
Journal of the Egyptian Mathematical Society (2011) 19, 45–51
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Introduction to some conjectures for spectral

minimal partitions q
B. Helffer
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Available online 18 November 2011
q

an

H

E-

11

ho

Pe

do
KEYWORDS

Minimal partitions;

Nodal sets;

Courant theorem
This work has started in col

d has been continued with

offmann-Ostenhof, S. Terrac

mail address: Bernard.Helffe

10-256X ª 2011 Egyptian M

sting by Elsevier B.V.

er review under responsibilit

i:10.1016/j.joems.2011.09.003

Production and h

Open a
laboratio

the coau

ini, and G

r@math.

athema

y of Egyp

osting by E

ccess unde
Abstract Given a bounded open set X in Rn (or in a Riemannian manifold) and a partition of X by

k open sets Dj, we consider the quantity maxjk(Dj) where k(Dj) is the ground state energy of the

Dirichlet realization of the Laplacian in Dj. If we denote by LkðXÞ the infimum over all the k-par-

titions of maxjk(Dj), a minimal k-partition is then a partition which realizes the infimum. When

k = 2, we find the two nodal domains of a second eigenfunction, but the analysis of higher k’s is

non trivial and quite interesting. In this paper, which is complementary of the survey [20], we con-

sider the two-dimensional case and present the properties of minimal spectral partitions, illustrate

the difficulties by considering simple cases like the disk, the rectangle or the sphere (k = 3). We will

present also the main conjectures in this rather new subject.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.
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1. Introduction

We consider mainly the Dirichlet Laplacian in a bounded
domain X � R2. We would like to analyze the relations be-
tween the nodal domains of the eigenfunctions of this Lapla-
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cian and the partitions of X by k open sets Di which are
minimal in the sense that the maximum over the Di’s of

the ground state energy1 of the Dirichlet realization of the
Laplacian H(Di) in Di is minimal. In the case of a Riemann-
ian compact manifold, the natural extension is to consider

the Laplace Beltrami operator. We denote by kj(X) the
increasing sequence of its eigenvalues and by uj some associ-
ated orthonormal basis of eigenfunctions. The groundstate u1
can be chosen to be strictly positive in X, but the other
eigenfunctions uk must have zerosets. For any u 2 C0

0ðXÞ,
we define the zero set as

NðuÞ ¼ fx 2 X juðxÞ ¼ 0g; ð1Þ

and call the components of XnN(u) the nodal domains of u.
The number of nodal domains of u is called l(u). These

l(u) nodal domains define a k-partition of X, with
k = l(u).
1 The ground state energy is the smallest eigenvalue.
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Let us start by recalling two very classical theorems in
spectral theory. The first one is called the Courant nodal
theorem.

Theorem 1.1 (Courant). Let k P 1, kk be the k-th eigenvalue
and E(kk) the eigenspace of H(X) associated to kk. Then,
"u 2 E(kk)n{0},l (u) 6 k.

If in dimension 1 the Sturm-Liouville theory says that we
have always equality in the previous theorem (this is what

we will call later a Courant-sharp situation), the second theo-
rem due to Pleijel in 1956 says that this cannot be true when
the dimension (here we consider the 2D-case) is larger than

one.

Theorem 1.2 (Pleijel). There exists k0 such that if k P k0,
then

lðuÞ < k; 8u 2 EðkkÞ n f0g:

The proof involves notions which will play an important
role for the partitions.

Proposition 1.3. For any eigenvalue k of H(X) corresponding to

an eigenfunction u with k nodal domains we have

k P k
pj2

jXj : ð2Þ

where ŒXŒ denotes the area of X and j is the smallest positive

zero of the Bessel function J0.

The proof is actually a side result of the proof by Pleijel of
his theorem [33]. The main point is the Faber-Krahn
Inequality:

kðxÞP pj2

jxj : ð3Þ

If u is an eigenfunction of H attached to the eigenvalue k
with k nodal sets then we have for any of these nodal

domains Di:

jDijk P pj2: ð4Þ

Summing over i, we get (2).

