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Keywords T an associative ring R with unity is a QT4G-module if every finitely

QTAG-modules; omomorphic image of M is a direct sum of uniserial modules. Here
Projection-invariant ubmodule of QTAG-module. A submodule N of a QTAG-module M
submodule; A e priant in M if f(N) C N, for all idempotent endomorphisms fin End(M).
Socle and strongly ¢ invariant submodules are projection-invariant. Mehdi et. al. characterized fully invari-

g;}zéegulzrl y and characteristic submodules with the help of their socles. Here we investigate the
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ries, d(M) denotes its composition length. For a uniform
element x € M, e(x) =d(xR) and Hj(x) = sup {d(}\ﬁ—ﬁﬂy €
M, x € yR and y uniform} are the exponent and heighf of x in
M, respectively. H, (M) denotes the submodule of M generated
by the elements of height at least k and H* (M) is the submod-
ule of M generated by the elements of exponents at most k. M
is h-divisible if M = M' = (N2, Hx(M) and it is h-reduced if it
—_— does not contain any /-divisible submodule. In other words it is
* Corresponding author. free from the elements of infinite height. A QTAG-module M is
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M is called a nice system in M if.

(S.A.R.K. Naji). X
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(i) If {N;};c; is any subset of A/, then X;N; € N;

(iii) Givenany N € A and any countable subset X of M, there
exists K € N containing N U X, such that K/N is count-
ably generated [1].

All th8 R conStered here are associative with unity
and modd { are unital QTAG-modules. An element x € M

ule and for any R-module M with a unique composition se-
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A h-reduced QTAG-module M is called totally projective if it
has a nice system. A submodule B € M is a basic submodule
of M, if Bis h-pure in M, B = @B;, where each B; is the direct
sum of uniserial modules of length i and M/B is
h-divisible.

For a QTAG-module M, there is a chain of submodules
M’ > M' > M?*... > M* =0, forsome ordinal t. M°*! =
(M°)', where M° is the oth-Ulm submodule of M. A fully
invariant submodule L C M is a large submodule of M, if
L + B = M for every basic submodule B of M. It was proved
that several results which hold for 74G-modules also hold good
for QTAG-modules [2]. Notations and terminology are followed
from [3].

The Ulm-sequence of x is defined as U(x)=
(H(x), H(x1), H(x3),...). This is analogous to the U-
sequences in groups [4]. These sequences are partially ordered
because U(x) < U(y) if H(x;) < H(y;) for every i. Tran-
sitive and fully transitive Q7AG-modules are defined with
the help of U-sequences. Ulm invariants and Ulm sequences
play an important role in the study of QTAG-modules. Using
these concepts transitive and fully transitive modules were
defined in [5]. A QTAG-module M is fully transitive if for
x, ye M, U(x) < U(y), there is an endomorphism f of M
such that f(x) = f(y) and it is transitive if for any two elements
x, y€ M, with U(x) < U(y), there is an automorphism f of
M such that f(x) = f(»).

2. Main results

Mehdi et al. characterized fully invariant submodules and ch

s projection-invariant in M if and
for every projection f € End(M).

projection-invariant, then N = (PN N) @ (QN N) [8].
Motivated by the concepts of socle-regular and strongly
socle-regular QTAG-modules we make the following definition:

Definition 2.2. A QTAG-module M is said to be projectively
socle-regular if for each projection-invariant submodule N of
M, there is an ordinal o (depending on N) such that Soc(N) =
Soc(H, (M)).

It is obvious that projectively socle-regular QTAG-modules
are socle-regular.

Let us recall the terminology used in [6]:

For a submodule N of M, put o = min{Hy (x)|x €
Soc (N)} and denote o = inf(Soc(N)). Here Soc(N) C
Soc(H, (M)).

Proposition 2.1. If N is a projection-invariant submodule of a
QTAG-module M and inf(Soc(N)) = k, a positive integer, then
Soc(N) = Soc(Hi(M)). Consequently, if M is separable, then M
is projectively socle-regular.

Proof. Suppose that N is a projectig

m' € M'. We may define ¢ : yR @
, (M) = 0. Now, ¢ is the dif-

) = r(y¥ (m)) + ¢(m), where ¥ is the projec-
W (y) =y, v(M')=0. Here 6 is a sum of
(v) = ry +m’ = u. Since 6 (x) = v such that
VR =zR as d(*X) =k and x € N, which is
jection-invariant submodule of M, we conclude that z €

er, if s € Soc(H(M)), then z+ s € Soc(H,(M)) and so
by the argument above, z 4+ s € Soc(N). Thus we have that
oc(H(M)) C Soc(N) and we are done. [

Corollary 2.1. If M is a QTAG-module such that d(H,(M)) =
1, then M is projectively socle-regular.

