
Journal of the Egyptian Mathematical Society (2011) 19, 57–70
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Riemannian geometry of Lie algebroids
Mohamed Boucetta
Faculty of Sciences and Technology, Cadi-Ayyad University, BP 549 Marrakech, Morocco

Available online 9 November 2011
E-

11

ho

Pe

do
KEYWORDS

Lie algebroids;

Lie groupoids;

Riemannian metrics
mail address: mboucetta2@y

10-256X ª 2011 Egyptian M

sting by Elsevier B.V.

er review under responsibilit

i:10.1016/j.joems.2011.09.009

Production and h

Open a
ahoo.fr

athema

y of Egyp

osting by E

ccess unde
Abstract We introduce Riemannian Lie algebroids as a generalization of Riemannian manifolds

and we show that most of the classical tools and results known in Riemannian geometry can be sta-

ted in this setting. We give also some new results on the integrability of Riemannian Lie algebroids.
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1. Introduction

Lie groupoids and Lie algebroids are now a central notion in
differential geometry and constitute an active domain of re-

search. They have many applications in various part of math-
ematics (see for instance [4–6,14]). Roughly speaking, a Lie
algebroid is a structure where one replaces the tangent bundle
with a new vector bundle with similar properties. In this spirit,

many geometrical notions which involves the tangent bundle
were generalized to the context of Lie algebroids. For instance,
covariant derivatives were generalized by Fernandes [9],

Lagrangian mechanics were generalized by Weinstein [18]
(see also [6]). Actually, a Riemannian metric on a manifold
is a notion which involves the Lie algebroid structure of

the tangent bundle and the Koszul formula, which defines
the Levi-Civita connection, is an illustration of this fact. A
tical Society. Production and

tian Mathematical Society.

lsevier

r CC BY-NC-ND license.
Riemannian metric on a Lie algebroid is a natural extension
of the classical notion of Riemannian metric on a manifold
and this notion appeared first in the context of Lie algebroids
associated to Poisson structures (see [2,3,12,13]).

In this paper, we present some basic concepts related to a
Riemannian structure on a Lie algebroid, namely, we will show
that most of the classical tools and results known in Riemann-

ian geometry can be stated in this setting. In Section 2, we pres-
ent some basic facts on connections on Lie algebroids based on
recent results of [7]. In Section 3, we define the Levi-Civita con-

nection associated to a Riemannian Lie algebroid and we show
the existence of two tensors similar to those introduced by
O’Neill in the context of Riemannian submersions [15] (see
[1] for a detailed presentation). Section 4 is devoted to the

study of the geodesic flow of a Riemannian Lie algebroid.
As the classical case, we define the Sasaki metric and we com-
pute the divergence of the geodesic flow with respect to this

metric. This divergence does not vanish in general contrast
to Liouville theorem and, in fact, it is a modular cocycle and
its class is the modular class of the Lie algebroid. We state

the first and the second variation formulas and introduce Jaco-
bi sections along a geodesic. This section can be thought of as a
completion of subSection 4.2 in [18] and Section 5 in [11]. In

Section 5, we study the curvature of a Riemannian Lie alge-
broid and generalize some classical results, namely, Mayers
theorem. Section 6 is devoted to the study of integrability of
Riemannian Lie algebroids, for instance, we show that the

vanishing of one of O’Neill’s tensors implies the integrability
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and we give a large class of Riemannian Lie algebroids which

satisfy this condition.
2. Background on Lie algebroids

In this section we review some basic facts related to Lie algeb-
roids and to connections in the context of Lie algebroids (see
[6,7,9] for a detailed presentation).

2.1. Canonical Poisson structure on the dual of a Lie algebroid
Definition 2.1. A Lie algebroid A over a smooth manifold M is
a vector bundle p : A!M together with a Lie algebra
structure ½ ; � on the space of sections CðAÞ and a bundle

map # : A! TM called anchor such that, for any sections
a; b 2 CðAÞ and for every smooth function f 2 C1ðMÞ, we
have the Leibniz identity

½a; fb� ¼ f½a; b� þ#ðaÞðfÞb: ð1Þ

An immediate consequence of this definition is that:

1. the induced map # : CðAÞ ! XðMÞ is a Lie algebra
homomorphism;

2. for any x 2 M , there is an induced Lie bracket say ½ ; �x
on
Gx ¼ Kerð#xÞ � Ax
which makes it into a Lie algebra.