Let us now recall how the proof of the Pleijel theorem is
achieved. The Weyl theory says that

kn �
4pn
jXj ; ð5Þ

as n fi +1. If n is large, using (5) and (2), and having in
mind the value of j � 2.404, we see that un cannot have n nodal
domains.

2. Minimal partitions

We first introduce for k 2 N (k P 1), the notion of k-partition.
We will call k-partition of X a family D ¼ fDigki¼1 of mutually

disjoint sets in X. We call it open if the Di are open sets of X,
connected if the Di are connected. We denote by Ok(X) the set
of open connected partitions of X. We now introduce the no-

tion of spectral minimal partition sequence.
Definition 2.1. For any integer k P 1, and for D in Ok ðXÞ, we
introduce

KðDÞ ¼ maxikðDiÞ: ð6Þ

Then we define

LkðXÞ ¼ inf
D2Ok

KðDÞ; ð7Þ

and call D 2 Ok a minimal k-partition if Lk ¼ KðDÞ.

If k= 2, it is rather well known (see [22] or [17]) that L2 ¼ k2

and that the associated minimal 2-partition is a nodal parti-
tion, i.e. a partition whose elements are the nodal domains
of some eigenfunction corresponding to k2.

A partition D ¼ fDigki¼1 of X in Ok is called strong if

Intð[iDiÞ n @X ¼ X: ð8Þ

Attached to a strong partition, we associate a closed set in X,
which is called the boundary set of the partition:

NðDÞ ¼ [i @Di \ Xð Þ: ð9Þ

NðDÞ plays the role of the nodal set (in the case of a nodal

partition).
This leads us to introduce the set RðXÞ of regular partitions

(or nodal like) through the properties of its associated bound-

ary set N, which should satisfy:

Definition 2.2.

(i) Except finitely many distinct xi 2 X \ N in the neighbor-
hood of which N is the union of mi = m(xi) smooth curves
(mi P 3) with one end at xi, N is locally diffeomorphic to

a regular curve.
(ii) oX \ N consists of a (possibly empty) finite set of points

zi. Moreover N is near zi the union of qi distinct smooth
half-curves which hit zi.

(iii) N has the equal angle meeting property.

The xi are called the critical points and define the set
X(N). Similarly we denote by Y(N) the set of the boundary
points zi. By equal angle meeting property, we mean that the

half curves cross with equal angle at each critical point of N
and also at the boundary together with the tangent to the
boundary.

We say that Di,Dj are neighbors or Di � Dj, if
Dij :¼ IntðDi [DjÞ n @X is connected. We associate with each
D a graph GðDÞ by associating to each Di a vertex and to

each pair Di � Dj an edge. We will say that the graph is
bipartite if it can be colored by two colors (two neighbors
having two different colors). We recall that the graph asso-
ciated with a collection of nodal domains of an eigenfunc-

tion is always bipartite.
Next are two examples of partitions. The left figure cor-

responds to a regular strong bipartite partition with associ-

ated graph and the right figure corresponds to a regular
strong bipartite partition with associated graph corresponds
to a regular strong nonbipartite partition with associated

graph.
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3. Basic properties of minimal partitions

It has been proved by Conti–Terracini–Verzini [15–17] and
Helffer–T. Hoffmann-Ostenhof–Terracini [25] that:

Theorem 3.1. For any k, there exists a minimal regular k-
partition. Moreover any minimal k-partition has a regular
representative.2

Other proofs of a somewhat weaker version of this state-
ment have been given by Bucur–Buttazzo–Henrot [12], Caffar-

elli–Lin [14].
A natural question is whether a minimal partition of X is a

nodal partition, i.e. the family of nodal domains of an eigen-
function of H(X). We have first the following converse theo-

rem [22,25]:

Theorem 3.2. If the graph of the minimal partition is bipartite
this is a nodal partition.

