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Abstract We will give an overview on how to embed the Standard Model (SM), based on

SU(3) · SU(2) · U(1), within larger groups. We will review the different chains one follows when

spontaneously breaking SO(10) down to the SM. Finally, We shall discuss the question of non-uni-

versal gaugino masses in supersymmetric SO(10) theories.
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1. Introduction

Many systems studied in physics show some form of symme-

try. Quantum mechanics, for instance, showed that the elemen-
tary systems that matter is made of, such as electrons and
protons, are truly identical, not just very similar, so that sym-

metry in their arrangement is exact, not approximate as in the
macroscopic world. Elementary particles were observed to re-
flect symmetry properties in more esoteric spaces. In all these

cases, symmetry can be expressed by certain operations on
the systems concerned, and the mathematical language which
ce Mathematical Conference,

du.sy

tical Society. Production and

tian Mathematical Society.

lsevier

r CC BY-NC-ND license.
expresses these properties is that of Group Theory. More spe-
cifically, physics uses that part of Group Theory known as the
theory of representations, in which matrices acting on the

members of a vector space is the central theme. A representa-
tion D would be defined to be any mapping of the group G
onto a set of linear operators, which would transform the

group identity to the identity operator and would map the
group multiplication to the natural multiplication in the linear
space on which the operators act.

Representations of finite groups proved to be very helpful
in, say, the study of crystals and atomic spectra [1]. However,
continuous Lie groups and their representations are the ones
one studies in order to treat a wide variety of problems in par-

ticle physics and unification of forces [2]. We shall give a brief
review on the Standard Model (SM), the successful theory
describing the world to a very good precision [3]. However,

there are some tiny circumstances, like the current experiments
in the Large Hadron Collider (LHC), where effects of larger
models englobing the SM such as supersymmetry (SUSY) [4]

or Grand Unified Theories (GUT) [5], might reveal their ef-
fects. For this, we shall also give a brief review of some SUSY
GUT models, in particular the phenomenologically interesting
model of susy-SO(10), and treat one specific problem in this re-

gard, that of the ‘gaugino’ masses.
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2. The Standard Model

The SM group is

GSM ¼ Uð1Þ � SUð2Þ � SUð3Þ ð1Þ

where the factor U(1) · SU(2) corresponds to the electroweak

force and represents a unification of electromagnetism and the
weak force. In fact, it is the spontaneous symmetry breaking
(SSB) which makes the electromagnetic and the weak forces

look different, whereas at high energies they are the same.
As to the factor SU(3), it corresponds to the strong force,
which binds quarks together, and no symmetry breaking here.

As to the particle content of the SM, it is shown in Table 1.
Here, we have written a bunch of GSM = U(1) · SU(2) ·

SU(3) irreducible representations (irreps) as U � V � W,
where U is a U(1) irrep CY, where Y 2 1=3Z and the underlying

vector space is just C whereas the action is given by:
a:z ¼ a3Yz : a 2 Uð1Þ; z 2 C. As to the other factors: V is an
SU(2) irrep, either C or C2, and W is an SU(3) irrep, either

C or C3.
Physicists use these irreps to classify the particles as follows.

The number Y in CY is called the ‘hypercharge’, and

C2 ¼ hu; di, u and d are called ‘isospin up’ and ‘isospin down’,
whereas for the ‘color space’: C3 ¼ hr; g; bi, with r, g and b
called ‘red’, ‘green’ and ‘blue’ colors. Finally, The normaliza-
tion of Y is related to the ‘electric charge’ Q by: Q ¼ Y

2
þ I3

where I3 is the ‘diagonal’ generator of SU(2). For example,
we say the red left-handed up quark is the hypercharge 1/3 ,

isospin up, red particle and we write urL ¼ 1� u� r 2 C1
3
�

C2 � C3, whereas to say that the right-handed electron is the
hypercharge �2, isospin singlet which is colorless, we write

e�R ¼ 1� 1� 1 2 C�2 � C� C.
Now, to define the representation of the SM, we take the

direct sum of all the above irreps, defining the reducible

representation,

F ¼ C�1 � C2 � C� � � � � C�2
3
� C� C3

which we call the ‘fermions’. We also have the ‘antifermions’,
F*, which is just the dual of F. Direct summing these two
representations, we get the Standard Model representation:

VSM ¼ F� F�
3. Grand Unified Theories: GUTs

The SM achieves two properties in that the particles are basis
vectors in a representation V of a Lie group GSM, and that the
classification of particles means the decomposition of the rep-

resentation into irreps. However, the SM is ‘complicated’ and
needs to be simplified. In fact, the mathematical product of
Table 1 Particle content of the SM.

