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Abstract One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindri-

cal or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is

assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transfor-

mations reduce the governing equations into ordinary differential equations of Poincare type. In the

present work, McQueen and Royce equations of state (EOS) have been considered with suitable

material constants and the spherical and cylindrical cases are worked out in detail to investigate

the behavior and the influence on the shock wave propagation by energy input and b(q/q0), the

measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter

pressure is neglected. The numerical technique applied in this paper provides a global solution to

the implosion problem for the flow variables, the similarity exponent a for different Gruneisen

parameters. It is shown that increasing b(q/q0) does not automatically decelerate the shock front

but the velocity and pressure behind the shock front increases quickly in the presence of the mag-

netic field and decreases slowly and become constant. This becomes true whether the piston is accel-

erated, is moving at constant speed or is decelerated. These results are presented through the

illustrative graphs and tables. The magnetic field effects on the flow variables through a medium

and total energy under the influence of strong magnetic field are also presented.
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1. Introduction

Shock processes occur naturally in various astrophysical sit-
uations such as supernova explosions, photo-ionized gas,
stellar winds, and collisions between high velocity clumps

of interstellar gas. Magnetogasdynamics applies to many
conductive fluid and plasma flows encountered in nature.
In several circumstances, the flow is subject to a strong as

well as a weak magnetic field. Such situation can be thought
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of occurring in earth’s liquid core, and is present in solar
physics such as sunspots, solar flares, solar corona, and
solar winds. The strong magnetic fields play significant roles

in the dynamics of the interstellar medium. A theoretical
study of the imploding shock wave near the center of con-
vergence, in an ideal gas was first investigated by Guderley

[1]. Several authors contributed to this investigation and
we mention the contributions of, Hafner [2], Manganaro
and Oliveri [3], Sharma and Radha [4], Hunter and Ali

[5], Sharma and Arora [6], Stanyukovich [7], Chisnell [8],
Lazarus and Richtmyer [9], Ramu and Ranga Rao [10],
Madhumita and Sharma [11], Sen [12], who presented high
accuracy results and alternative approaches for the investiga-

tion of implosion problem. The propagation of shock waves
under the influence of strong magnetic field is of great inter-
est to many researchers in various fields such as astrophys-

ics, nuclear science, geophysics, and plasma physics. MHD
shock waves in perfect gas are under extensive exploration
and attained good attention in the past decades. Propaga-

tion of shock waves in magneto hydrodynamics (MHD)
has been studied by several researchers. De Hoffmann and
Teller [13] developed a mathematical treatment for the

motion of MHD shock waves in the very weak and very
strong magnetic fields. Bazer and Ericson [14] were first
among the many researchers to study the hydromagnetic
shocks for astrophysical applications and analytical solutions

were presented by Genot [15] for anisotropic MHD shocks.
A number of approaches namely, the similarity method,
power series solution method, CCW method have been used

for the theoretical investigations of MHD shock waves in
homogeneous and inhomogeneous media.

In the recent years much attention has been focused on the

self-similar solutions using similarity transformations because
of their wide applications in determining solutions of nonlinear
differential equations of physical interest. The gas attains very

high temperature due to the propagation of shock waves and
at such a high temperature, the gas gets ionized, hence effects
of magnetic field become significant in the study of converging
shock waves. The study of MHD shock waves in a non-ideal

gas is of great scientific interest in many problems because of
their applications in the areas of astrophysics, oceanography,
atmospheric sciences, hypersonic aerodynamics and hyperve-

locity impact.
In this paper a model to determine the similarity solutions

to the problem of gas dynamic flow under the influence of

strong magnetic field is presented. The problem treated here
involves distinct features: the global behavior of the physical
parameter has been studied; the initial pressure ratio is con-
fined to a moderate value. The path of the piston is imposed

as boundary condition. Thus an accelerated, a decelerated or
a constant velocity piston can be specified. Self-similarity
requires the velocity of shock and the velocity of piston to

be proportional to some power law R(t) � (t)a where R(t) is
the position of the shock wave front from the center at time
t and a is the similarity exponent. The numerical values of sim-

ilarity exponents and profiles of flow variables are obtained.
These are presented through the illustrative graphs and tables.
The magnetic field effects on the flow variables through a med-

ium and total energy under the influence of strong magnetic
field are also presented.
2. Basic equations and boundary conditions