The following theorem describes the local structure of a
Lie algebroid (for a proof see [9]). Let n and r denote,

respectively, the dimension of M and the rank of the vector
bundle A!M.

Theorem 2.2 (Local splitting). Let x0 2M be a point where
#x0 has rank q. There exists a system of coordinates

ðx1; . . . ; xq; y1; . . . ; yn�qÞ valid in a neighborhood U of x0 and a
basis of sections fa1; . . . ; arg of A over U, such that

#ðaiÞ ¼ @xi ði ¼ 1; . . . ; qÞ;
#ðaiÞ ¼

X
j

bij@yj ði ¼ qþ 1; . . . ; rÞ;

where bij 2 C1ðUÞ are smooth functions depending only on the
y0s and vanishing at x0: b

ij ¼ bijðysÞ, bijðx0Þ ¼ 0. Moreover, for
any i; j ¼ 1; . . . ; r,

½ai; aj� ¼
X
u

Cu
ijau;

where Cu
ij 2 C1ðUÞ vanish if u 6 q and satisfy

P
u>q

@Cu
ij

@xs
but ¼ 0.

From this theorem we deduce that the image of # defines a

smooth generalized distribution in M, in the sense of Sussman
[16], which is integrable. This foliation is called characteristic
foliation of A. We call A transitive Lie algebroid if # is surjec-

tive, so the leaves are the connected components of M.
We denote by AL the restriction of A to a leaf L. From (1)

one can deduce easily that the bracket ½ ; � induces a bracket on
the space of sections of pL : AL ! L and hence a transitive Lie
algebroid structure. When x run over L the G0xs are all isomor-
phic and fit into a Lie algebra bundle GL over L (see [14]).

Hence, we get an exact sequence of Lie algebroids over L

0! GL ! AL ! TL: ð2Þ

The dual A� of a Lie algebroid p : A!M carries a natural
Poisson structure which can be described as follows.

For any function F 2 C1ðA�Þ and for any section
n 2 CðA�Þ, we define a section Fn 2 CðAÞ by putting, for any
x 2M and for any lx 2 A�x,

hlx;FnðxÞi ¼
d

dtjt¼0
FðnðxÞ þ tlxÞ:

Now, for any functions F;H 2 C1ðA�Þ, we define the bracket
fF;Hg by putting, for any section n 2 CðA�Þ,

fF;Hg � n ¼ hn; ½Fn;Hn�i þ#ðFnÞ H � n� hn;Hnið Þ
�#ðHnÞ F � n� hn;Fnið Þ: ð3Þ

One checks that this bracket defines a Poisson structure and
for any f; g 2 C1ðMÞ and for any a; b 2 CðAÞ, we have

ff � p; g � pg ¼ 0; ff � p; ag
¼ �#ðaÞðfÞ � p and fa; bg ¼ ½a; b�: ð4Þ

If one chooses local coordinates ðx1; . . . ; xnÞ over a neighbor-
hood U of M and a basis of local sections ða1; . . . ; arÞ over
U, we have structure functions bsi;Cu

st 2 C1ðUÞ defined by

#ðasÞ ¼
Xn

i¼1
bsi@xi ðs ¼ 1; . . . ; rÞ;

½as; at� ¼
Xr

u¼1
Cu

stau ðs; t ¼ 1; . . . ; rÞ:

Let ðn1; . . . ; nrÞ denote the linear coordinates on the fibers of
A� associated with the dual basis ða1; . . . ; arÞ. One can see eas-
ily that

fxi; xjg ¼ 0; fxi; nsg ¼ �bsi and fns; ntg ¼
X
u

Cu
stnu: ð5Þ

Example 2.3.

1. The basic example of a Lie algebroid over M is the tan-
gent bundle itself, with the identity mapping as anchor.

The associated Poisson structure on T �M is defined by
the symplectic form dk where k is the Liouville form.

2. Every finite dimensional Lie algebra is a Lie algebroid
over a one point space. The associated Poisson struc-

ture on the dual is the Lie–Poisson structure.
3. Any integrable subbundle of TM is a Lie algebroid

with the inclusion as anchor and the induced bracket.

