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Abstract In the first part of this review article some recent developments of maximal correlation

coefficient, introduced by Gebelein (1941) [7], and its applications in various areas of statistics are

discussed. The second part is devoted to find the distributions providing the maximal correlation

coefficient between generalized order statistics (gos) and dual generalized order statistics (dgos),

which are introduced by Kamps (1995) [8] and Burkschat et al. (2003) [4], respectively. Finally,

in the third part, general theorems are presented, which give simple non-parametric criterion for

the asymptotic independence between the different elements of gos, as well as dgos.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

When we talk about the dependence relations between random
variables (rvs) it is convenient to distinguish between three

interrelated kinds of such relations. The first is the linear rela-
tion, which is the simplest one. The most widely known mea-
sure of the linear relation is Pearson’s product-moment
correlation coefficient, which is invariant under location and

scale changes. Clearly, the invariant property means that this
measure interests only in the existence of the linear relation
rather than its shape. The second kind of the dependence rela-

tion is the association, or concordance. Informally, a pair of
tical Society. Production and

ptian Mathematical Society.
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rvs are concordant if ‘‘large’’ values of one tend to be associ-
ated with ‘‘large’’ values of the other, and ‘‘small’’ values of

one with ‘‘small’’ values of the other. The most widely known
scale-invariant measures of association are the population ver-
sions of Kendall’s tau and Spearman’s rho. The third kind of

the dependence relation is the general one, which means the
existence of a Borel-measurable function between the two
rvs. The maximal coefficient of correlation, besides being a

convenient measure of the general dependence relation be-
tween rvs, it plays a critical role in various areas of statistics
including correspondence analysis, optimal transformation

for regression, and the theory of Markov processes, see [14].
Rényi [12] gives a set of seven postulates which a measure of

dependence l(X,Y) between two rvs X and Y should satisfy.

(1) l(X,Y) is defined for any pair of rvs X and Y, neither of
them being constant with probability 1.

(2) l(X,Y) = l(Y,X).
(3) 0 6 l(X,Y) 6 1.
(4) l(X,Y) = 0, if and only if X and Y are independent.
(5) l(X,Y) = 1, if there is a strict dependence between X

and Y, i.e., either Y= /(X) or X = w(Y), where /
and w are Borel-measurable functions.

mailto:hbarakat2@hotmail.com
http://dx.doi.org/10.1016/j.joems.2011.09.011
http://dx.doi.org/10.1016/j.joems.2011.09.011
http://dx.doi.org/10.1016/j.joems.2011.09.011
http://www.sciencedirect.com/science/journal/1110256X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


On generalized order statistics and maximal correlation as a measure of dependence 29
(6) If the Borel-measurable functions / and w map the real

axis in a one-to-one way onto itself, then l(/
(X),w(Y)) = l(X,Y).

(7) If the joint df of X and Y is normal, then l(X,Y) =
Œcorr(X,Y)Œ, where corr(X,Y) is the ordinary correlation
coefficient of X and Y, which is defined by
corrðX; YÞ ¼ covðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðYÞ

p :

In 1959, Rényi considered six dependence measures. Of

these measures, only the maximal correlation satisfies all
seven postulates.
Definition 1. The maximum correlation coefficient (or maxi-
mum correlation for short) between the two rvs X and Y is

introduced in Gebelein [7] is defined by

RðX; YÞ ¼ sup
/;w

corrð/ðXÞ; wðYÞÞ;

where the supremum being over all Borel-measurable func-
tions / and w, for which var(/(X)) > 0 and var(w(Y)) > 0.
1.1. Some recent results regarding the maximal correlation in
general

The maximal correlation enjoys the following remarkable

properties:

Property 1. If (X,Y) is bivariate normal random vector, then

RðX; YÞ ¼ jcorrðX; YÞj:

The proof of this property is given by Lancaster [9], in which
series expansion involving Hermite polynomial was used.

Property 2. More recently, Dembo et al. [6] have shown that
the maximal correlation between two partial sums of

independent and identically distributed rvs is also their usual
correlation. Specially, if non-degenerate rvs X1,X2, . . . ,Xn are
independent and identically distributed, then

RðSm; SnÞ ¼ corrðSm; SnÞ ¼
ffiffiffiffi
m

n

r
;

where m 6 n are integers and Sk ¼
Pk

j¼1Xj, k = 1,2, . . . ,n.
With a few exceptions such as the above explicit analytical
for R are usually unavailable. The generalization of Property
1.2 is given recently by Yaming [14].

