponding to the cylindrical coordinate directions r, 6 and z.
The relation between the electric field vector E; and the electric
potential ¢ is given by

09 _ 10¢ B
E,.—fa, Ey = 50 and E. = % (5)
Similarly, the magnetic field H; is related to the magnetic

potential { as

¢
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or r 00
The basic governing equations of motion, electrostatic dis-
placement D; and magnetic induction B; in cylindrical co-ordi-
nates (r,0,z) system, in the absence of volume force are

i

H, = - dH, =- 6
, and H. = - ©)

6(;: %% 0(;7;— +%(arr —op) = p%z;r )
2

A A ety ™

o

RS el (7d)

% B% % aai ==0 -

where the stress strain relation for the transversely isotropic
medium is given by
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0 = 1Sy + 12800 + c135.: — es1 E. — g3, H. (8a)
099 = 128y + c118p9 + €135z — es1 . — g3 H. (8b)
0.: = i3Sy + c13Spo + ¢338.; — e B — gy H. (8¢c)
Gro = Co6510 (8d)
00: = C445p: — e15Ep — q,5H) (8e)
6r: = CuSr: — eiskE, — q5H, (86)

The electric displacement and magnetic induction are related
in terms of strain, electric field and magnetic field in the follow-
ing form.

D, =e;5S,: +enE, +m H, (9a)
Dy = e15Sp: +en By +my Hy (9b)
D. = e31(Sy + Spo) + €335z + &3 E- + mys H. (9c)
B, = q155,: + mnE, + wy, H, (10a)
By = q,5S80- + my Eg + py Hy (10b)
B. = q3,(Si + Soo) + q33S-: + m33E. + uss H. (10c)

Substitution of Egs. (4)—(6) along with Egs. (8)—(10) into Egs.
(7) we obtain the following set of governing equations in terms
of displacements, electric potential and magnetic potential as
(411 (M, T s M,) + Ce6l Zur 00 1+ Caally -
+ (co6 + C12)1™
+ (631 + 615)([5_” + (q31 + qlS)d).r: = PUru

g, — (11 + ce6)r™ 2”0.() + (Caa + €13)ttz
(11a)

. . —1 . . -2 . —1 -2
(co6+c12)r " tppg 4 (en1 +co6)r o+ Coo (g + 1 ttg, — 11ty
-2 1
+ Caattg o + e up g+ (Cas+ Ci3)r Uz p:

+(es1+e1s)r" d . + (31 + q15)W . = putg (11b)

(C44 + C13) (ur.r: + rilur,z + r71u0.02) + Ca4 (uz,rr + rilu;r + uz.[)())
+ C33Uz 2 + e33¢.:z + q}Bw,z: +eis (d).rr + r_l¢.)‘ + ¢.()0)
+ s (lwb.rr +r ', + ‘P.oo) = pUzy (11c)

eis (Mz,rr +r e, + Vﬁz“z.oo) + (esi +e1s) (Hm +r U1 g, 0-)
+esstzz: — e —ma . —en (¢_r, +r! ¢, + Qb,eo)

_mll(l//,r'r+r71l//m+l//,()()) =0 (11d)

6115 (u:,rr + r_luz,r + uz,()()) + (q3] + 6115) (ur,r: + r_lulx: + r_lu().()z)
+ q33Uz 2z — u}}l//,z: - m33¢,:z — Hi (lp,rr + r_lw,r + lp,l)())
_m11(¢.rr+r71¢,r+¢.00) =0 (11e)

3. Method of solution of the solid medium

Egs. (11a)—(11e) are coupled with both odd ordered and even
ordered derivatives of three displacements, electric potential

aVi+ @ - ¢ —¢(1+¢c13)
c(l+a)V? (VP+ @ —Pe) (asVE = &)
c(ey + e1s)V? (éISVZ - Gz) (C2533 - Ellvz)
(g1 + qis)V? (715V* = &) (33 — my V?)

