

Egyptian Mathematical Society Journal of the Egyptian Mathematical Society

> www.etms-eg.org www.elsevier.com/locate/joems

**Original Article** 

# On projection-invariant submodules of QTAG-modules

Fahad Sikander<sup>a,\*</sup>, Alveera Mehdi<sup>b</sup>, Sabah A.R.K. Naji

<sup>a</sup> College of Computation and Informatics, Saudi Electronic University, Jeddah 23442, Saudrabia

<sup>b</sup> Department of Mathematics, Aligarh Muslim University, Aligarh 2020

<sup>c</sup> Department of Mathematics, Al-Bayda University, Al-Bayda, Yemer

Received 14 March 2014; revised 27 October 2014; accepted 25 Janu Available online 11 April 2015

## Keywords

QTAG-modules; Projection-invariant submodule; Socle and strongly socle-regular QTAG-module

Abstract odule r an associative ring R with unity is a QTAG-module if every finitely homomorphic image of M is a direct sum of uniserial modules. Here ule of a genera submodule of QTAG-module. A submodule N of a QTAG-module M n-invaria proj riant in M if  $f(N) \subseteq N$ , for all idempotent endomorphisms f in End(M). invariant submodules are projection-invariant. Mehdi et. al. characterized fully invarilearly, ant submo and characteristic submodules with the help of their socles. Here we investigate the cles of prop n-invariant submodules of QTAG-modules.

Mathematics Subject Classification: 16 K 20; 13 C 12; 13 C 13

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

# 1. In action d prelime es

All the uses R considered here are associative with unity and module V are unital QTAG-modules. An element  $x \in M$ is uniform, here is a non-zero uniform (hence uniserial) module and for any R-module M with a unique composition se-

\* Corresponding author.

Peer review under responsibility of Egyptian Mathematical Society.



ries, d(M) denotes its composition length. For a uniform element  $x \in M$ , e(x) = d(xR) and  $H_M(x) = \sup \{d(\frac{yR}{xR}) | y \in M, x \in yR$  and y uniform} are the exponent and height of x in M, respectively.  $H_k(M)$  denotes the submodule of M generated by the elements of height at least k and  $H^k(M)$  is the submodule of M generated by the elements of exponents at most k. M is h-divisible if  $M = M^1 = \bigcap_{k=0}^{\infty} H_k(M)$  and it is h-reduced if it does not contain any h-divisible submodule. In other words it is free from the elements of infinite height. A QTAG-module M is said to be separable, if  $M^1 = 0$ . A family  $\mathcal{N}$  of submodules of M is called a nice system in M if.

Y

CrossMark

- (i)  $0 \in \mathcal{N};$
- (ii) If  $\{N_i\}_{i \in I}$  is any subset of  $\mathcal{N}$ , then  $\Sigma_I N_i \in \mathcal{N}$ ;
- (iii) Given any  $N \in \mathcal{N}$  and any countable subset X of M, there exists  $K \in \mathcal{N}$  containing  $N \cup X$ , such that K/N is countably generated [1].

S1110-256X(15)00022-X Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.01.005

E-mail addresses: f.sikander@seu.edu.sa (F. Sikander),

alveera\_mehdi@rediffmail.com (A. Mehdi), sabah\_kaled@yahoo.com (S.A.R.K. Naji).

A *h*-reduced *QTAG*-module *M* is called totally projective if it has a nice system. A submodule  $B \subseteq M$  is a basic submodule of *M*, if *B* is *h*-pure in *M*,  $B = \bigoplus B_i$ , where each  $B_i$  is the direct sum of uniserial modules of length *i* and *M/B* is *h*-divisible.

For a QTAG-module M, there is a chain of submodules  $M^0 \supset M^1 \supset M^2 \cdots \supset M^{\tau} = 0$ , for some ordinal  $\tau$ .  $M^{\sigma+1} = (M^{\sigma})^1$ , where  $M^{\sigma}$  is the  $\sigma$ th-*Ulm* submodule of M. A fully invariant submodule  $L \subset M$  is a large submodule of M, if L + B = M for every basic submodule B of M. It was proved that several results which hold for TAG-modules also hold good for QTAG-modules [2]. Notations and terminology are followed from [3].

The Ulm-sequence of x is defined as  $U(x) = (H(x), H(x_1), H(x_2), ...)$ . This is analogous to the U-sequences in groups [4]. These sequences are partially ordered because  $U(x) \le U(y)$  if  $H(x_i) \le H(y_i)$  for every *i*. Transitive and fully transitive QTAG-modules are defined with the help of U-sequences. Ulm invariants and Ulm sequences play an important role in the study of QTAG-modules. Using these concepts transitive and fully transitive modules were defined in [5]. A QTAG-module M is fully transitive if for x,  $y \in M$ ,  $U(x) \le U(y)$ , there is an endomorphism f of M such that f(x) = f(y) and it is transitive if for any two elements x,  $y \in M$ , with  $U(x) \le U(y)$ , there is an automorphism f of M such that f(x) = f(y).