Name Symbol GSM irrep

Left–handed doublets mL
eL

� �
C�1 � C2 � C

Left-handed quarks urL
drL

ug
L

dg
L

ub
L

dbL

� � C1
3
� C2 � C3

Right-handed neutrino mR C0 � C� C

Right-handed electron e�R C�2 � C� C

Right-handed up quarks urR ugR ubR C4
3
� C� C3

Right-handed down quarks drR dgR dbR C�2
3
� C� C3
groups: GSM = U(1) · SU(2) · SU(3) and VSM ¼ C�1 � C2�
C� . . .� C2

3
� C� C3� is complicated to deal with. Moreover,

we need to explain other patterns, such as the fact that we have
dim VSM = 32 = 25, or the reason of the symmetry between
quarks and leptons, and also the asymmetry between left and

right.
To remedy these needs, the strategy of GUT is the follow-

ing. If V is a representation of H and GSM � H, then V is also a

representation of GSM, and V may break apart into more
GSM-irreps than H-irreps. In its turn H might be a subgroup
of one larger group G: H W G, and one seeks a ‘simple’ group

G to represent the GUT group.
However, the ‘coupling constants’ corresponding to the dif-

ferent groups of the SM are energy-dependent [6]:

dai

dq2
¼ bia

2
i þOða3

i Þ ð2Þ

where q2 denotes the energy scale at which we measure ai and
the ‘running beta function coefficients’ b1,b2,b3 are computed

by group theory consideration. So, if unification is correct then
there should be a value at which the running coupling
constants get the same value

aiðM2
XÞ ¼ aGðM2

XÞ ð3Þ

MX is of the order of 1015�17 GeV.
Some common examples of ‘GUTs’ are:

� The Ordinary SU(5)G�G, which was due to Georgi and
Glashow in the early seventies [7], can be described as:
‘‘two isospins + three colors = five things = C5 ¼ ðu; d;
r; g; bÞ’’. In this model, we have one family of fermions

which can be accommodated in an SU(5) reducible repre-
sentation 5* + 10. Another model based on SU(5) is the
‘flipped’ SU(5)0 · U(1)X, due to De Rujula, Georgi and Gla-

show in the early eighties [8], and where SU(5)0 is different
from SU(5)G�G, due to the fact that there are two ways to
embed the electric charge generator in SU(5) · U(1):

SU(3)C · SU(2)L · U(1)Z W SU(5)0. The weak hypercharge
here Y must be a linear combination of Z and X, where Z
is defined to be the generator of SU(5)0 which commutes
with the generators of SU(3)C · SU(2)L.

� The other common model is the Pati–Salam model, due to
Pati and Salam in the early seventies [9]: GPS = SU(2) ·
SU(2) · SU(4) . This model unifies the C3 � C representa-

tion of SU(3) into the irrep C4 of SU(4): V PS ¼ C2 � C�
C4 � C� C2 � C4 � dual. This creates explicit symmetry
between quarks and leptons, so that one can see ‘‘the lepton

number as the fourth color’’. It also unifies the C2 � C� C

representations of SU(2) into the representation
C2 � C� C� C2 of SU(2) · SU(2) which treats left and

right more symmetrically.
Table 2 Particle content in Pati–Salam model

Name Symbol SU(2) · SU(2) ·
SU(4) irrep

Left-handed fermions mL urL ugL ubL
eL drL dgL dbL

� �
C2 � C� C4

Right-handed fermions
mR urR ugR ubR
e�R drR dgR dbR

� �
C� C2 � C4
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We summarize the features of the Pati–Salam model in

Table 2.

4. Susy-SU(10)

There are many advantages which can be achieved when one
builds a GUT based on the group SU(10) [10]. First, the

embedding of left–right symmetry can be done in this rank-5
simple group SU(10) with an irrep 16-dim: the ‘spinorial repre-
sentation’ whose decomposition under SU(3) · SU(2) · U(1)
shows the correct quantum numbers to describe one family

of fermions where also the right-handed neutrino is present.
Second, SU(10) is the minimal left–right symmetric GUT that
‘gauges’ the B-L symmetry and where the gauge interactions

conserve parity, thus making parity a part of a continuous
symmetry.