4. Let ðP ; pÞ be a Poisson manifold. Then there is a natu-
ral Lie algebra structure on X1ðP Þ which makes T �P
into a Lie algebroid over P (see [17]).
2.2. Connections on Lie algebroids

We develop now the basic theory of connections on Lie algeb-

roids. This notion, which is a natural extension of the usual
concept of covariant connection, have recently turned out to
be useful in the study of Lie algebroids. It appeared first in
the context of Poisson geometry (see [9,10,17]).
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Let p : A!M be a Lie algebroid with anchor map #. An

A-connection on a vector bundle E!M is an operator
r : CðAÞ � CðEÞ ! CðEÞ satisfying:

1. raþbs ¼ rasþrbs for any a; b 2 CðAÞ and s 2 CðEÞ;
2. raðs1 þ s2Þ ¼ ras1 þras2 for any a 2 CðAÞ and

s1; s2 2 CðEÞ;
3. rfas ¼ fras for any a 2 CðAÞ, s 2 CðEÞ and

f 2 C1ðMÞ;
4. raðfsÞ ¼ frasþ#ðaÞðf Þs for any a 2 CðAÞ, s 2 CðEÞ

and f 2 C1ðMÞ.

From this definition, one can deduce immediately that, for
any leaf L, r induces an AL-connection on EL ! L.

Given an A-connection on a vector bundle E over M, most

of the classical constructions (related to a classical covariant
derivative) extend to Lie algebroids, provided we use the
appropriate notion of paths on A.

Definition 2.4. Let p : A!M be a Lie algebroid with anchor
#.

1. An A-path is a smooth path a : ½t0; t1� ! A such that
#ðaðtÞÞ ¼ d

dt
pðaðtÞÞ; t 2 ½t0; t1�:

We call the curve c : ½t0; t1� !M given by cðtÞ ¼ pðaðtÞÞ
base path of a.
2. An A-path a is called vertical if #ðaðtÞÞ ¼ 0 for any
t 2 ½t0; t1�.

Remark 2.5. Even if, for a vertical A-path, the base path is
reduced to a constant curve, vertical A-paths play a non trivial
role in the study of connections on a Lie algebroid.
2.3. Parallel transport

Let p : A!M be a Lie algebroid, E!M a vector bundle and
r an A-connection on E. Fix an A-path a : ½t0; t1� ! A. An a-
section of E is a smooth map s : ½t0; t1� ! E such that the pro-

jections on M of a and s define the same base path. We denote
by CðEÞa the space of a-sections of E. Then there is exists an
unique map

ra : CðEÞa ! CðEÞa
satisfying:

1. raðc1s1 þ c2s2Þ ¼ c1ras1 þ c2ras2, c1; c2 2 R;

2. rafs ¼ f 0sþ fras where f : ½t0; t1� ! R is a smooth

function;
3. if ~s is a local section of E which extends s and #ðaðtÞÞ– 0

then

rasðtÞ ¼ raðtÞ~s;

4. if ~s is a local section of E which extends s and a is vertical

then

rasðtÞ ¼ raðtÞ~sþ
d

dt
sðtÞ:
An a-section s is called parallel along a if ras ¼ 0. One has

then the notion of parallel transport along a, denoted by

sta : Ecðt0Þ ! EcðtÞ;

and staðs0Þ ¼ sðtÞ where s is the unique parallel a-section satis-
fying sð0Þ ¼ s0.

If a0 2 Ax and s is a section of E in a neighborhood of x,

one can check easily that

ra0s ¼
d

dtjt¼0
ðstaÞ

�1ðsðcðtÞÞÞ; ð6Þ

where a is any A-path satisfying að0Þ ¼ a0.

2.4. Linear A-connections, geodesics and compatibility with the

Lie algebroid structure

Let p : A!M be a Lie algebroid with anchor #. We shall call
A-connections on the vector bundle A!M linear A-
connections.

Let D be a linear A-connection. An A-path a : ½t0; t1� ! A is
a geodesic of D if Daa ¼ 0. Let ðx1; . . . ; xnÞ be a local system of
coordinates on an open set U and ða1; . . . ; arÞ a basis of local

sections over U. The structure functions bsi;Cu
st 2 C1ðUÞ are

given by

#as ¼
Xn
i¼1

bsi@xi ðs ¼ 1; . . . ; rÞ;

½as; at� ¼
Xr
u¼1

Cu
stau ðs; t ¼ 1; . . . ; rÞ:

We define the Christoffel symbols of D according to
ða1; . . . ; arÞ as usually by

Dasat ¼
Xr
u¼1

Cu
stau:

The A-path a is a geodesic if, for i ¼ 1; . . . ; n and j ¼ 1; . . . ; r,

_xiðtÞ ¼
Pr
j¼1

ajðtÞbjiðx1ðtÞ; . . . ; xnðtÞÞ;

_ajðtÞ ¼ �
Pr
s;u¼1

asðtÞauðtÞCj
suðx1ðtÞ; . . . ; xnðtÞÞ;

8>>><>>>: ð7Þ

where aðtÞ ¼
Pr

i¼1aiðtÞai is the local expression of a and

pðaðtÞÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ is the local expression of its base
path.