Property 3. Under the assumptions of Property 1.2, we have

RðSm; Sn � S‘Þ ¼ R
Xm
j¼1

Xj;
Xn
j¼‘þ1

Xj

 ! !
¼ corrðSm; Sn � S‘Þ

¼ m� ‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðn� ‘Þ

p ;

where integers ‘,m,n satisfy 1 6 ‘+ 1 6 m 6 n.
2. The generalized order statistics and the maximal correlation

Kamps [8] introduced the concept of the generalized order sta-

tistics (gos) as a unification of several models of ascendingly
ordered rvs. It is known that ordinary order statistics, upper

record values, sequential order statistics and progressive type
II censored order statistics are special cases of gos.

Definition 2. The uniform gos U�ðrÞ � Uðr; n; k; ~mÞ; r ¼
1; 2; . . . ; n, are defined by their density function

fU
�ð1Þ; ... ;U�ðnÞðu1; . . . ; unÞ¼

Yn
j¼1

cj

 ! Yn�1
j¼1
ð1�ujÞcj�cjþ1�1

 !
ð1�unÞcn�1

on the cone fðu1; . . . ; unÞ : 0 6 u1 6 . . . 6 un < 1g � Rn, with

parameters c1, . . . ,cn > 0. The parameters c1, . . . ,cn are
defined by cn = k > 0 and cr = k + n � r + Mr, r=
1,2, . . . ,n � 1, where Mr ¼

Pn�1
j¼r mj and ~m ¼ ðm1m2 � � �

mn�1Þ 2 Rn�1. Generalized order statistics based on some df
F are defined via the quantile transformation X*(r) =
F�1(U*(r)), r = 1,2, . . . ,n.

Particular choices of the parameters c1, . . . ,cn lead to

different models, e.g.,

(i) m-Generalized order statistics (m-gos): In this model we

have m1 = m2 = . . . = mn�1 = m and cn = k. Thus,
cr = k+ (n � r)(m+ 1), r= 1, . . . ,n � 1. Many impor-
tant practical models of m-gos are included such as

order statistics, order statistics with non-integer sample
size, upper record values, sequential order statistics.

(ii) Ordinary order statistics: In this model we have cn = 1

and cr = n � r + 1, r = 1, . . . ,n � 1, i.e., k = 1,
mi = 0, i = 1, . . . ,n � 1. This model can be defined clas-
sically, if we arrange the rvs X1, X2, . . . ,Xn in order of
magnitude, and then written as X1:n 6 X2:n 6 . . . 6 Xn:n.

We call Xr:n the rth order statistic. The subject of
order statistics deals with the properties and applications
of these ordered rvs and of functions involving

them.
(iii) Record values: In this model we have mi = �1,

i= 1, . . . ,n � 1 and k= 1. Classically, we can define

this model by supposing Zn = max(X1,X2, . . . ,Xn), for
n P 1. Then, we say that Xj is an upper record value
of {Xn,n P 1}, if Zj > Zj�1, j > 1. By definition, X1 is
an upper record value. Record values are found in many

situations of daily life as well as in many statistical appli-
cations. Often we are interested in observing new records
and in recording them, e.g., Olympic records or world

records in sports.
(iv) Sequential order statistics: In this model we have

cn = an, cr = (n � r+ 1)ar, r= 1, . . . ,n � 1. Classi-

cally, this model is defined, if we let the rth order statistic
be observed as the rth failure in some life-length test.
Then we can define the sequential order statistics as

the model in which the life-length distribution of the
remaining components in the system may change after
each failure of the components.

Burkschat et al. [4] have introduced the concept of dual
generalized order statistics (dgos) to enable a common
approach to descendingly ordered rvs like reversed order

statistics and lower record values.

Definition 3. The uniform dgos U�dðrÞ � Udðr; n; k; ~mÞ, r ¼
1; 2; . . . ; n, are defined by their density function
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fU
�
d
ð1Þ;...;U�

d
ðnÞðu1; . . . ; unÞ ¼

Yn
j¼1

cj

 ! Yn�1
j¼1

u
cj�cjþ1�1
j

 !
ucn�1
n

on the cone fðu1; . . . ; unÞ : 1 P u1 P . . . P un > 0g � Rn. The
quantile transformation X�dðrÞ ¼ F�1d ðU�dðrÞÞ, r ¼ 1; 2; . . . ; n,
yields dgos based on arbitrary df Fd.