Moreover, the model can be rich enough, since there are

several breaking chains one can follow from G= SO(10)
down to the SM:

G!U1
H!U2

SM ð4Þ

Also, for the ‘SSB-Higgs Mechanism’ to work for G1!
U
G2, the

branching rule of U under this decomposition should contain a
‘singlet component’, to take a vacuum expectation value (vev)

upon the breaking. For example, the irrep 54 can break SU(10)
into G422 since we have the branching rule

54 ¼SOð10Þ	G422ð1; 1; 1Þ þ ð3; 3; 1Þ þ ð1; 1; 20Þ þ ð2; 2; 6Þ ð5Þ

Another kind of symmetry can be imposed on the model which

is SUSY [4]. The essential motivation to have SUSY in the
particle physics model is what is called the ‘Hierarchy
Problem’. The existence of two scales, the electroweak scale
(MW 100 GeV) and the GUT scale (MX 1015 GeV) so different

creates a fundamental problem: How is it possible to keep
these two scales incommunicado ? This problem arises when-
ever ‘fundamental scalars’ are present. Their mass gets qua-

dratically divergent contribution when 1-loop radiative
corrections are taken into account. This happens because there
is no symmetry able to keep scalars (virtually) massless in con-

trast to ‘gauge’ or ‘chiral’ symmetries which keep bosons or
fermions massless.

Here, history gives us a precedent lesson: The electron self-

energy in classical electromagnetism goes like e2/a(a fi 0) i.e. it
is linearly divergent. In quantum theory, fluctuations of the
electromagnetic fields (in the single electron theory) generate
a quadratic divergence. If these divergences are not canceled,

one would expect that QED should break down at an energy
of order me/a far below the Planck scale (a severe hierarchy
problem). However, the linear and quadratic divergences will

cancel exactly if one makes a bold hypothesis consisting of
the existence of the positron, i.e. we ‘double’ the particle
spectrum and the divergence problem is solved. One can repeat

this lesson for the SM, in that we take the SM particle content
and double the particle spectrum. Then, we introduce a new
symmetry (SUSY) that relates fermions to bosons: for every
fermion (gauge boson) there is a superpartner boson (fermion),

called sfermion (gaugino), of equal mass. Now we compute the
self-energy of an elementary scalar and find that, since SUSY
relates it to the self energy of a fermion which is only logarith-

mically divergent, the quadratic divergences cancel! However,
no superpartners have been seen which implies that susy, if it

exists in nature, must be a broken symmetry.

5. Susy SU(10) non-universality

As we saw, GUTs are among the most promising models for
physics beyond the SM. Moreover, SUSY is necessary to make
the huge hierarchy between the GUT scale and the electroweak

scale stable under radiative corrections. The apparent unifica-
tion of the measured gauge couplings within the Minimal
Supersymmetric extension of the Standard Model (MSSM)

[4] at scale MGUT 
 2 · 1016 GeV is considered as an experi-
mental evidence for SUSY GUT.

Universal boundary conditions for gaugino masses, as well

as other soft terms, at the high scale (the unification scale or
Plank scale) are adopted in the mSUGRA or CMSSM [11].
If the discrepancy between the SM and the experimental

determinations of (g-2) [12] is confirmed at the 3-r level, this
could be interpreted as strong evidence against the CMSSM.
However, these universal boundary conditions adopted in
the mSUGRA are simple assumptions about the nature of

high-scale physics and may remove some interesting degrees
of freedom.

Non-universal gaugino masses may arise in supergravity

models in which a non-minimal gauge field kinetic term is
induced by the SUSY-breaking vev of a chiral superfield that
is charged under the GUT group [13]

L 	
Z

d2hfabðUÞWaWb þ h:c: 	 < FU>ab

M
kakb

where fAB ¼ f0ðUsÞdAB þ
P

nfnðUsÞ
Un
AB

M
þ � � � with M is a mass

parameter, Us and Un are the singlet and non-singlet chiral

superfields, respectively, the ka,b are the gaugino fields and
the FU is the auxiliary field component of U.