The non-steady one dimensional flow is a function of two inde-
pendent variables the time t and the space coordinate r. The

conservation equations governing the flow can be written as
[12,16–20]
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where q(r, t), u(r, t) and p(r, t) denote the density, velocity, and

pressure of the gas particles behind the shock front, h(r, t) is the

magnetic pressure defined by h ¼ lH2

2
with l as magnetic per-

meability and H is the transverse magnetic field,
a2 = (C + 1)p/q is the equilibrium speed of sound, C is the
Gruneisen coefficient, m = 2(3) denote shock wave in cylindri-
cal (spherical) geometry.

It is assumed that the plasma has infinite electrical conduc-
tivity and permeated by an axial magnetic field orthogonal to
the trajectories of the gas particles. Shock is assumed to be

strong and propagating into a medium according to a power
law R(t) � (t)a, where R(t) is the position of the shock wave
front from the center at time t and t= 0 corresponds to the

instant of the convergence when R= 0. The equation of state
under equilibrium condition is of Mie–Gruneisen type [10],

p ¼ qeCðq=q0Þ ð5Þ
where the function C(q/q0) is the Gruneisen parameter.

2.1. Boundary conditions

The boundary conditions at shock front due to Rankine–
Hugoniot, can be written as [7,18,20]
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where C0 ¼ 2h0
q0D

2 is the shock Cowling number and D is the

speed of the shock wave defined as D ¼ dR
dt
, since the initial

energy input E0 of explosion is very large, the shocks speed

D� a0 so that a0
D
! 0 in the strong shock limit.

Therefore the Rankine–Hugoniot jump conditions (6)–(8)

in the case of strong shock waves can be written as
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Using Eqs. (9)–(11), the EOS (5) can be written as [10]

2� C0b
3

ðb� 1Þ

� �
¼ ðb� 1ÞCðbÞ ð12Þ

where b(q/q0) is the compression just behind the shock, which
is called measure of shock strength. When C0 = 0, the propa-
gation of shock wave into a medium is without magnetic field

and Eq. (12) reduces to the non-magnetic case in a non-ideal
medium. The total energy E inside a blast wave is equal to
the energy supplied by the explosive and thus constant. The
total energy is given by the expression
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Eliminating q0 from Eqs. (10) and (11), p and h can be written
as (after using (9))
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2.2. Conservation equations and boundary conditions

The basic equations can be made dimensionless by transform-
ing the independent variables for space r and time t in to new

independent variables as follows [18]
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Figure 1 Graphical approach to estimate positive roots of equation

and (b) C0 ¼ 0:05.
where D is dR
dt
¼ _R; k ¼ _D R

D2 ;G;V are new dimensionless func-

tions of density (q) and velocity (u). Further using Eq. (17), the
Eqs. (18) and (19) can be reduced into a system of two ordin-

ary differential equations.
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The above equations can be written in matrix form as
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3. Solution procedure

3.1. Evaluation of b(q/q0) the measure of shock strength

Considering the EOS of Mie–Gruneisen type [10]:
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3.64832 0.7259012367336

3.38294 0.7043991321158

2.90851 0.6561813437120

2.51656 0.6026321645420
along with Eq. (12) we obtain bi-quadratic equations in b as

c0b
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and
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respectively. These equations are solved to obtain a unique
value of b corresponding to the constants C0,C0 and b. Accord-
ing to Descartes’s rule of signs these two equations will have at

least two real and two complex roots. This was found to be
true as can be seen from the solution curves and from these
solutions curves (Figs. 1 and 2) it is observed that irrespective

of the constants a real root is always b = 1 and this corre-
sponds to the case where magnetic effect C0 = 0. Neglecting
the imaginary roots the other roots are solved numerically

using MATLAB and are tabulated in Tables 1 and 2.