Exactly as in the classical case, one has existence and

uniqueness of geodesics with given initial base point x 2M
and ‘‘initial speed’’ a0 2 Ax. Actually, there exists a vector field
G on A such that the geodesics of D are the integral curves of
G. We call G the geodesic vector field associated to D and D is

called complete if G is complete.
We introduce now two natural notions of compatibility be-

tween linear A-connections and the structures of Lie

algebroids.

Definition 2.6.

1. A linear A-connection D is strongly compatible with the

Lie algebroid structure if, for any A-path a, the parallel
transport sa preserves Ker#.
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2. A linear A-connection D is weakly compatible with the

Lie algebroid structure if, for any vertical A-path a, the
parallel transport sa preserves Ker#.

The following proposition gives an useful characterization
of the these notions of compatibility.

Proposition 2.7.

1. A linear A-connection D is strongly compatible with the
Lie algebroid structure if and only if, for any leaf L and

for any sections a 2 CðALÞ and b 2 CðGLÞ, Dab 2 CðGLÞ.
2. A linear A-connection D is weakly compatible with the

Lie algebroid structure if and only if, for any leaf L

and for any sections a 2 CðGLÞ and b 2 CðGLÞ,
Dab 2 CðGLÞ.

Proof. This is a consequence of (6). h

Example 2.8. Let p : A!M be a Lie algebroid and r be a
TM-connection on A. Associated with r there is an obvious
linear A-connection

D0
ab ¼ r#ðaÞb

which is clearly weakly compatible with the Lie algebroid
structure. A bit more subtle is the following linear A-

connection

D1
ab ¼ r#ðbÞaþ ½a; b�

which is strongly compatible with the Lie algebroid structure.
These connections play a fundamental role in the theory of

characteristic classes (see for instance [9]).

Remark 2.9. In [9] there is a notion of compatibility between
linear A-connections and the Lie algebroid structure which is
stronger than the notion of compatibility given in Definition

2.6.
2.5. Variations of A-paths, homotopy and curvature of A-
connections

We give an interpretation of the torsion and the curvature of
an A-connection which leads naturally to the notion of homot-
opy of A-paths. This notion plays a crucial role in the integra-

bility of Lie algebroids (see [7]).
Let p : A!M be a Lie algebroid with anchor # and

E!M a vector bundle. The curvature of an A-connection

r on E is formally identical to the usual definition

Rða; bÞs ¼ rarbs�rbras�r½a;b�s;

where a; b 2 CðAÞ and s 2 CðEÞ. The connection r is called
flat if R vanishes identically.

If D is a linear A-connection the torsion of D is given by

TDða; bÞ ¼ Dab�Dba� ½a; b�:

In the classical case (A ¼ TM), the curvature and the torsion
can be interpreted by using variations of paths. We will show
now that we have a similar interpretation in the general case.

First, let us give the appropriate notion of variation of paths.
A variation of A-paths is a smooth map

a : ½0; 1� � ½0; 1� ! A, ð�; tÞ#að�; tÞ such that:

(i) for any � 2 ½0; 1�, the map t#að�; tÞ is an A-path,
(ii) the base variation cð�; tÞ ¼ pðað�; tÞÞ lies entirely in a

fixed leaf L of the characteristic foliation.

Let a be a variation of A-paths. A transverse variation to a is

a smooth map b : ½0; 1� � ½0; 1� ! A such that a and b have the
same base variation c and #ðbÞ ¼ @c

@�
.

It is clear that if # is injective, there is an unique transverse

variation to a given variation of A-paths. However, if # is not
injective, a given variation of A-paths admits many transverse
variations to it. There is a way which permit the control of

transverse variations to a fixed variation of A-path. Let us ex-
plain this important fact which is at the origin of the notion of
homotopy of A-paths used in [7].