A natural question is now to determine how general is the
previous situation. Surprisingly this only occurs in the so called

Courant-sharp situation. We say that u is Courant-sharp if

u 2 EðkkÞ n f0g and lðuÞ ¼ k:

For any integer k P 1, we denote by Lk(X) the smallest eigen-
value of H(X), whose eigenspace contains an eigenfunction

with k nodal domains. We set Lk(X) =1, if there are no
eigenfunction with k nodal domains. In general, one can show,
that

kkðXÞ 6 LkðXÞ 6 LkðXÞ: ð10Þ

The last result gives the full picture of the equality cases.

Theorem 3.3. Suppose X � R2 is regular. If LkðXÞ ¼ LkðXÞ or
LkðXÞ ¼ kkðXÞ then

kkðXÞ ¼ LkðXÞ ¼ LkðXÞ:

In addition, one can find in E(kk)a Courant-sharp eigenfunction.
2 Modulo sets of capacity 0.
This answers a question in [13] (Section 7). Note that more
recently this result has been extended to the 3D-case in [27].

Generalization: p-minimal k-partitions

More generally we can consider (see in [25]) for
p 2 [1, +1]

KpðDÞ ¼ 1

k

X
i

kðDiÞp
 !1

p

; ð11Þ

and

Lk;pðXÞ ¼ inf
D2Ok

KpðDÞ: ð12Þ

The case when p = 1 appears in probability [13] and harmonic
analysis [5]. We write Lk;1ðXÞ ¼ LkðXÞ and recall the monoto-
nicity property

Lk;pðXÞ 6 Lk;qðXÞ if p 6 q: ð13Þ

The notion of p-minimal k-partition can be extended accord-
ingly, by minimizing KpðDÞ. Note that the inequalities can be

strict: one can take a disjoint union of two disks (possibly re-
lated by a thin channel). A natural question is to determine if

L2;1ðXÞ ¼ L2;1ðXÞ

This is indeed the case for the sphere [5]. We have proved re-
cently [24] (in collaboration with T. Hoffmann-Ostenhof) that
the inequality

L2;1ðXÞ < L2;1ðXÞ; ð14Þ

is ‘‘generically’’ satisfied. Moreover, we give in this article ex-
plicit examples (equilateral triangle) of convex domains for

which (14) holds. This answers (by the negative) some question
in [12].

Pleijel’s theorem revisited

Inequality (2) was giving LkðXÞP k pj2

k :We can actually get
the better inequality:

Lk;1ðXÞP k
pj2

k
: ð15Þ

We have indeed Lk;1ðXÞP 1
k
infB2Bk

P
i pj2=jDij
� �

, for any parti-
tion D of X. But observing that

P
jDij 6 jXj; the previous low-

er bound implies:
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Lk;1ðXÞP
pj2

kjXj infP
ki61

X
i

1

ki

¼ k
pj2

jXj

The infimum is indeed obtained for ki ¼ 1
k
, for all i.

4. Examples of k-minimal partitions for special domains

Using Theorem 3.3, it is now easier to analyze the situation for

the disk or for rectangles (at least in the irrational case), since
we have just to check for which eigenvalues one can find asso-
ciated Courant-sharp eigenfunctions.

The case k = 3.

In the case of the square, it is not too difficult to see that L3

is strictly less than k3. We observe indeed that there is no eigen-

function corresponding to k2 = k3 with three nodal domains
and k4 > k3. Restricting to the half-rectangle and assuming
that there is a minimal partition which is symmetric with one
of the symmetry axes of the square perpendicular to two oppo-

site sides, one is reduced to analyze a family of Dirichlet–Neu-
mann problems. Numerical computations performed by V.
Bonnaillie-Noël and G. Vial [9] lead to a natural candidate

for a symmetric minimal partition. see (Fig. 1). Here we de-
scribe some results [23] on the possible ‘‘topological’’ types
of 3-partitions. Let X be simply-connected and consider a min-

imal 3-partition D ¼ ðD1; D2; D3Þ associated to L3 and sup-
pose that it is not bipartite.