Proof. Suppose N is a projection-invariant submodule of
M. If Soc(N) ¢ H, (M), then inf(Soc(N)) is finite and by
Proposition 2.1 above we obtain that Soc(N) = Soc(H;(M))
for some integer k. So we may assume that Soc(N) < H,(M).
Since the H, (M) is a uniserial module of decomposition length
1, either N + Soc(N) = 0 whence Soc(N) = Soc(H,1(M)) or
Soc(N) = Soc(H,(M)) as required. [

The property of a QTAG-module M being projectively socle-
regular is inherited by submodules of the form H, (M).

Proposition 2.2. If M is a projectively socle-regular QTAG-
module, then so also is H, (M) , for all ordinals o.

Proof. Let K = H,(M) and suppose that N is a projection
invariant submodule of K. Let f be an arbitrary idempo-
tent in End(M). Then f* = f|x is an idempotent endomor-
phism of K. Thus f(N) = f*(N) € N, since N is projection-
invariant submodule of K. Consequently N is a projection-
invariant submodule of M and so there is an ordinal p such that
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Soc(N) = Soc(H,(M)). Since N is contained in H,(M),
we infer that p >o; say p =0 +y. But then Soc(N) =
Soc(H, ., (M)) = Soc(H,(K)), showing that K'is also a projec-
tively socle-regular QTAG-module. (]

Theorem 2.1. Let M be a QTAG-module. If k is a non-negative
integer and H; (M) is projectively socle-regular QTAG-module,
then M is a projectively socle-regular module.

Proof. Let N be projection invariant submodule of M.
If inf(Soc(N))= Kk is finite, then by Proposition 2.1,
Soc(N) = Soc(H; (M)). Otherwise, if inf(Soc(N)) > w, then
Soc(N) € Soc(H,(M)) € H,(M) and we consider an idem-
potent endomorphism f'of H; (M). Since every endomorphisms
of H;. (M) lifts to an endomorphism of M, there is an endo-
morphism f of M such that £l 4, = /. Also, there exists

an idempotent g of M such that gl o) = flu,on = /- If we
define g: M — M such that g =0+ g then g is idempotent
endomorphism of M with gly 4, = /. Hence f(Soc(N)) =
g(Soc(N)) € Soc(N). As H, (M) is projectively socle-regular
we have that Soc(N) = Soc(H,, (H,(M))), for some ordinal o.
Thus, Soc(N) = Soc(H,(M)), where p = k+ o and M is pro-
jectively socle-regular. [J

Proposition 2.3. Transitive, fully transitive and totally projec-
tive QTAG-modules satisfying the following condition are pro-
Jectively socle-regular: If oy, ay, ., o, and By, B,

are two disjoint finite sequence of ordinals such that t
Kaplansky invariants fy(a;) # 0 for each positive intege
there is a direct decomposition M = L @ K where fi (o)
i=1, 2, ., nand fr(B;)) =0forj=1, 2

Proof. If N is a projection invariant
N is fully invariant in M. In view,

QTAG-module is both tra
fies the above condition gt i

ively socle-regular and M/H, (M) is
then M is projectively socle-regular.

Proof. Let N be an arbitrary projection invariant submod-
ule of M such that N € H,(M). We have to show that
Soc(N) is a projection-invariant submodule of H,(M). Let
f be an idempotent endomorphism of H,(M), then there is
an idempotent endomorphism g of M such that g|ly, ) = f.
But then f(Soc(N)=g(Soc(N) € N, because N is a
projection-invariant submodule of M. Therefore Soc(N) is
a projection-invariant submodule of H,(M). So Soc(N) =
Soc(H, (H,(M))) = Soc(H,, (M)) for some ordinal o and so
M is projectively socle-regular, which completes the proof of (7).

For (ii), we use the transfinite induction. If 0 < w, the result
holds from (7). Now suppose that the result holds for all ordi-
nals less than o. There are two possibilities: either o is a suc-
cessor or ¢ is a limit ordinal of the form w - n. In the first case
o =+ 1, for some . Let X = Hg(M) and note that H(X) =
H, (M) is projectively socle-regular. If M is projectively socle-
regular and N a projective-invariant submodule of M such that
H,(N) = H,(M), then N is projectively socle-regular. There-
fore X = Hg(M) is projectively socle-regular. Moreover as
B < o, itis easy to show that M/Hg (M) is totally projective. In-
ductively M is projectively socle-regular. In the second case o =

is projectively socle-regular. Now
and this is totally projective hene
modules. It now follows fro
projectively socle-regular.

Hﬁ(M) is

. O

he projection-invariant property is obviously
ws that Q is a projection-invariant submod-
fore there is an ordinal o such that Soc(Q) =
. If 0 > w, it follows that Soc(Q) = Soc(H, (N))
e are done. If now o is a finite ordinal number, say n,
c(Q) = Soc(H,(M)) 2 Soc(H,(N)) and so it is easy to
check that Soc(Q) = Soc(H;(N)) for some natural number k,
as required. [

Corollary 2.2. If M is a projectively socle-regular QTAG-module
and L is a large submodule of M, then L is projectively socle-
regular.

In the end we would like to mention an open problem as
follows:

Problem. If M is a socle-regular QTAG-module with finite
H, (M), does it follows that M is projectively socle-regular?
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