#### 2. Main results

Mehdi et al. characterized fully invariant submodules and characteristic submodules with the help of their society and defin socie-regular and strongly socie-regular QT process [6,7] We start by recalling their definitions:

A *QTAG*-module *M* is said to be socle a planet strongly socle-regular) if for all full invation respectively characteristic) submodules *K* of the inere exists a portinal  $\sigma$ (depending on *K*) such that Soch a Soc( $H_{\sigma}(M)$ ) at is self evident that strongly socle-regular Q are modules are themselves socle-regular.

**Definition 2.1.** A suppodule of a QTAG-module M is said to be projection-interpret if A if  $f(N) \subseteq N$  for all idempotent endomorphisms f(M), and M, and M, fully invariant submodules are provided. In part of the converse is not true in general M

It is not to be a projection-invariant in M if and only if,  $f \to e N \cap f(M)$  for every projection  $f \in \text{End}(M)$ . Projection-in that submodules satisfies the property of being distributed across the direct sum *i.e.*, if  $M = P \oplus Q$  and N is projection-invariant, then  $N = (P \cap N) \oplus (Q \cap N)$  [8].

Motivated by the concepts of socle-regular and strongly socle-regular *QTAG*-modules we make the following definition:

**Definition 2.2.** A *QTAG*-module *M* is said to be projectively socle-regular if for each projection-invariant submodule *N* of *M*, there is an ordinal  $\sigma$  (depending on *N*) such that  $\text{Soc}(N) = \text{Soc}(H_{\sigma}(M))$ .

It is obvious that projectively socle-regular *QTAG*-modules are socle-regular.

Let us recall the terminology used in [6]:

For a submodule N of M, put  $\sigma = \min\{H_M(x)|x \in Soc(N)\}\)$  and denote  $\sigma = \inf(Soc(N))$ . Here  $Soc(N) \subseteq Soc(H_{\sigma}(M))$ .

**Proposition 2.1.** If N is a projection-invariant submodule of a QTAG-module M and  $\inf(\operatorname{Soc}(N)) = k$ , a positive integer, then  $\operatorname{Soc}(N) = \operatorname{Soc}(H_k(M))$ . Consequently, if M is separable, then M is projectively socle-regular.

**Proof.** Suppose that N is a projection submodule of M and  $\inf(\operatorname{Soc}(N)) = k < \omega$ . emains low that s an el- $\frac{R}{R}$ ) = k,  $Soc(H_k(M)) \subseteq Soc(N)$ . As inf(Soc(M))k = k, the ement  $x \in Soc(N)$  such that and so (x)for  $y \in M$ . Since every ele it of expo and finite a dir by [9] vR is height can be embedded sumn g x erefore  $M = vR \oplus M'$ , for a summand of M cont. some submodule z is ap itrary element of of  $_{k+1}(M)).$  $Soc(H_k(M))/Sc$ exists  $u \in H^{k+1}(M)$  $R \oplus M''$ . Now, d(uR) =such that  $d(\frac{u}{2})$ and hence that uR = yR. Then we have that u =d(yR) = k, im d  $m' \in M'$ . We may define  $\phi : yR \oplus$ ry + m', for some  $r \in$ ,  $\phi(M') = 0$ . Now,  $\phi$  is the dif-M'M' by  $\phi(y)$ fe e of two idempotent endomorphisms of M and we define  $\theta$  $\rightarrow M$  by  $r(\psi(m)) + \phi(m)$ , where  $\psi$  is the projec- $\psi(y) = y, \ \psi(M') = 0.$  Here  $\theta$  is a sum of tid ap given iden (y) = ry + m' = u. Since  $\theta(x) = v$  such that nts ar  $d(\frac{v}{\theta(yR)})$ Ind vR = zR as  $d(\frac{uR}{zR}) = k$  and  $x \in N$ , which is Direction-invariant submodule of M, we conclude that  $z \in$ Hence  $\operatorname{Soc}(H_k(M))/\operatorname{Soc}(H_{k+1}(M)) \subseteq \operatorname{Soc}(N)$ . Howver, if  $s \in \text{Soc}(H_{k+1}(M))$ , then  $z + s \in \text{Soc}(H_k(M))$  and so by the argument above,  $z + s \in Soc(N)$ . Thus we have that  $Soc(H_k(M)) \subseteq Soc(N)$  and we are done.  $\Box$ 

