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Abstract Various classes of Partial Differential Equations have shown to be successful in describ-

ing the self-organization of bacterial colonies, a topic also sometimes called socio-biology. For

instance parabolic systems are standard; the classical Patlak–Keller–Segel system and Mimura’s sys-

tem are able to explain two elementary processes underlying qualitative behaviors of populations

and complex patterns: oriented drift by chemoattraction and colony growth with local nutrient

depletion.

More recently nonlinear hyperbolic and kinetic models also have been used to describe the phe-

nomena at a smaller scale. We explain here some motivations for ‘microscopic’ descriptions, the

mathematical difficulties arising in their analysis and how kinetic models can help in understanding

the unity of these descriptions.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

Communities of cells can exhibit remarkable patterns which
have attracted the attention of biologists and, with recent tech-

nology, has developed a new domain called ‘socio-biology’.
The organization of cells colonies result from highly complex
but poorly understood interactions between cells and internal
.fr

tical Society. Production and

ptian Mathematical Society.
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CC BY-NC-ND license.
regulatory networks, which involve both chemical signaling
and the effects of physical factors.

We present some classes of Partial Differential Equations

which have been used and the reason of their success. We begin
with the classical Patlak–Keller–Segel system and semilinear
parabolic systems, as Mimura’s system, that are able to explain

two elementary processes underlying qualitative behaviors of
populations and complex patterns: oriented drift by chemoat-
traction and colony growth with local nutrient depletion. We
continue with the Hyperbolic Keller–Segel with Logistic Sensi-

tivity (HKSLS) and finish with the kinetic models. This presen-
tation is an extension of two previous presentations [42,33].

Although it is more realistic to work on bounded do-

mains, we often write equations on the full space to sim-
plify the settings. When set on a subset of Rd, the
equations are usually completed with zero flux boundary

conditions which express the conservation of cells or chem-
ical concentrations.
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2. A nonlinear Fokker–Planck system for chemotaxis

The first model we wish to present is the famous nonlinear
Fokker–Planck equation called the ‘Patlak–Keller–Segel sys-

tem’ which has drawn an enormous mathematical literature
([26,27,36,12,22,32,41] and the references therein). In the ab-
sence of cell division, it is written as

o
ot

qðx; tÞ � dqDqðx; tÞ þ div½qðx; tÞvrS� ¼ 0;

s o
ot
Sðx; tÞ � dSDSðx; tÞ þ aSðx; tÞ ¼ qðx; tÞ:

(
ð1Þ

The system is set on R2 (because cells leave on a petri dish) and
is completed with initial data that satisfy

q0ðxÞP 0;

Z
R2

q0ðxÞ½1þ jxj2 þ j ln q0ðxÞj�dx <1:

The parameter dq represents the intensity of the basic brown-
ian motion of cells, which density is denoted by q(x, t). The
drift term represents a directed movement towards the higher

values of the signal S(x, t) with a ‘sensitivity’ v which may de-
pend on q or S and represents the bias of the basic motion.
Usually the signal is a chemical which is released by the cells
themselves (see [36] for more detailed presentation of the bio-

logical processes). Then, the model parameters s, dq, a measure
the molecular diffusion, degradation and release rates of this
chemical; these coefficients may also be nonlinear, see [9] for

instance. Because the cell division is neglected, we haveZ
R2

qðx; tÞdx ¼M0 :¼
Z

R2

q0 8t P 0:

Although very simple this system has led to a huge mathemat-

ical literature because it exhibits a concentration effect that it is
easier to state in the full space R2.

Theorem 1 [3]. Consider the case s = a = 0, dq = dS = 1 and
assume that the initial data satisfies q0ð1þ jxj2 þ j ln
ðq0ÞjÞ 2 L1

þðR2Þ. Then

� if M0 < 8p
v , there is a global weak solution to (1) and it

behaves as the heat equation. For instance it converges to 0
as t fi1,
� if M0 > 8p

v , any weak solution blows-up in finite time. More

precisely there is a T* such that q(t) becomes a singular mea-
sure as t fi T*.

For the critical mass, blow-up occurs in infinite time as a
single Dirac mass [2]. Above the critical mass, at the blow-up

time it is believed that, generically, the solution aggregates as
one (or several) Dirac mass of weight 8p

v (see [17,46] and the ref-
erences therein) but no rigorous proof is available. These re-
sults remain ‘roughly’ true in bounded domains, although

more complicated statements are needed [1,24,38] because
blow-up can occur on the boundary and thresholds as 4p

v occur.
Higher dimension is also of interest, see [12,40] and the refer-

ences therein. This blow-up phenomena for large initial data
makes the success of the Keller–Segel system because many
cells have tendency to aggregate in highly concentrated spots

(see [36] for a general presentation).