—c(e31 + eis)

and magnetic potential components with respect to one specific
coordinate variable. To uncouple Eq. (11) we seek the solution
in the following form:

(¢ o ll//())] (kz+wt)
<771¢,0 _ l//,r)}e (kz4-wt)

(r,0,z,1) = [(g{) +r’]1//0)
r0,z,1) [(r lqi)o )
ua(r,0,2,1) :é(W—I— W)eltsen

i

r0,z,0) = ("‘“) (@ + B)elkeren
€33

! (“‘4) (¥ + P)eltron (12)

a \e33

Y(r0,z,1) =

where i = v/—1,k is the wave number, w is the angular fre-
quency, ¢(r,0), y(r,0), W(r,0), ©(r,0) and P(r,0) are the dis-
placement potentials for symmetric modes of vibrations and
the bared quantities @(r,0),y(r,0), W(r,0),d(r,0) and
Y(r,0) represents the displacement potentials for anti symmet-
ric modes of vibration, a is the geometrical parameter of the
cylindrical bar.
Introducing the dimensionless quantities such as

r 2 Cij
s=ka, x=-, Q=wafc;, ¢;=—,
Ca4

_ g _ 4y _ o Mycy gy
i ="y = My = =2

€33 q33 €33q33 €33
_ HijCaa Cas _
By === =5 T,=+cu/pla, Z=z/a (13)

33

and substituting Eqgs. (12) and (13) into Egs. (11a)—(11e), we
obtain
[en V2 + (2 = )¢ —

(1 +ci3)W —glers +e5)®

— <@ +q15)¥ =0 (14a)
(1 +T)V2+ [V2+ @ — | W+ (esVP - )@

+ (7sV = F)P =0 (14b)
@ +es)Vig + (esV: — )W — (en V2 — %a3) @

= (M V? = Fmz) ¥ =0 (14c)

(@ +75)V e+ (%sv - QZ)W— (Wl_llv2 - sz_n)(P

— (V- ) ¥ = 0 (14d)
and
(v%@)w—o (15)

C66

where V> = m— +1 T 0{ 0 4 1 = a{)?

For the existence of non-trivial solution of Eqs. (14a)- (14d),
the determinant of the coefficient of the system is set to zero

—c(G31 + q1s)
(71sV°
(m3c? — rh“VZ)

(i33¢® — 11 V?)

_ g2)

((rbv W: (D, 'P) =0 (16)
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The above determinant Eq. (16) results in an ordinary
differential equation as follows

(AV® + BV® 4+ CV* + DV? + E)(¢p, W, ®,¥) =0 (17)

where the coefficients occurring in Eq. (17) are
A =cng

B=cy [gz + 8384 — 85 — 201585 + 2q158, + ZQZélsqlsmB]
+ 858> + 8584 + 2520810811 + 2580812813 + €108 14
+26°€10812815 — S°€12&16

C=c1[C g +8:8 — 21567815 + 52 (g6 — &7) — 270180
+ 85 (82 + 8384 — 85 — 221586 + 241587 + 25715415733
+ 258> + 2620810(86 — €20) + 2689812(7 + &) + ' €logn
— 26*€10812823 — C€15€1083 + 2571181081285 + 181805

22 2
— G €181,83

D=cy [ngngs + €4(g18 - g19)]
+ & [S817 + 8283 — 281557815 + (86 — &7) — 257158 19)
+ ' 2082y — 2571080815 — 26780812810 + S 113381083

6.2
1

— 26" 3381081283 — *81y + 2¢°€1081n + SYengh g — g,

E =g [€2817g3 +¢* (g5 — g19)} (18)
where

g = Enjuy — 1, + 81, + sty — 2815G157,

&= Qz(zmllm33 — &l — Enfa), g3 = @ — e,

g4 = Enfuy — iy, 85 =¢ (éfsﬁ,% + ‘?%5533)786 = ¢ (i — myy),
g = (my —en) g = Q@ - g = c(1+2n),

810 = €31+ €15,&1 = €5t — 15, 812 = ¢ + G,

Q13 = Qisen — @isiin, g1y = 1 + Grs, &5 = My + @1sqis,

Q16 =811 + q15, 817 = < (Exallas — 13), 15 = & (MM33 — i),
Q19 = ¢ (M3 — €33), 829 = ¢ (2151133 — M),

& = (@153 — E31s), &an = Hias + 2415,

82 = M3z + qis + €15,83 = M3z + q1s + e,

Qa4 = Enaflay — My, Gos = &3 + 2815

Solving the partial differential equation given in Eq. (17), we
obtain the solution as

4
¢=>_ AJ,(r) cosnf
=
4
W= Za,A_,J,, (or) cos n0
=

4
¢ = Zb,A,Jn (a/'r) cosnf

J=1

4
¥ => ¢AJ,(r) cos nf (19)
j=1

Jj=

Hence, (oc_,-r)z(/' = 1,2,3,4) are the non-zero roots of the
equation
(Aod® — Boa® + Co* — D’ + E) =0 (20)
The solutions corresponding to the root (ocja)2 = 0 are not con-
sidered here, since J,(0) are zero, except for n = 0. The Bessel
function J,, is used when the roots (ocja)z(/' =1,...,4) are real
or complex and the modified Bessel function 7, is used when
the roots (o, a)*(j = 1,2,3,4) are imaginary.