Let XðDÞ ¼ XðNðDÞÞ be the set of singular points of

NðDÞ \ X and let YðDÞ ¼ NðDÞ \ @X. Then there are three
cases depending on the different configurations for the critical
set.

� one singular point inside and three points at the boundary;
� two singular points inside and no point at the boundary,
� two singular points and two points at the boundary.
1

2

3

1

2 3

Figure 2 The Y-partition for the disk and corresponding graph.

Figure 1 Trace on the half-square of the candidate for the 3-

partition of the square. The complete structure is obtained from

the half square by symmetry with respect to the horizontal axis.
The proof relies essentially on Euler formula (which is re-
called below) together with the property that the associated
graph should be a triangle.

Proposition 4.1. Let U be an open set in R2 with piecewise C1,+

boundary and let N a closed set such that UnN has k components
and such that N satisfies the properties of Definition 2.2. Let b0 be
the number of components of oU and b1 be the number of

components of N [ oU. Denote by m(xi) and q(zi) the numbers of
arcs associated to the xi 2 X(N), respectively, zi 2 Y(N). Then

k ¼ b1 � b0 þ
X

xi2XðNÞ

mðxiÞ
2
� 1

� �
þ 1

2

X
zi2YðNÞ

qðziÞ þ 1: ð16Þ

This leads (with some success) to analyze the minimal par-
tition with some topological type. If in addition, we introduce
some symmetries, this helps to guess some candidates for min-

imal partitions.

In the case of the disk, we have no proof that the minimal 3-

partition is the ‘‘Mercedes star’’ or Y-partition see (Fig. 2). But
if we assume that the minimal 3-partition is of the first type,
then by going on the double covering of the punctured disk,

one can show that it is indeed the Y-partition.
We emphasize that we have no proof that the candidates

described for the disk or the square are minimal 3-partitions.
But if we assume that the minimal partition has one singu-

lar point and has the symmetry, then numerical computations
lead to Fig. 1. Numerics suggest more: the center of the square
is the critical point of the partition. Once this property is ac-

cepted, a double covering argument shows that this is the pro-
jection of a nodal partition on the covering. This point of view
is explored numerically by Bonnaillie–Helffer [6] and theoreti-

cally by Noris–Terracini [31] and [32].
Note that there is an interesting alternative algorithmic ap-

proach [9] and [10].

One can also try to look for a minimal partition having the
symmetrywith respect to the diagonal. This leads to the same va-
lue ofKðDÞ. So this strongly (Fig. 3) suggests that there is a con-
tinuous family ofminimal 3-partitions of the square. This can be

explained by a double covering argument [7], which is analogous
to the argument of isospectrality of Jakobson–Levitin–Nadi-
rashvili–Polterovich [29] and Levitin–Parnovski–Polterovich

[30]. See also old papers by Bérard [2,3], Sunada [35] and the
more recent paper by O. Parzanchevski and R. Band [34].

Minimal 5-partitions

Using the covering approach, we were able (with V. Bonnaillie)
in [6] to produce the following candidate D1 for a minimal 5-

partition of a specific topological type (Fig. 4).
Figure 3 Two candidates for the square with different

symmetries.



Figure 6 Two candidates for the 5-partition of the disk.Figure 4 Candidate D1 for the 5-partition of the square.
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It is interesting to compare with other possible topological

types of minimal 5-partitions. They can be classified by using
Euler formula (see (16)). Inspired by numerical computations
in [18], one looks for a configuration which has the symmetries

of the square and four critical points. We get two types of
model that we can reduce to a Dirichlet–Neumann problem
on a triangle corresponding to the eighth of the square. Mov-

ing the Neumann boundar y on one side like in [8] leads to two
candidates D2 and D3. One has a lower energy KðDÞ and one
recovers the pictures in [18] (Fig. 5).