3. Semilinear systems and dentritic patterns

The nutrient-based models also have a long history and are
motivated by dentritic patterns of colonies of bacteria Bacillus
subtilis. As described in [33], they are mostly formulated in
terms of three quantities:

� the population density u(x, t) of active cells. Under the
effect of their flagella, active bacteria undergo a random move-
ment resulting in a diffusion of intensity du, and they multiply

according to the nutrient available locally;

� the nutrient concentration v(x, t) diffuses and, because
the nutrient is limited, it can diminish locally due to its con-
sumption by multiplying cells;

� the population density of passive cells w(x, t). For these
cells the effect of their motion and multiplication is neglected.
Active cells become passive according to some rules that differ

from one model to the other, and do not move or multiply.

These ingredients lead to write general systems of the form
of semilinear parabolic systems (where the last quantity w usu-
ally does not influence the first two)

o
ot
uðx; tÞ � duDuðx; tÞ ¼ u½vfðu; vÞ � gðu; vÞ�;

o
ot
vðx; tÞ � dvDvðx; tÞ ¼ �uvfðu; vÞ;

o
ot
wðx; tÞ ¼ ugðu; vÞ:

8><
>: ð2Þ

These systems are particularly interested when du „ dv and their
analysis can be subtle. Several mathematical tools are due [44].

Such systems have been introduced to model chemical reac-
tions, and the Gray–Scott system [19] is a simple and classical
example which writes as

o
ot
uðx; tÞ � duDuðx; tÞ ¼ u½unv� l�;

o
ot
vðx; tÞ � dvDvðx; tÞ ¼ �unþ1v;

o
ot
wðx; tÞ ¼ luðx; tÞ:

8><
>: ð3Þ

Here n P 0 is an integer related to the mass action law for the

molecules undergoing the chemical reaction and l > 0. Varia-
tions around this model can also be interpreted in terms of
bacterial motion as proposed in Kessler and Levine [28], Gol-
ding et al. [30]; they replace the growth term unv by h(u)v where

h(Æ) is a truncation function for small values of u and h � 1 for
large values. The Gray–Scott model explains the instability
that generates the digitation process. It is related to concentra-

tion effects of the equation on active cells; its solution u exhib-
its high values on the tip of the dendrite and move outwards
where nutrients are low. These concentration points are travel-

ing pulses that undergo secondary instabilities which explain
their branching, see [29].

Rather than a limitation of growth for small values of u as

in the Kessler and Levine model, Mimura et al. [34,35] pro-
posed a limitation on the transition rate to the passive state
for large values of u or v. The choice of the reaction terms f
and g in the general system (2) is then given by

o
ot
uðx; tÞ � duDuðx; tÞ ¼ u v� l

ðaþuÞðbþvÞ

h i
;

o
ot
vðx; tÞ � dvDvðx; tÞ ¼ �uv;

o
ot
wðx; tÞ ¼ lu

ðaþuÞðbþvÞ :

8>><
>>: ð4Þ

Even though the underlying pattern formation mechanism is

very similar, the resulting dendritic patterns differ from those
obtained with the Gray–Scott model and are more realistic.

As we will see it in Section 4, another possible way to
generate branching patterns uses only forces, e.g. chemoattrac-
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tants and chemorepellents, as it was done in Section 2 for
chemotaxis.

4. Hyperbolic Keller–Segel equations

Hyperbolic model have been proposed to improve the Keller–
Segel system (1) because of biological observations as wave

propagations. A very rich model has been proposed by [15]
which includes control mechanisms within cells that prevent
overcrowding. Volume filling and quorum sensing are such

well-known effects which both lead to saturating nonlinearities
[23,21,40]. This lead [15] to consider the Hyperbolic Keller–Se-
gel system Logistic Sensitivity

o
ot

qðx; tÞ þ div qðx; tÞ 1� qðx; tÞð ÞrS½ � ¼ 0; t P 0; x 2 Rd;

�DSðx; tÞ þ Sðx; tÞ ¼ qðx; tÞ;

(

ð5Þ
together with an initial data satisfying

0 6 q0ðxÞ 6 1; q0 2 L1ðRdÞ:

This system has the capability to generate a very interesting

multiscale dynamics (in particular when a small diffusion term
is added) which was investigated in [8,15]. Patches where
q(x, t) � 1, S(x, t) � 1 are obtained quickly that correspond
to steady shock waves from 0 to 1 but which evolve when

the diffusion is not exactly zero and this generates an elaborate
geometrical motion.