Cramer [5] and Burkschat et al. [4] have shown that the gos
and dgos, respectively, can be defined by the product of the

independent power function distributed rvs.

Definition 4. Let Bj, 1 6 j 6 n, be independent rvs with respec-
tive Beta distribution Beta(cj, 1), i.e., Bj follows a power func-

tion distribution with exponent cj. Then X*(r) and X�dðrÞ can be
defined, respectively by

X�ðrÞ � F�1 1�
Yr
j¼1

Bj

 !
; r ¼ 1; 2; . . . ; n;

and

X�dðrÞ � F�1d

Yr
j¼1

Bj

 !
; r ¼ 1; 2; . . . ; n:

From the above definition, we can easily see that the two rela-

tions X*(1) 6 X*(2) 6 . . . 6 X*(n) and X�dð1ÞP X�dð2ÞP . . . P
X�dðnÞ hold almost surely.
2.1. The maximal correlation for gos and dgos

In the classical ordinary order statistics, Terrel [11] proved
that, when the sample size n = 2, and if the order statistics
X1:2 and X2:2 have finite variances, then their correlation coef-

ficient satisfies the inequality

corrðX1:2; X2:2Þ 6
1

2
;

with equality if and only if F is uniformly distributed (this rela-

tion means that RðX1:2; X2:2Þ ¼ 1
2
¼ corrðFðX1:2Þ; FðX2:2ÞÞ).

Latter, Szekely and Móri [10] have shown that

corrðXr:n; Xs:nÞ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðn� sþ 1Þ
sðn� rþ 1Þ

s
; 1 6 r < s 6 n;

here it is supposed that var(Xr:n) and var(Xs:n) are finite and the
sample size can be arbitrary.

An interesting alternative proof of last relation is given by
Rohatgi and Szekeli [13]. Recently, Barakat [1] by using the
method of Rohatgi and Szekeli [13], the above result is

extended to a wide subclass of gos and dgos. Namely, for
any 1 6 r < s 6 n we consider the gos X*(r),X*(s) and the dgos
X�dðrÞ; X�dðsÞ, for which m1 = m2 = � � � ms�1 = m. The three
exhaustive and distinct cases m + 1 > 0, m + 1 = 0 and

m+ 1< 0 are considered. Clearly the m-gos and m-dgos,
where m1 = m2 = � � �= mn�1 = m are special cases of these
subclasses.

Theorem 1. ([1]). Let X*(1) 6 X*(2) 6 � � � 6 X*(n) and
X�dðnÞ 6 X�dðn� 1Þ 6 � � � 6 X�dð1Þ be gos and dgos based on
arbitrary continuous df’s F and Fd, respectively, such that for
any 1 6 r< s 6 n we have m1 = m2 = � � �= ms�1 = m.

Furthermore, let X*(r), X*(s),X�dðrÞ and X�dðsÞ have finite
variances. Then
RðX�ðrÞ; X�ðsÞÞ ¼ RðX�dðrÞ; X�dðsÞÞ ¼ qnðr; s; m; ~csÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AsðmÞ
ArðmÞ

� BrðmÞ � ArðmÞ
BsðmÞ � AsðmÞ

s
;

where

AlðmÞ ¼
Ql
j¼1

bj
1þbj

; m–� 1;

1; m ¼ �1;

8><
>:

BlðmÞ ¼

Ql
j¼1

bjþ1
bjþ2

; m–� 1;

1þ
Pl
j¼1

1
c2
j

; m ¼ �1;

8>>><
>>>:

bj ¼
cj

mþ1, with b1 ¼ c1
mþ1 < �2, if m + 1 < 0, and ~cs ¼

ðc1c2 � � � csÞ. Moreover, the correlation coefficient, in the gos

and the dgos cases, coincides with the maximal correlation only if

FðxÞ ¼
F1ðxÞ ¼ 1� ð1� xÞ

1
mþ1; 0 < x < 1; if mþ 1 > 0;

F2ðxÞ ¼ 1� e�x; 0 < x <1; if m ¼ �1;
F3ðxÞ ¼ 1� x

1
mþ1; 1 < x <1; if mþ 1 < 0;

8><
>:

and

FdðxÞ ¼
F1dðxÞ ¼ x

1
mþ1; 0 < x < 1; if mþ 1 > 0;

F2dðxÞ ¼ ex; �1 < x < 0; if m ¼ �1;

F3dðxÞ ¼ ð1� xÞ
1

mþ1; �1 < x < 0; if mþ 1 < 0:

8>><
>>:

Corollary 1. Let lr=s
i ðxsÞ ¼ EðX�i ðrÞ=X�i ðsÞ ¼ xsÞ be the regres-

sion curve of X�i ðrÞ given X�i ðsÞ, where X�i ðrÞ and X�i ðsÞ are the
gos based on the df Fi(x), i = 1,2,3. Similarly, let

lr=s
id ðxsÞ ¼ EðX�idðrÞ=X�idðsÞ ¼ xsÞ be the regression curve of

X�idðrÞ given X�idðsÞ, where X�idðrÞ and X�idðsÞ are the dgos based
on the df Fid(x), i = 1,2,3. Then, we have the following

relations:

(1) lr=s
1d ðxsÞ � lr=s

1 ðxsÞ ¼ 1� r
s, for all 0< xs < 1, m + 1 > 0.

(2) ls=r
1 ðxrÞ � ls=r

1d ðxrÞ ¼ ðs�rÞðmþ1Þ
csþðs�rÞðmþ1Þ , for all 0< xr < 1,

m + 1 > 0.
(3) lr=s

2 ðxsÞ þ lr=s
2d ð�xsÞ ¼ 0, for all 0 < xs <1, m = � 1.

(4) ls=r
2 ðxrÞ þ ls=r

2d ð�xrÞ ¼ 0, for all 0< xr <1, m = � 1.

(5) lr=s
3 ðxsÞ þ lr=s

3d ð�xsÞ ¼ 1� r
s, for all 1< xs <1,

m + 1 < 0.
(6) ls=r

3 ðxrÞ þ ls=r
3d ð�xrÞ ¼ ðs�rÞðmþ1Þ

csþðs�rÞðmþ1Þ , for all 1< xr <1,

m + 1 < 0.

The following two results are direct consequences of

Theorem 1.

Corollary 2. For any r< s, we have

qnðr; s; m; ~csÞ 6 min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
AsðmÞ
ArðmÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrðmÞ � ArðmÞ
BsðmÞ � AsðmÞ

s !
:

Moreover, the asymptotic independence between the gos X�r:n and

X�s:n occurs if, and only if, at least one of the relations AsðmÞ
ArðmÞ ! 0

and BrðmÞ�ArðmÞ
BsðmÞ�AsðmÞ ! 0 holds.
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Corollary 3. For any r „ sand any n, we have X�r:n and X�s:n are

independent if, and only if, X�d;r:n and X�d;s:n are independent.
3. Discussion and applications

In this section, we discuss the maximal correlation and its appli-

cations for some important models of ascendingly ordered rvs.
3.1. The ordinary order statistics model

For this model, we have

qnðr; s; m; ~csÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðn� sþ 1Þ
sðn� rþ 1Þ

s
:

Therefore, any two order statistics Xr:n and Xs:n, with non-

decreasing ranks r and s, with respect to n, are asymptotically

independent if, and only if, min r
s
; n�sþ1

n�rþ1

� �
! 0.

We can note that, as the sample size increases to infinity,
any order statistic Xr:n can belong to one and only one of

the following types:

	 Lower extreme, where r is fixed r
n! 0
� �

.

	 Lower intermediate, where min(r,n) fi1 and r
n! 0.

	 Central, where min(r,n) fi1 and r
n! k 2 ð0; 1Þ.

	 Upper intermediate, where r = n � r0 + 1, r0 fi1 and
r
n! 1.

	 Upper extreme, where r= n � r0 + 1, r0 is fixed and r
n! 1.

By using Theorem 1, we can state the following theorem

which is concerning with the asymptotic interrelation between
the above types of order statistics.

Theorem 2. Let XE
r:n; X

E
r:n; X

I
r:n; X

I
r:n and XC

r:n be the rth lower
extreme, upper extreme, lower intermediate, upper intermediate

and central order statistics, respectively. Then

(1) the rvs X E
r1 :n; X E

r2 :n; X I
r3 :n; X I

r4 :n, and X C
r5 :n are asymptoti-

cally mutually independent, for all 1 6 r1,r2, . . . ,r5 6 n,

(2) the components of each pair ðX E
r:n; X E

s:nÞ, ðX C
r:n; X C

s:nÞ and
ðX E

r:n; X E
s:nÞ are asymptotically dependent, for all 1 6 r<

s 6 n,
(3) the components of each pair ðX I

r:n; X I
s:nÞ and ðX I

r:n; X I
s:nÞ

are asymptotically independent if, and only if,

min r
s ;

n�sþ1
n�rþ1

� �
! 0.