Note that in the case of the disk a similar analysis leads to a
different answer. The partition of the disk by five halfrays with
equal angle has a lower energy that the minimal 5-partition
with four singular points (Fig. 6).
5. The problem for k large: the hexagonal conjecture

We learn of these conjectures from M. Van den Berg. They are

also mentioned in Caffarelli–Lin [14]. The first one claims the
existence of the limit.

Conjecture 5.1. The limit of LkðXÞ=k as k fi +1 exists.

The second one says in particular that the limit is indepen-
dent of X if X is a regular domain.

Conjecture 5.2

jXj lim
k!þ1

LkðXÞ
k
¼ k1ðHexa1Þ:

Of course the optimality of the regular hexagonal tiling ap-
pears in various contexts in Physics. It is easy to show the
upper bound in the second conjecture and Faber-Krahn gives
a weaker lower bound involving the first eigenvalue on the

disk. Note that a stronger version of Conjecture 5.2 is that

jXj lim
k!þ1

Lk;1ðXÞ
k

¼ k1ðHexa1Þ: ð17Þ
Figure 5 Three candidates for
But we have at the moment no idea of any approach for prov-
ing this in our context. We have explored in [8] numerically
why this conjecture looks reasonable, by controlling that many
consequences of this conjecture are numerically correct. Other

recent numerical computations devoted to limk!þ1
1
k
Lk;1ðXÞ

and to the asymptotic structure of the minimal partitions by
Bourdin–Bucur–Oudet [11] are very enlighting.

6. The problem on the sphere and the Bishop conjecture

Let us mention one interesting conjecture on S2 and a quite re-

cent theorem. We parametrize S
2 by the spherical coordinates

(h,/) 2 [0,p] · [�p,p] with h = 0 corresponding to the north
pole, h ¼ p

2
corresponding to the equator and h = p corre-

sponding to the south pole. There is a particular partition of
S2 corresponding to cutting S2 by the half-hyperplanes
/ ¼ 0; 2p

3
;� 2p

3
. We call this partition the Y-partition. The con-

jecture due to Bishop–Friedland–Hayman [19,5] is:

Conjecture 6.1. The Y-partition gives a minimal 3-partition for
S2 when minimizing 1

3

P3
j¼1kðDjÞ over all the 3-partitions of

S2.

Actually one can have the same conjecture for maxjk(Dj).
This version of the conjecture is actually a consequence of

the first conjecture (because all the groundstate energies are
equal for the Y partition) but could be easier to prove. This
is indeed the case and was proven by Helffer–T. Hoffmann-

Ostenhof–Terracini in [26].

Theorem 6.2. The Y-partition gives a minimal 3-partition for S2

when minimizing maxjk(Dj) over all the 3-partitions of S2.

The techniques developed in the previous parts give some in-
sight on the second conjecturewhichhas some similaritywith the
Mercedes star conjecture. A specific role is played by the proof

that in the boundary of the 3-partition we have two antipodal
points. This involves Lyusternik–Shnirelman’s theorem.

We have seen that for the disk the minimal 4-partition for

maxjk(Dj) consists simply in the complement in the disk of
the 5-partition of the square.
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the two perpendicular axes. One could think that a minimal 4-
partition of S2 could be what is obtained by cutting S2, either
by the two planes / = 0 and h ¼ p

2
or by the two planes / = 0

and / ¼ p
2
. This is actually excluded: a minimal 4-partition on

S2 cannot be a nodal partition. This is proven in [26] by
observing that the multiplicity of the second eigenvalue is 3,

and hence any eigenfunction in the spectral space attached to
k2 = k3 = k4 has only two nodal domains (hence cannot be
Courant sharp).