**Corollary 2.1.** If M is a QTAG-module such that  $d(H_{\omega}(M)) = 1$ , then M is projectively socle-regular.

**Proof.** Suppose N is a projection-invariant submodule of M. If  $\operatorname{Soc}(N) \nsubseteq H_{\omega}(M)$ , then  $\inf(\operatorname{Soc}(N))$  is finite and by Proposition 2.1 above we obtain that  $\operatorname{Soc}(N) = \operatorname{Soc}(H_k(M))$ for some integer k. So we may assume that  $\operatorname{Soc}(N) \subseteq H_{\omega}(M)$ . Since the  $H_{\omega}(M)$  is a uniserial module of decomposition length 1, either  $N + \operatorname{Soc}(N) = 0$  whence  $\operatorname{Soc}(N) = \operatorname{Soc}(H_{\omega+1}(M))$  or  $\operatorname{Soc}(N) = \operatorname{Soc}(H_{\omega}(M))$  as required.  $\Box$ 

The property of a *QTAG*-module *M* being projectively socleregular is inherited by submodules of the form  $H_{\sigma}(M)$ .

**Proposition 2.2.** If M is a projectively socle-regular QTAGmodule, then so also is  $H_{\sigma}(M)$ , for all ordinals  $\sigma$ .

**Proof.** Let  $K = H_{\sigma}(M)$  and suppose that N is a projection invariant submodule of K. Let f be an arbitrary idempotent in End(M). Then  $f^* = f|_K$  is an idempotent endomorphism of K. Thus  $f(N) = f^*(N) \subseteq N$ , since N is projectioninvariant submodule of K. Consequently N is a projectioninvariant submodule of M and so there is an ordinal  $\rho$  such that Soc(N) = Soc( $H_{\rho}(M)$ ). Since N is contained in  $H_{\sigma}(M)$ , we infer that  $\rho \ge \sigma$ ; say  $\rho = \sigma + \gamma$ . But then Soc(N) = Soc( $H_{\sigma+\gamma}(M)$ ) = Soc( $H_{\rho}(K)$ ), showing that K is also a projectively socle-regular *OTAG*-module.  $\Box$ 

**Theorem 2.1.** Let M be a QTAG-module. If k is a non-negative integer and  $H_k(M)$  is projectively socle-regular QTAG-module, then M is a projectively socle-regular module.

**Proof.** Let *N* be projection invariant submodule of *M*. If inf(Soc(N)) = k is finite, then by Proposition 2.1,  $Soc(N) = Soc(H_k(M))$ . Otherwise, if  $inf(Soc(N)) \ge \omega$ , then  $Soc(N) \subseteq Soc(H_{\omega}(M)) \subseteq H_k(M)$  and we consider an idempotent endomorphism f of  $H_k(M)$ . Since every endomorphisms of  $H_k(M)$  lifts to an endomorphism of *M*, there is an endomorphism  $\overline{f}$  of *M* such that  $\overline{f}|_{H_k(M)} = f$ . Also, there exists an idempotent *g* of *M* such that  $g|_{H_k(M)} = \overline{f}|_{H_k(M)} = f$ . If we define  $\overline{g}: M \to M$  such that  $\overline{g} = 0 + g$  then  $\overline{g}$  is idempotent endomorphism of *M* with  $\overline{g}|_{H_k(M)} = f$ . Hence  $f(Soc(N)) = \overline{g}(Soc(N)) \subseteq Soc(N)$ . As  $H_k(M)$  is projectively socle-regular we have that  $Soc(N) = Soc(H_{\sigma}(H_k(M)))$ , for some ordinal  $\sigma$ . Thus,  $Soc(N) = Soc(H_{\rho}(M))$ , where  $\rho = k + \sigma$  and *M* is projectively socle-regular.  $\Box$ 

**Proposition 2.3.** Transitive, fully transitive and totally projective QTAG-modules satisfying the following condition are projectively socle-regular: If  $\alpha_1, \alpha_2, \ldots, \alpha_n$  and  $\beta_1, \beta_2, \ldots, \beta_m$ are two disjoint finite sequence of ordinals such that the Kaplansky invariants  $f_M(\alpha_i) \neq 0$  for each positive integer there is a direct decomposition  $M = L \oplus K$  where  $f_L(\alpha_i) = 1$  for  $i = 1, 2, \ldots, n$  and  $f_L(\beta_i) = 0$  for j = 1, 2 m.

**Proof.** If N is a projection invariant, nodul M. the N is fully invariant in M. In view of | Thus  $Soc(N) = Soc(H_{\sigma}(M))$ , for , whence M is ne ord. d. Since a projectively socle-regular as rev projective QTAG-module is both trap fully transit and satisfies the above condition is project. ocle-regular. 🗆

Theorem 2.2.

(i) If A(M) is relification of uniserial modules and A(M) projects of acle-regular, then M is projectively so the regular.
(ii) H and the divergence of the module of the projective, then M is projectively socle-regular.

Here an ordinal strictly less than  $\omega^2$ .