3.2. Numerical integration solution procedure

In order to integrate the set of non-linear ordinary differential

Eq. (23), we use Runge–Kutta fourth order method with a
small step size. The integration is carried out in the range,
1 6 n <1. Starting the integration with a known value of b
and a (a is evaluated corresponding to every b iteratively),
shown in Tables 1 and 2. The whole solution procedure is
repeated until the shock conditions are satisfied within the

desired accuracy.
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Figure 3 (a–d) Represents flow profiles of McQueen EOS for different values of C0; (e–h) represents flow profiles of Royce EOS for

b ¼ 1:0, and different values of C0; (i–l) represents flow profiles of Royce EOS for b ¼ 1:2, and different values of C0 (in all figures

C0 ¼ 2:25).

120 A. Ramu et al.



1 2 3 4 5
0.8

1

1.2

1.4

1.6

1.8

2

2.2

→ ξ

→
 V

el
oc

ity

m = 2
m = 3

(a) Velocity profiles 

1 2 3 4 5
1

2

3

4

5

6

7

8

9

10

11

→ ξ

→
 P

re
ss

ur
e

m = 2
m = 3

(b) Pressure profiles

1 2 3 4 5
0

0.5

1

1.5

2

2.5 x 1015

→ ξ

→
 E

ne
rg

y

m = 2
m = 3

(c) Energy profiles 

Figure 4 Flow profiles of McQueen EOS for C0 ¼ 2:25, magnetic effect C0 ¼ 0, and m ¼ 2; 3.
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Figure 5 Flow profiles of Royce EOS for C0 ¼ 2:25, C0 ¼ 0, and different values of b.
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(f) Magnetic pressure profiles for 
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(h) Energy profiles for 

Figure 6 Flow profiles of perfect gas EOS for C ¼ 1:4 and different values of C0.
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Table 2 Selected values of b and a for Royce EOS for different values of C0 and an arbitrary constant b.

C0 C0 b= 1 b= 1.2 b= 1.5

b a b a b a

2.25 0 2.16886 0.538928284905434 2.26621 0.558734627417583 2.47481 0.595928576335153

0.02 2.05713 0.513885850675456 2.13416 0.531431570266522 2.29118 0.563543676184324

0.05 1.91188 0.476954620582882 1.96778 0.491813109189035 2.07584 0.518267303838446

2.378 0 2.07536 0.518155886207694 2.15239 0.535400183052328 2.30928 0.566964595025289

0.02 1.97778 0.494382590581359 2.03990 0.509779891171136 2.16171 0.537403259456634

0.05 1.84825 0.458947653185446 1.89427 0.472092151594018 1.98075 0.495140729521646

2.655 0 1.91908 0.478916981053421 1.96875 0.492063492063492 2.06256 0.515165619424405

0.02 1.84246 0.457247375791062 1.88369 0.469127085666962 1.95978 0.489738644133525

0.05 1.73720 0.424361040755238 1.76876 0.434632171690902 1.82537 0.452165862263541

2.97 0 1.79103 0.441662060378665 1.82373 0.451673219171698 1.88226 0.468723768236057

0.02 1.72918 0.421691206236482 1.75691 0.430818880876084 1.80579 0.446225751610099

0.05 1.64179 0.390908703305539 1.66354 0.398872284405545 1.70115 0.412162360755959
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4. Results and discussion

In this paper, the entire computational work has been carried

out using MATLAB. Numerical calculations are performed
for the values of non-ideal parameters C0 = 0.02, 0.05;
b = 1.0, 1.2, 1.5, 2.25 and C0 = 2.25, 2.378, 2.655, 2.97. The

values of similarity exponent a for different values of C0 in
the case of McQueen EOS and Royce EOS are listed in Tables
1 and 2 respectively. The variations of non-dimensional shock
velocity, pressure, magnetic pressure and energy deposition

with n for McQueen EOS are shown in Fig. 3(a)–(d). It is
observed that the flow variables Velocity, Pressure (for both
cylindrical and spherical geometry) are high at the shock front