The constants a;, b; and ¢; defined in Eq. (19) can be calcu-
lated from the following equations.

_ o o _ 2
c(1+¢ci3)aj+c(es +eis)bj+c(gs +Gis)e; = @ -I—a (%él)
((%‘@2 Ce— 92) aj+ ((%‘a)zéls + Qz) b;

+ ((oc,-a)zéls + g2> ¢ =—c(1+c3)(a)’
2 _ 2 _
((ma)ers+¢ )= (a1 (a) + < ) by
_ 2 _ o 2
- (”’11 () +€2m33)¢?f: —c(&3 +eis) (a) (21)
Solving Eq. (15), we obtain
¥ = AsJ,(osr) sinnb (22)

where (asa)® = @* — (% If (asa)® < 0, the Bessel function J,, is
replaced by the modified Bessel function 7,,.

4. Equations of motion of the fluid

In cylindrical polar coordinates r,0 and z the acoustic pressure
and radial displacement equation of motion for an invicid fluid
are of the form Berliner and Solecki [19].

. _Bf(ufj s (u£'+ “Qﬂ> N u,) (23)
and
Ef‘uf,u = A"' (24)

respectively, where B’ is the adiabatic bulk modulus, p/ is the

density, ¢, = 1/ B//p/ is the acoustic phase velocity in the fluid,
and

A= (i, (u +uy) +ud) (25)
Substituting
Mi = q%ﬂ u{) = ril(bﬁ) and H? = ¢{: (26)

and seeking the solution of Eq. (24) in the form

&, 0,z,0) = Zq&f(r) cos nfe's= 4Ty (27)
n=0

The fluid that represents the oscillatory wave propagating

away is given as

¢ = Astql)(rx()ax) (28)

where (xga)’ = Q*/p B — *, in which pg=p/p/,B =
B/'/C44,Hf1l) is the Hankel function of first kind. If (océa)2 <0,
then the Hankel function of first kind is to be replaced by
K,, where K, is the modified Bessel function of the second
kind. By substituting Eq. (27) in Eq. (23) along with Eq.
(26), the acoustic pressure for the fluid can be expressed as
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P =" A pH.) (a5ax) cos nhe' =T (29)

n=0

5. Boundary conditions and frequency equations

The continuity conditions in a solid—solid interface problem
and in case of real fluid problem require three traction free
stress component in its surfaces. But, in an ideal fluid-solid
interface the perfect slip boundary conditions imply the dis-
continuity in planar displacement component. That is, the
radial component of the displacement of the fluid and solid
must be equal at the interfaces; however, the circumferential
and longitudinal components are discontinuous and the three
surface stresses are equal to zero.

The solid fluid interfacial boundary conditions for infinite

cylindrical bar are given by
op+p =0p=0.=u—u =0, atr=a (30)

The electrical and magnetic boundary conditions for an infinite
cylindrical bar are,

D,=0 and B, =0 (31)

Using Egs. (19), (22) and (29) in Egs. (30) and (31), we can

obtain the frequency equation in the following form.

My =0 ij=1,23,4,56. (32)

where the elements in the determinant are given as

M, =2¢6[n(n—1)J,(0yax) + (jax)J 1 (0ax)]

—x?en (ogax)’ + L(aers + bies + ¢ ) (wax), j=1,2,3,4

M s =2¢¢[n(n—1)J,(asax) + n(osax)J, i (osax)]

Mg =p'Q*H\ (050)

My; =2[n(n—1)J,(ojax) — n(oyax)J,.1 (ax)], j=1,2,3,4

Mis = [2n(n— 1) — (asax)’]J, (asax) + 2(osax)J,. 1 (asax)

My =0

My = (c+a;+biers + ¢iqis) nu(gax) — (4ax) Sy (%ax)],
j=1,2,3,4

M;s =ngJ,(asax), M3 =0

My =[(c +a@)ers — enb; — mu | [nd,y(gax) — (4ax) Iy (%ax)]
j=1,2,3,4

Mys =ncesJ,(asax), My =0

Ms; = ((c+a))qs — mub; — un¢;) [0, (0yax) — (oyax) 41 (0yax)]
j=1,2,3,4

Mss =ncgsJ,(asax), Mss=0

M= {nH{) (o) ~ (o) ., (o) | j=1.2.3,4

Mgs =nJ,(asa)

Mg = f{nngl)(a(,a) - (ac(,a)quﬂl (fxéa)}.