**Proof.** Let *N* be an arbitrary projection invariant submodule of *M* such that  $N \subseteq H_{\omega}(M)$ . We have to show that Soc(N) is a projection-invariant submodule of  $H_{\omega}(M)$ . Let *f* be an idempotent endomorphism of  $H_{\omega}(M)$ , then there is an idempotent endomorphism *g* of *M* such that  $g|_{H_{\omega}(M)} = f$ . But then  $f(Soc(N) = g(Soc(N) \subseteq N)$ , because *N* is a projection-invariant submodule of *M*. Therefore Soc(N) is a projection-invariant submodule of  $H_{\omega}(M)$ . So  $Soc(N) = Soc(H_{\sigma}(H_{\omega}(M))) = Soc(H_{\omega+\sigma}(M))$  for some ordinal  $\sigma$  and so *M* is projectively socle-regular, which completes the proof of (*i*).

For (*ii*), we use the transfinite induction. If  $\sigma \leq \omega$ , the result holds from (i). Now suppose that the result holds for all ordinals less than  $\sigma$ . There are two possibilities: either  $\sigma$  is a successor or  $\sigma$  is a limit ordinal of the form  $\omega \cdot n$ . In the first case  $\sigma = \beta + 1$ , for some  $\beta$ . Let  $X = H_{\beta}(M)$  and note that H(X) = $H_{\sigma}(M)$  is projectively socle-regular. If M is projectively socleregular and N a projective-invariant submodule of M such that  $H_{\omega}(N) = H_{\omega}(M)$ , then N is projectively socle-regular. Therefore  $X = H_{\beta}(M)$  is projectively socle-regular. Moreover as  $\beta < \sigma$ , it is easy to show that  $M/H_{\beta}(M)$  is totally projective. Inductively M is projectively socle-regular. In the second case  $\sigma =$  $\beta + \omega$ , for some  $\beta$ . Set  $X = H_{\beta}(M)$  $(X) = H_{\sigma}(M)$ is projectively socle-regular. Now X  $(M)/H_{\sigma}(M)$  $_{\mathfrak{s}}(X)$ and this is totally projective hene of uniserial s a direct s modules. It now follows from part ove that 2  $H_{\beta}(M)$  is projectively socle-regular.  $A, M/H_{b}$ is to y projective gular. 🗆 and therefore inductive is projective

The next assertion on provides that estain submodules inherit projective me-regular x

**Proposition 7.** If M is a projectively socle-regular QTAGmodule and N is a projection-invariant submodule of M with the same submodule M is projectively socle-regular.

**bof.** Suppose Q is an arbitrary projection-invariant submodof N. Since the projection-invariant property is obviously sitive, it follows that Q is a projection-invariant submodule of M. For effore there is an ordinal  $\sigma$  such that Soc(Q) = $Soc(H_{\sigma}(M_{\sigma}))$ . If  $\sigma \ge \omega$ , it follows that  $Soc(Q) = Soc(H_{\sigma}(N))$ we are done. If now  $\sigma$  is a finite ordinal number, say n, and  $oc(Q) = Soc(H_n(M)) \supseteq Soc(H_n(N))$  and so it is easy to check that  $Soc(Q) = Soc(H_k(N))$  for some natural number k, as required.  $\Box$ 

**Corollary 2.2.** If M is a projectively socle-regular QTAG-module and L is a large submodule of M, then L is projectively socleregular.

In the end we would like to mention an open problem as follows:

**Problem.** If M is a socle-regular QTAG-module with finite  $H_{\omega}(M)$ , does it follows that M is projectively socle-regular?

#### Acknowledgment

The authors are thankful to the referee for his/her valuable suggestions.

## References

- [1] A. Mehdi, M.Y. Abbasi, F. Mehdi, On  $(\omega + n)$ -projective modules, Ganita Sandesh 20 (1) (2006) 27–32.
- [2] S. Singh, Some decomposition theorems in abelian groups and their generalizations, in: Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker NY, vol. 25, 1976, pp. 183–189.
- [3] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York, 1970; L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press, New York, 1973.

- [4] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954; I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1969.
- [5] S.A.R.K. Naji, A Study of Different Structures of QTAG-Modules, Ph.D. Thesis, A.M.U., Aligarh, 2011.
- [6] F. Sikander, A. Hasan, A. Mehdi, Socle-regular QTAG-modules, New Trends Math. Sci. 2 (2) (2014) 129–133.
- [7] F. Sikander, A. Hasan, F. Begum, On strongly socle-regular QTAGmodules, Sci. Ser. A: Math. Sci. 25 (2014) 47–53.
  [8] G.F. Birkenmeier, A. Tercan, C.C. Yucel, The extending condition
- relative to sets of submodules, Comm. Algebra 42 (2014) 764-778.
- [9] M.Z. Khan, Modules behaving like torsion abelian groups II, Math. Japonica 23 (5) (1979) 509–516.