The mathematical analysis of system (5) is very interesting

and differs from the case of a multidimensional scalar conser-
vation law ($S fixed), except in one dimension where BV esti-
mates are possible and give existence as for standard

conservation laws [13,45]. But in higher dimension all the usual
methods for scalar conservations fail to apply. The BV esti-
mates do not seem to hold true (even though they are not dis-

proved either), neither L1 contraction principle. Regularizing
effects, as produced by the kinetic formulation [31], cannot
hold true for system (5) in higher dimension because the flux
points essentially in the direction of $S and the non-degener-

acy condition cannot be met in this case because it expresses
that variations of the unknown generate the full space. These
are the difficulties in proving the

Theorem 2. [14]The system (5) admits a weak solution
q 2 L1ðRþ � RdÞ, S 2 L1ðRþ;W2;qðRdÞÞ for 1 6 q <1, sat-
isfying 0 6 q(x, t) 6 1, 0 6 S(x, t) 6 1, and all the following
entropy inequalities, for g convex (in the weak sense and with

initial data g(q0))

o

ot
gðqÞ þ divðrSQðqÞÞ þ ðq� SÞ Q� gg0½ �ðqÞ 6 0; ð6Þ

with Q0(q) = g0(q)q(1 � q).

Our proof in [14] is based on the kinetic formulation on the
function f(t,y,n) = 1n<u(t, y). It is equivalent to write all the en-
tropy inequalities (6) with a help of variable n

of
ot
þðn�SÞgðnÞ of

onþg0ðnÞryS �ryf¼ om
on ;

mðt;y;nÞP 0 a bounded measure on ½0;T��Rd�R; 8T> 0;

fð0;y;nÞ¼ 1n<q0ðyÞ;

�DSþS¼ q :¼
R1
0
fðt;y;nÞdn in Rd:

8>>>><
>>>>:

ð7Þ
Including long range repellent and short range attraction, the

model becomes

otnþ div½nð1� nÞrc� nrS� ¼ 0;

�DcDcþ c ¼ acn;

otS�DSDSþ sSS ¼ aSn:

8><
>: ð8Þ

It has been proposed and studied in [10,43]. Its interest is to
generate branching instabilities which makes it an alternative
to the nutrient models of Section 3 for dentritic patterns

formation.

5. Kinetic equations

Both hyperbolic and parabolic models describe the macro-
scopic cell colony. They can be derived from descriptions at
the individual scale just as in the classical of fluid dynamics de-

rived from the boltzmann equation.
For cells, the use of kinetic models was motivated by the

observation that Escherichia coli (but this is true for B. subtilis

mentioned in Section 3) move by a sequence of jumps (of order
of 1 second) and tumbles which are much faster. This moti-
vated Othmer, Dunbar and Alt [39] to propose a kinetic model
in the 1980s. The subject has been renewed recently after the

work [20,11,18].
The unknown is now the density f(t,x,v) of cells moving

with velocity v. Once adimensionalized, the model reads

@tfþ v � rxf ¼
R
V

T½S�ðv0; vÞf0 � T½S�ðv; v0Þfð Þdv0;
�DSþ S ¼ qðx; tÞ :¼

R
V
fðt; x; vÞdv;

fð0; x; vÞ ¼ f0ðx; vÞ;

8><
>: ð9Þ

where f0 = f(t,x,v0), V is the range of possible velocities of cells
during the jump (usually it is a ball or a sphere). The most
interesting and original aspect of this model is the tumbling
kernel T[S](v0,v) which gives the rate of change from velocity

v0 to velocity v depending on the chemoattractant (signal)
S(x, t).

For example one can choose

T½S�ðv0; vÞ ¼ k�Sðx� ev0Þ þ kþSðxþ evÞ; ð10Þ

a way to say that the tumbling rate increases when the signal S
increases and that the cells react with a short delay e (due to

the progressive saturation of receptors which triggers the tum-
bling). The memory effect plays a fundamental role in the exis-
tence theory [11,7] because they allow for the use of the

dispersive aspect of kinetic equations. The method has proved
to be also successful for tumbling kernels depending on the
gradient of S, see [25,7]. One of the most remarkable result

is possible blow-up [6], for example

T½S�ðv0; vÞ ¼ v v � rSðxÞð Þþ; ð11Þ

Another class of tumbling kernels has also been proposed after
the observation that bacteria increase the duration of their
jump when chemoattractant concentration increases (along

their trajectory). The tumbling kernel (see [25,16,5]) is written

T½S�ðv0; vÞ ¼ w
oS

ot
þ v0 � rSðxÞ

� �
; ð12Þ

with w(Æ) a decreasing function indicating that cells indeed have
tendency to make longer jumps when they feel higher chemo-
attractant along their trajectory. The modeling interest of this
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kernel is that the drift-diffusion limit contains more biophys-

ics; it is written

o
ot

qðx; tÞ � dqDqðx; tÞ þ div½USqðx; tÞ� ¼ 0;

USðx; tÞ ¼ A
R
V

v1
w oS

ot
þv1 jrSjð Þ dv

rS
jrSj ;

(
ð13Þ

and S(x, t) is still given by a parabolic or elliptic equation as in
Section 2.

For this type of model, pulse waves exist is a wide range of
conditions see [4]. This is in opposition to the standard Keller–
Segel model (1) for which traveling waves exist only with birth/

death terms, see [37] and the references therein.
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