(33)

6. Numerical discussion

In this problem, the free vibration of transversely isotropic
magnetoelectroelastic solid bar immersed in fluid is considered.
In the solid—fluid interface problems, the normal stress of the
bar is equal to the negative of the pressure exerted by the fluid

and the displacement component in the normal direction of the
lateral surface of the cylinder is equal to the displacement of
the fluid in the same direction. These conditions are due to
the continuity of the stresses and displacements of the solid
and fluid boundaries. Since the inviscid fluid cannot sustain
shear stress, the shear stress of the outer fluid is equal to zero.
The material properties of the electro-magnetic material based
on graphical results of Aboudi [23] are

e = 218 x10° N/m?%, ¢1» = 120 x 10° N/m?, ¢35 = 120 x
1°N/m% ¢33 = 215 x 10°N/m?%,  cay = 50x 10° N/m?,  ce6 =

9x10°N/m?, e5=0, ey =—25Cm% ey =75Cm%
q1s = 200 C/m’, g3 = 265C/m°, ¢33 = 345C/m>, & =
0.4x107°C/Vm, &5 = 5.8x107°C/Vm, p;; = —200x 107°

Ns?/C?, a3 = 95x 107% Ns?/C?, my; = 0.0074 x 10~7 Ns/VC,
myy = 2.82x 1072 Ns/VC and p = 7500 Kg m~2 and for fluid
the density p/ = 1000 Kg m~2, phase velocity ¢ = 1500 m sl
The velocity and density ratio between the fluid and solid
medium is defined as follows vz = ‘(—; and pp = 5.

The complex secular Eq. (33) contains complete informa-
tion regarding wave number, phase velocity and attenuation
coefficient and other propagation characteristics of the consid-
ered surface waves. In order to solve this equation we take

cl=v'+inlg (34)

where k = R+ iq, R = © and R,q are real numbers. Here it may
be noted that v and ¢ respectively represent the phase velocity
and attenuation coefficient of the waves. Upon using the rep-
resentation Eq. (34) in Eq. (33) and various relevant relations,
the complex roots a(j = 1,2,3,4) of the quadratic Eq. (17) can
be computed with the help of Secant method. The characteris-
tic roots o(j = 1,2,3,4) are further used to solve Eq. (33) to
obtain phase velocity (v) and attenuation coefficient (¢) by
using the functional iteration numerical technique as given
below.

Eq. (33) is of the form F(C) = 0 which upon using repre-
sentation Eq. (34) leads to a system of two real equations
f(v,q) = 0 and g(v,q) = 0. In order to apply functional itera-
tion method, we write v = f(v, q) and ¢ = z, q), where the
functions f~ and g" are selected in such a way that they satisfy
the conditions
o, |og
' 9q

Jg*
v

or

v

"

<1 |

For all v, ¢ in the neighborhood of the roots. If (vy,qo) be the
initial approximation of the root, then we construct a succes-
sive approximation according to the formulae

vi=f"(v,90) ¢ =g (",40)
w="0Lq) ¢©=g0,q)
vi=f"(vs,qn) 43 =8 (v3,42) (36)

Vn :f*(vna qn)

The sequence {v,,q,} of approximation to the root will con-
verge to the actual value (vg,qo) of the root provided (vo,qo)
lie in the neighborhood of the actual root. For the initial value
¢ = co = (v0,qo), the roots o;(j = 1,2,3,4) are computed from
Eq. (17) by using Secant method for each value of the wave
number k, for assigned frequency. The values of o;
(j = 1,2,3,4) so obtained are then used in Eq. (33) to obtain
the current values of v and ¢ each time which are further used

qn = g*(le»l? qn)
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1.4

1.2

Dimensionless frequency

0 - . .
0 0.2 0.4 0.6 0.8 1
wave number
Figure 1 Dimensionless frequency @ versus wave number | ¢ | of

longitudinal modes of vibration for a magneto-electro elastic solid
bar with vz = 0.5.

Dimensionless frequency
N
1%
A

0.5 '4"/' *, --#--RPIm3
0 . . . .
0 0.2 0.4 06 0.8 1
wave number
Figure 2 Dimensionless frequency @ versus wave number | ¢ | of

longitudinal modes of vibration for a magneto-electro elastic solid
bar with vz = 1.0.

to generate the sequence Eq. (36). This process is terminated as
and when the condition |v,;; — v,| < &, ¢ being arbitrary small
number to be selected at random to achieve the accuracy level,
is satisfied. The procedure is continually repeated for different
values of the wave number (k) to obtain the corresponding val-
ues of the phase velocity(c) and attenuation coefficient (q).