As already mentioned in [19], there is at least a natural can-
didate which is the spherical regular tetrahedron. Numerical
computations,3 give, for the corresponding 4-partition DTetra

4

KðDTetra
4 Þ � 5:13: ð18Þ

Hence we obtain that

15

4
< L4ðS2Þ 6 KðDTetra

4 Þ < 6 ¼ L4ðS2Þ: ð19Þ

Concerning the large k behavior, it is natural to conjecture
that.

Conjecture 6.3. ‘‘Hexagonal’’ conjecture on S2

lim
k!þ1

LkðS2Þ
k

¼ lim
k!þ1

Lk;1ðS2Þ
k

¼ 1

AreaðS2Þ
kðHexa1Þ: ð20Þ

The first equality in the conjecture corresponds to the idea,

which is well illustrated in the recent paper by Bourdin–Bu-
cur–Oudet [11] that, asymptotically as k fi +1, a minimal
k-partition for Kp will correspond to Dj’s such that the k(Dj)

are equal.

This hexagonal conjecture is probably true for any compact

surface M (replace in (20) S
2 by M). The guess is that this hex-

agonal conjecture is a ‘‘local result’’ where the curvature
should not play a role.

7. An Aharonov-Bohm approach

7.1. The Aharonov-Bohm operator

Let us recall some definitions and results about the Aharonov-
Bohm Hamiltonian (for short ABX-Hamiltonian) with a sin-

gularity at X introduced in [7,21] and motivated by the work
of Berger–Rubinstein [4]. We denote by X = (x0,y0) the coor-
dinates of the pole and consider the magnetic potential with

renormalized flux at X U
2p ¼ 1=2:

A
Xðx; yÞ ¼ ðAX

1 ðx; yÞ;AX
2 ðx; yÞÞ ¼

1

2
� y� y0

r2
;
x� x0

r2

� �
: ð21Þ

We know that the magnetic field vanishes identically in _XX .

The ABX-Hamiltonian is defined by considering the Friedrichs
extension starting from C10 ð _XXÞ and the associated differential
operator is

�DAX :¼ ðDx � AX
1 Þ

2 þ ðDy � AX
2 Þ

2
with Dx

¼ �i@x and Dy ¼ �i@y: ð22Þ

Let KX be the antilinear operator

KX ¼ eihXC;
3 Transmitted to us by M. Costabel.
with ðx� x0Þ þ iðy� y0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� x0j2 þ jy� y0j

2
q

eihX , and

where C is the complex conjugation operator C u= u. We
say that a function u is KX-real, if it satisfies KXu= u. Then
the operator �DAX is preserving the KX-real functions and

we can consider a basis of KX-real eigenfunctions. Hence we
only analyze the restriction of the ABX-Hamiltonian to the
KX-real space L2

KX
where

L2
KX
ð _XXÞ ¼ fu 2 L2ð _XXÞ;KXu ¼ ug:

It was shown that the nodal set of such a KX real eigenfunction
has the same structure as the nodal set of an eigenfunction of

the Laplacian except that an odd number of half-lines should
met at X.

First we can extend our construction of an Aharonov-

Bohm Hamiltonian in the case of a configuration with ‘distinct
points X1, . . .,X‘ (putting a (renormalized) flux 1

2
at each of

these points). We can just take as magnetic potential

A
X ¼

X‘
j¼1

A
Xj ;

where X= (X1, . . .,X‘). We can also construct (see [21]) the
antilinear operator KX, where hX is replaced by a multi-

valued-function /X such that d/X = 2AX and ei/X is univalued
and C1. We can then consider the real subspace of the KX-real
functions in L2

KX
ð _XXÞ. It has been shown in [21] (see in addition

[1]) that the KX-real eigenfunctions have a regular nodal set
(like the eigenfunctions of the Dirichlet Laplacian) with the
exception that at each singular point Xj (j= 1, . . ., ‘) an odd

number of half-lines should meet. In the case of one singular
point, this fact was observed by Berger–Rubinstein [4] for
the first eigenfunction. We denote by Lkð _XXÞ the lowest eigen-
value (if any) such that there exists a KX-real eigenfunction

with k nodal domains [20,28,31,32].