(for the McQueen EOS) and increases with the increase in the
non-idealness parameters and reduce gradually as n increases.
Again from Fig. 3(c) and (d) at n = 1, magnetic pressure and

energy are very high and reduce drastically with increase in n
and become constant. Also from Fig. 3(e)–(l) for Royce EOS
it can be seen that the velocity, pressure, magnetic pressure
and energy profiles, first increase with the increase in n and

decrease with further increase in n. It is notable that increase
in the non-idealness parameters (from Tables 1 and 2) have
effect on b. As b value increases, increase in velocity, pressure,

magnetic pressure and energy is prominent for both the EOS.
Thus it is observed from Fig. 3(e)–(l) that increase in b does
not automatically decelerate the shock front but the velocity

and pressure behind the shock front increases quickly in the
presence of the magnetic field and decrease slowly and become
constant. Also in the presence of non-idealness parameters and

in the absence of magnetic field the velocity and pressure pro-
files reduce gradually. It is noted from Fig. 4(a)–(d) for the
EOS of McQueen, density and energy increase drastically for
n > 2.5 whereas with non-idealness parameters the velocity

and pressure increase sharply for n P 1. From Fig. 5(a)–(f)
with non-idealness parameters in the absence of magnetic field
(C0) for the Royce EOS the velocity and pressure profiles grad-

ually decrease (see Fig. 5(a) and (d)) and become constant,
whereas pressure and energy profiles (see Fig. 5(b), (c), (e),
and (f)) initially increase with the increase in n and reduce

slowly with increasing n and become constant. Also from
Fig. 6(a)–(e) it is observed that shock propagates more rapidly
in perfect gas in presence of the magnetic field. It is interesting
to note that the rate of rise in the flow variables increase with

the increase in the strength of magnetic field.

5. Conclusions

In this paper, the variations of non-dimensional shock veloc-
ity, pressure, magnetic pressure and energy deposition with n
for both EOS are presented. The entire computational work

has been carried out using MATLAB for the values of non-
ideal parameters C0 = 0.02, 0.05; b = 1.0, 1.2, 1.5, 2.25 and
C0 = 2.25, 2.378, 2.655, 2.97. The values of similarity expo-

nent a for different values of C0 in the case of McQueen
EOS and Royce EOS are evaluated. The results of the study
can be summarized as follows.

1. The flow variables Velocity, Pressure for both cylindrical
and spherical geometry are high at the shock front for the
McQueen EOS increases with the increase in the non-

idealness parameters and reduce gradually as n increases.
2. At n = 1, magnetic pressure and energy are very high and

reduce drastically with increase in n and become constant.

The velocity, pressure, magnetic pressure and energy
profiles, first increase with n and then decrease with further
increase in n for Royce EOS.

3. It is notable that increase in the non-idealness parameters
has effect on b. Increase in b does not automatically decel-
erate the shock front but the velocity and pressure behind
the shock front increases quickly in the presence of the

magnetic field and decrease slowly and become constant.
4. In the presence of non-idealness parameters and in the

absence of magnetic field the velocity and pressure profiles

reduce gradually. In the EOS of McQueen, density and
energy increase drastically for n > 2.5 whereas with non-
idealness parameters the velocity and pressure increase

sharply for n P 1.
5. With non-idealness parameters in the absence of magnetic

field (C0) for the Royce EOS the velocity and pressure pro-
files gradually decrease and become constant, whereas pres-

sure and energy profiles initially increase with the increase in
n and reduce slowly with increasing n and become constant.
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6. In the presence of the magnetic field the shock propagates

more rapidly in perfect gas. It is interesting to note that
the rate of rise in the flow variables increase with the
increase in the strength of magnetic field.
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