In conventional models of supergravity breaking, the

assumption that only the singlet field FUs
gets a vev is made

so that one obtains universal gauge masses. However, in
principle, the chiral superfield U which communicates SUSY
breaking to the gaugino fields can lie in any representation

found in the symmetric product of two adjoints. As we said
before, there can be more than one breaking chain from a
GUT group G down to the SM group if G is a large symmetry

group, like SU(10). Indeed, for SU(10), we have the
decomposition:

ð45� 45Þsymmetric ¼ 1þ 54þ 210þ 770

where only 1 yields universal masses.
Here we make two basic assumptions: First, we omit the

‘possible’ situation of a linear combination of the above irreps

(i.e. Dominant contribution to the gaugino masses coming
from one of the non-singlet F-components). Second, we as-
sume that SU(10) gauge symmetry group is broken down at

GUT scaleMGUT into an intermediate groupH which, in turn,
breaks down to the SM at some intermediate scale MHB

SOð10Þ !@MGUT
H !@MHB

SM � SUð3Þ � SUð2Þ �Uð1Þ:

In this regard, the successful couplings unification in the

MSSM favors a single GUT scale, in that the MHB should
not be too far from MGUT, and previous studies [14–17] as-
sume no intermediate scales between MGUT and MEW for

simplicity.
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Nonetheless, recent studies [18] show that in GUTs with

large number of fields, renormalization effects significantly
modify the scale at which quantum gravity becomes strong
and this in turn can modify the boundary conditions for cou-
pling unification. Any one of three options – threshold correc-

tions due to the mass spectrum near the unification scale,
gravity induced non-renormalizable operators near the Plank
scale, or presence of additional light Higgs multiplets – can

permit unification with the intermediate scale lower [19]. Cur-
rent work [20] investigates the intermediate scale dependence
of non-universal gaugino masses in supersymmetric SU(10).

5.1. Calculation details for one specific chain

Let us take the chain SOð10Þ!54 H ¼ G422!
16
SM �

SUð3Þ � SUð2Þ �Uð1Þ. The 54 irrep can be represented as a
traceless and symmetric 10 · 10 matrix which takes the vev:

< 54 >¼ v Diagð2; 2; 2; 2; 2; 2;�3;�3;�3;�3Þ

with the indices 1, . . . 6 corresponding to SO(6) . SU(4)C
while those of 7, . . . 0 (0 means 10) correspond to SO(4) .
SU(2)L · SU(2)R. We then use a 16 irrep to break SU(4) into
the SM having the branching rule:

16 ¼SOð10Þ	SMð3;2Þ1=3þð3;1Þ2=3þð�3;1Þ�4=3þð1;2Þ�1þð1;1Þ2þð1;1Þ0;

When the neutral component (1,1)0 of 16 develops a vev
then G422 will be broken to SM. The gauge supermultiplets
45 of SU(10) would also be decomposed under the two

breakings:

Að45Þ ¼ Að15; 1; 1Þ þ Að1; 3; 1Þ þ Að1; 1; 3Þ þ Að6; 2; 2Þ

Under SM we have

Að15; 1; 1Þ ¼ Að8; 1Þ0 þ Að3; 1Þ4=3 þ Að�3; 1Þ�4=3 þ Að1; 1Þ0;
Að1; 1; 3Þ ¼ Að1; 3Þ0;
Að1; 3; 1Þ ¼ Að1; 1Þ2 þ Að1; 1Þ�2 þ Að1; 1Þ0:

One needs to identify the weak hypercharge Y generator as a
linear combination of the (1,1)0 parts of the generators 15 of

SU(4) and 3 of SU(2)R.
For this we write

SU4c � SU2R !
ð4;2;1Þ

SU3c �U1B�L � SU2R ! SU3c �U1Y

16 ¼SOð10Þ	G422ð4; 2; 1Þ þ ð�4; 2; 1Þ;

where

DlU ¼ @lU� ig4
TbAb

2
/a � ig2

s:B

2
/s

with Tb (s), b= 1, . . ., 15; a = 1, . . ., 4; s= 1,2, are the general-

ized Gellman (Pauli) matrices, and Æ/a æ = vda4,Æ/sæ = vds1.

Concentrating on the mixing of U(1) � SU(4)C and the
other U(1)0 � SU(2)R, the corresponding A15,B3 components
will mix and we obtain the neutral gauge boson mass terms:

hDlUihDlUiþ ¼
v2

4

ffiffiffi
3

2

r
g4A

15 � gRB
3

 !2

This quadratic form in B3,A15 has a zero eigenvalue whose
corresponding eigenstate is identified as the massless U(1)Y
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gauge boson E, whereas the orthogonal combination F is a

massive vector boson:

F ¼ cos hA15 � sin hB3

E ¼ sin hA15 þ cos hB3

with : cos h ¼

ffiffi
3
2

q
g4

c
; sin h ¼ gR

c
: c2 ¼ g2R þ

3

2
g24

It is convenient to define [5] the 4 · 4 (2 · 2) matrices

A ¼ TbAbffiffiffi
2
p with Aa

b � ðAÞab; B ¼ srBrffiffiffi
2
p with

Br
s � ðBÞrs ) A4

4 ¼ �
ffiffiffi
3
p

2
A15; B1

1 ¼
B3ffiffiffi
2
p

and denote the gaugino fields of the SU(4)C (SU(2)L,R) group
by ka

b (kr
sL;R), with a,b= 1, . . ., 4 and ka

a ¼ 0 (r, s= 1,2 with

kr
r ¼ 0), i.e. ka

b lie in the same supermultiplet as Aa
b.

We thus can determine the E-coefficient of the expressions
of A4

4 and B1
1, and by SUSY we have:

k4
4 ¼ �

ffiffiffi
3
p

2
ðsin hkþ cos hekÞ

k1
1R ¼

1ffiffiffi
2
p ðcos h� sin hekÞ

where k is the gaugino field lying in the same supermultiplet as
the U(1)Y gauge field E, whereas e is the superpartner of the

massive vector boson F.
The final step consists of writing the part of the Lagrangian

containing the gaugino mass term:

Lmass ¼M4ðka
bÞ

2 þM2Rðkr
sÞ

2
R þM2Lðkr

sÞ
2
L ð6Þ

The first stage of breaking from G= SO(10) to H = G422

gives:

SO10
M
! SU2L
�3
2M¼M2L

� SU2R
�3
2M¼M2R

� SU4
M¼M4

In SU4 indices (a,b = 1, . . ., 4, a, *b = 1, . . ., 3), we have:

M4k
a
bk

b
a ¼M4k

a
bk

b
a þM4ðk4

4Þ
2 þ � � �

One needs to single out the ‘SU(3)-traceless’ gaugino field

k̂a
b ¼ ka

b � 1
3
da

bk
c
c and thus we have M4k

a
bk

b
a ¼M4k̂a

bk̂
b
aþ

4
3
M4ðk4

4Þ
2 þ � � �. Similarly, in SU2R indices, we have:

M2k
r
sk

s
r ¼ 2M2ðk1

1Þ
2 þ . . ..

Thus, one can write finally:

Lmass ¼M4ðk̂a
bÞ

2 þ 4

3
M4ð

3

2

g22
c2
Þk2 þ 2M2Rð

3

2

g24
c2
Þk2 þM2Lðkr

sÞ
2

and we get at MHB the gaugino masses in the ratio:

M2ðtÞ
M3ðtÞ

¼ r2ðt; t0Þ
r4ðt; t0Þ

ð� 3

2
Þ; M1ðtÞ

M3ðtÞ
¼
ðg22ðtÞ � 9

4
g24ðtÞÞ

ðg22ðtÞ þ 3
2
g24ðtÞÞ

where riðt; t0Þ ¼ aiðtÞ
aiðt0Þ ; t ¼ ln

M2
GUT

Q2 with Q2 ¼M2
HB and t0 = 0

corresponding to Q2 ¼M2
GUT. When (MHB =MGUT) we get

Ma (a = 1,2,3) in the ratio � 1
2

: � 3
2

: 1.
5.2. Results

We summarize in Table 3 the results of the gaugino masses
corresponding to the several breaking chains from SU(10)

down to the SM:
Numerically, and using the renormalization group equa-

tions for the running of the coupling constants, we find a sig-

nificant change in the case where the two breaking scales are
distant apart from where they are equal. Although some model
complexifications might affect the coupling constants evolu-
tion, and consequently the values of the derived gaugino mass

ratios, however the above conclusion concerning the signifi-
cant influence of the existence of multi-stages in the breaking
chain would remain unchanged. The derived mass ratios would

be reflected in the electroweak energy scale measurements due
to take place in the near future experiments, like the LHC,
with interesting phenomenological consequences.
6. Summary and conclusion

Especially with the advent of the LHC, many ideas of ‘new
physics’ can be tested, one of which is SUSY GUTs. The con-
cept of ‘Symmetry’ has provided us with a very strong tool

guiding us to understand the physical world, and the mathe-
matics of symmetry is given by Group Theory. GUT, based
on continuous symmetry groups, allow to interpret many
experimental data, particularly that they have many new

signatures (like non-universality of gaugino masses, of which
we presented the detailed results for the GUT group being
equal to SU(10)) which can be tested in the near-future

experiments.
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