7.2. Toward a magnetic characterization of a minimal partition

We now discuss the following conjecture presented in [6] (short
version).

Conjecture 7.1. Let X be simply connected. Then

LkðXÞ ¼ inf
‘2N

inf
X1 ; ...;X‘

Lkð _XXÞ:

Let us present a few examples illustrating the conjecture. When

k= 2, there is no need to consider punctured X’s. The infi-
mum is obtained for ‘= 0. When k = 3, it is possible to show
(see the second remark below) that it is enough, to minimize
over ‘= 0, ‘= 1 and ‘= 2. In the case of the disk and the

square, it is proven that the infimum cannot be for ‘= 0
and we conjecture that the infimum is for ‘= 1 and attained
for the punctured domain at the center. For k = 5, it seems

that the infimum is for ‘= 4 in the case of the square and
for ‘= 1 in the case of the disk.

Let us explain very briefly why this conjecture is natural.
Considering a minimal k-partition D ¼ ðD1; . . . ; DkÞ, we know
that it has a regular representative and we denote by

XoddðDÞ :¼ ðX1; . . . ; X‘Þ the critical points of the partition cor-
responding to an odd number of meeting half-lines. Then we
suspect that LkðXÞ ¼ kkð _XXÞ (Courant sharp situation). One

point to observe is that we have proven in [25] the existence
of a family ui such that ui is a groundstate of H(Di) and ui � uj
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is a second eigenfunction of H(Dij) when Di � Dj. The hope is
to find a sequence ei(x) of S1-valued functions, where ei is a
suitable4 square root of ei/X in Di, such that

P
i�iðxÞuiðxÞ is

an eigenfunction of the ABX-Hamiltonian associated with
the eigenvalue Lk.

Conversely, any family of nodal domains of an Aharonov-

Bohm operator on _XX corresponding to Lk gives a k-partition.

Remark 7.2

1. In the case when X is not simply connected, one should also

add the possibility to create renormalized flux 1
2
in some of

the holes.
2. Euler’s formula (16), implies that for a minimal k-partition

D of a simply connected domain X the cardinal of X oddðDÞ
satisfies

#XoddðDÞ 6 2k� 3: ð23Þ
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monotonicity formula, Calc. Var. 22 (2005) 45–72.

[18] O. Cybulski, V. Babin, R. Holyst, Minimization of the Renyi

entropy production in the space-partitioning process, Phys. Rev.

E71 (046130) (2005).

[19] S. Friedland, W.K. Hayman, Eigenvalue inequalities for the

Dirichlet problem on spheres and the growth of subharmonic

functions, Comment. Math. Helvetici 51 (1976) 133–161.

[20] B. Helffer, On nodal domains and spectral minimal partitions: a

survey, Milan J. Math. 78 (2) (2010) 575–590.

[21] B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,

M.P. Owen, Nodal sets for groundstates of Schrödinger

operators with zero magnetic field in non-simply connected

domains, Comm. Math. Phys. 202 (3) (1999) 629–649.

[22] B. Helffer, T. Hoffmann-Ostenhof, Converse spectral problems

for nodal domains, Mosc. Math. J. 7 (1) (2007) 67–84.

[23] B. Helffer, T. Hoffmann-Ostenhof, Spectrum and dynamics,

CRM Proc. Lecture Notes, vol. 52, American Mathematical

Society, Providence, RI, 2010, 119-135.

[24] B. Helffer, T. Hoffmann-Ostenhof, On two notions of minimal

spectral partitions, Adv. Math. Sci. Appl. 20 (1) (2010) 249–263.

[25] B. Helffer, T. Hoffmann-Ostenhof, S. Terracini, Nodal domains

and spectral minimal partitions, Ann. Inst. H. Poincaré Anal.
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