The following consequence studies the rate of convergence to

asymptotic independence between different order statistics.
Although, the proof of this consequence is simple, but to the
best of the author knowledge this result is new.

Theorem 3. Keeping the notations of Theorem 2, we get

(I) The convergence to the asymptotic independence of the
couple ðX E

r1 :n; X E
r5 :nÞ is faster than the couple ðX I

r2 :n; X I
r4 :nÞ.

(II) The convergence to the asymptotic independence of the
couple ðX E

r1 :n; X C
r3 :nÞ is faster than the couples

ðX E
r1 :n; X I

r2 :nÞ and ðX I
r2 :n; X C

r3 :nÞ.
(III) The convergence to the asymptotic independence of the

couple ðX I
r2 :n; X C

r3 :nÞ is faster than the couple ðX E
r1 :n;

X I
r2 :nÞ, if and only if r2 ¼ 
ð

ffiffiffi
n
p Þ, as n fi1.
Exmaple 1 (The determination of a suitable type of a given
order statistic). As an interesting application of Theorem 3,

we consider a requirement of a certain statistical problem
which stipulates the asymptotic independence between two
order statistics X10:100 and X50:100. For performing a goodness

of fit test to identify the suitable limit distribution type of each
of the statistics X10:100 and X50:100, we first have to choose their
types (extreme or intermediate or central type). The type of the
order statistic X50:100 can reasonably regarded as a central

type, i.e., X50:100 ¼ XC
r3 :n. However, on one hand side, the type

of the order statistic X10:100 may be regarded as extreme type,
i.e., X10:100 ¼ XE

r1 :n; r1 ¼ 10; n ¼ 100, but on the other side, it

may be regarded as lower intermediate type X10:100 ¼ XI
r2 :n;

r2 ¼ ½
ffiffiffiffiffiffiffiffi
100
p

�; n ¼ 100. In view of our requirement, Theorem
3, part (II), enables us to decide that the choice of extreme type

for the order statistic X10:100 is better than the choice of lower
intermediate type.
3.2. The record values model

For this model, it is easy to see that

qnðr; s; m; ~csÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

� �s�r

�
1� 3

4

� �r
1� 3

4

� �s
 !vuut : ð1Þ

Therefore, the asymptotic dependence between any two upper
records R�r and R�s , as well as any two lower records Ls and Lr,

depends on the asymptotic behavior of the difference s � r.

Since, the relation min r
s
; n�sþ1

n�rþ1

� �
! 0 implies the relation

s � r fi1, we get the following interesting fact: The asymp-
totic independence between any two order statistics Xr:n and
Xs:n implies the asymptotic independence between the upper

records R�r and R�s ; as well as the lower records Ls and Lr.

3.3. Type II right censored samples

Let the censoring scheme be R1 = R2 = . . . = RM�1 = 0,
RM = n �M. Therefore, we get bj = cj = 2n+ M � j + 1.
Thus, if r< s, we get, after simple calculations,

qnðr; s; m; ~csÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2n�M� sþ 1Þ
sð2n�M� rþ 1Þ

s
:

Therefore, if M is constant with respect to n then X*(r) and
X*(s) as well as X�dðrÞ and X�dðsÞ are dependent for all r, s and

n. On the other hand, by assuming that M= M(n) fi1 and
M
n
! 0, as n fi1, we can easily deduce that Theorem 2, which

is concerned with the asymptotic dependence between ordinary

order statistics, will hold for this model.
An open problem: In [2] it is proved that qnðr; s; 0; ~csÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Asð0Þ
Arð0Þ �

Brð0Þ�Arð0Þ
Bsð0Þ�Asð0Þ

q
is the correlation coefficient between any

two uniform gos U*(r) and U*(s) or any two uniform dgos
U�dðrÞ and U�dðsÞ, where no any restriction is imposed on the

parameters k,m1,m2, . . . ,mn�1. Moreover, in the same paper
it is proved that the measure r�r;s:n ¼ 12qnðr; s; 0; ~csÞ provides
a non-parametric criterion of asymptotically independence
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between the elements of gos and between the elements of dgos

in general setting (where no any restriction is imposed on the
parameters k,m1,m2, . . . ,mn�1). This measure is based on a
non-parametric criterion of independence derived from a
generalized version of the Schweizer–Wolff non-parametric

measure of dependence (see [3]). The derivation of the maximal
correlation of gos and dgos in this general setting is still
unsolved problem.
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