6.1. Dispersion curves

The results of imaginary part and real part of longitudinal
modes are plotted in the form of dispersion curves. The nota-
tion used in the figures, namely IPlm and RPIm respectively
denotes the imaginary part of longitudinal mode and real part
of longitudinal, The 1 refers the first mode, 2 refers the second
mode and 3 for the third mode.

In Figs. 1 and 2 the variations in the non-dimensional fre-
quency Q of a elastic cylindrical bar with respect to the wave
number| d have been shown for first three modes of imaginary
and real part of longitudinal vibrations for the bar immersed in
fluid with the velocity ratio vg = 0.5, 1.0. From Fig.1, it is
observed that the non-dimensional frequency of the
electromagnetic bar shows almost linear variation with respect
to wave number for the velocity ration vz = 0.5. But in

3\
\
ERY
iR —— PIm1

% —+—RPIM1
L)

Phase velocity

wave number

Figure 3  Phase velocity ¢ versus wave number| d of longitudinal
modes of vibration for a magneto-electro elastic solid bar with
VR = 0.5.

Phase velocity

wave number

Figure 4 Phase velocity ¢ versus wave number | ¢ | of longitu-
dinal modes of vibration for a magneto-electro elastic solid bar
VR = 1.0.

Fig. 2 some oscillating nature is observed between 0 < | G | <2
from the linear behavior of frequency due to the damping
effect of surrounding fluid medium and increase in velocity
ratio is more prominent in lower wave number. From Figs. |
and 2, it is observed that the imaginary part of the frequency
mode is less compared with real part due to damping of fluid
medium.

2.5

—IPIm1
—&— RPIm1
-+ IPIm2
«+ RPIm2

Attenuation coefficient

0 0.2 0.4 0.6 0.8 1
wavenumber

Figure 5  Attenuation coefficient ¢ versus wave number | ¢ | of
longitudinal modes of vibration for a magneto-electro elastic solid
bar with vz = 0.5.
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Figure 6  Attenuation coefficient ¢ versus wave number | ¢| of

longitudinal modes of vibration for a magneto-electro elastic solid
bar with vz = 1.0.

The variation in the phase velocity with respect to the wave
number of the cylindrical bar in with the velocity ratio
vg = 0.5, 1.0 is shown in Figs. 3 and 4, respectively. From
these curves it is clear that the phase velocity curves are disper-
sive only at the starting values of wave number in the range
0<| G | <0.4in Fig. 3 and < G | <0.5in Fig. 4, but for higher
values of wave number, these become non-dispersive for both
the values of the velocity ratio vg = 0.5 and vz = 1.0. But
there is a small dispersion of cutoff frequency in vz = 1.0
which might happen because of the radiation of the sound
energy in to the fluid produces damping in the system. The
phase velocity of real and imaginary modes of propagation
attains quite large values at vanishing wave number which
sharply slashes down to become steady and asymptotic with
increasing wave number.

The dispersion of attenuation coefficient ¢ with respect to
the wave number |c| is discussed for the two cases of
immersed and free magnetoelectro elastic solid bar in Figs. 5
and 6. The amplitude of displacement of the attenuation coef-
ficient increases monotonically to attain maximum value in
0.4 < ¢ < 0.8 and slashes down to became asymptotically lin-
ear in the remaining range of the wave number in Fig. 5.
The variation in attenuation coefficient for different real and
imaginary parts of longitudinal modes is oscillating in the
maximum range of wave number as shown in Fig. 6. From
Figs. 5 and 6, it is clear that the attenuation profiles exhibit
high oscillating nature in the velocity ratio vz = 1.0 than
vg = 0.5 due to the combined effect of magnetic fields and
surrounding fluid. The crossover points in the vibrational
modes indicate the energy transfer between the solid and fluid
medium.

7. Conclusion

In this paper, the wave propagation in a magneto-electro-elas-
tic solid bar immersed in fluid is analyzed within the frame
work of three dimensional liner theory of magneto-electro elas-
tic by satisfying the traction free and perfect slip boundary
conditions. The frequency equation is obtained using Bessel
functions and numerically analyzed for the solid bar with dif-
ferent velocity ratios. The computed dimensionless frequency,
phase velocity and attenuation coefficient are plotted in graphs

for the real and imaginary part of longitudinal modes of vibra-
tions. From the numerical results, it is observed that the
increase in velocity ratio and the presence of fluid medium
influence all the modes of frequency, phase velocity and atten-
uation. Also it is observed that as wave number increases the
imaginary part of the vibration modes decreases, which exhib-
its the proper physical behavior. The obtained results are valu-
able for the analysis of design of magneto-electric transducer
and sensors using composite materials.
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