First, let us fix some notations. Let a and b be, respectively,

a variation of A-paths and a transverse variation and let c de-
note the commune base path. Let r be an A-connection on a
vector bundle E!M and let s : ½0; 1� � ½0; 1� ! E be a section

over c. For any � 2 ½0; 1�, t#að�; tÞ is an A-path and rts de-
notes the derivative of t#sð�; tÞ along this A-path. On the
other hand, for any t 2 ½0; 1�, �#bð�; tÞ is an A-path and r�s

denotes the derivative of �#sð�; tÞ along this A-path.
The first claim in the following proposition is a reformula-

tion of a part of Proposition 1.3 in [7].

Proposition 2.10. With the notation above the following asser-

tions hold.

1. For any linear A-connection D, the variation

Dða; bÞ ¼ Dtb�D�a� TDða; bÞ

does not depend on D and satisfies #ðDða; bÞÞ ¼ 0.
2. for any A-connection r on E and for any section s of E over c

rtr�s�r�rts ¼ Rða; bÞsþrDða;bÞs:

Proof.

1. Fix ð�0; t0Þ 2 ½0; 1� � ½0; 1� and choose a local coordinates
ðx1; . . . ; xq; y1; . . . ; yn�qÞ near x0 ¼ cð�0; t0Þ and a basis of sec-
tions ða1; . . . ; arÞ as in Theorem 2.2 (q ¼ rank#x0 ). In these

coordinates, we have

að�; tÞ ¼
Pr

i¼1a
ið�; tÞai;

bð�; tÞ ¼
Pr

i¼1b
ið�; tÞai;

cð�; tÞ ¼ ðx1ð�; tÞ; . . . ; xqð�; tÞ; c1; . . . ; cn�qÞ;
@c
@t
¼
Pq

j¼1
@xj
@t
@xj ¼

Pq
i¼1a

jð�; tÞ@xj ;

@c
@�
¼
Pq
j¼1

@xj
@�
@xj ¼

Pq
i¼1b

jð�; tÞ@xj ;

8>>>>>>>>>><>>>>>>>>>>:
ð8Þ

where c1; . . . ; cn�q are constant. Now

Dtb ¼
Xr
i¼1

@bi

@t
ai þ

Xr
i;j¼1

ajbiDaj ai and

D�a ¼
Xr
i¼1

@ai

@�
ai þ

Xr
i;j¼1

aibjDaj ai:

Hence
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Dtb�D�a ¼
Xr
i¼1

@bi

@t
� @a

i

@�

� �
ai þ TDða; bÞ þ

Xr
i;j¼1

aibj½ai; aj�:

Now, form (8), we have @bi

@t
¼ @ai

@�
for any i ¼ 1; . . . ; q, so

Dtb�D�a� TDða; bÞ ¼
Xr
i¼qþ1

@bi

@t
� @a

i

@�

� �
ai

þ
Xr
i;j¼1

aibj½ai; aj�: ð9Þ

One can see that the right hand of this equality lies in Ker#
and does not depend on D.
2. We choose a local trivialization ðx1; . . . ; xq; y1; . . . ; yn�q;

a1; . . . ; arÞ as above, we trivialize E near x0 by a local basis
of sections ðe1; . . . ; elÞ and put

sð�; tÞ ¼
Xl

j¼1
sjð�; tÞej:

We have

rts¼
Xl

j¼1

@sj

@t
ejþ

X
i;j

aisjrai ej:

r�rts¼
Xl

j¼1

@2sj

@�@t
ejþ

X
i;j

bi @s
j

@t
þ@a

i

@�
sjþai @s

j

@�

� �
rai ejþ

X
i;j;k

bkaisjrakrai ej:

rtr�s¼
Xl

j¼1

@2sj

@t@�
ejþ

X
i;j

ai @s
j

@�
þ@b

i

@t
sjþbi @s

j

@t

� �
rai ejþ

X
i;j;k

akbisjrakrai ej:

rtr�s�r�rts�Rða;bÞs¼
X
i;j

@bi

@t
�@a

i

@�

� �
sjrai ejþ

X
i;j;k

akbisjr½ak ;ai �ej:

The above computation and (9) give the desired formula. h

From the expression of Dða; bÞ given by (9) and from (8),

we have

Dða; bÞ ¼ 0()
@ai

@�
� @bi

@t
¼
Pr
l;k¼1

albkCi
lk i ¼ qþ 1; . . . ; r;

aj ¼ @xj
@t
; bj ¼ @xj

@�
j ¼ 1; . . . ; q:

8><>:
ð10Þ

Now by using the standard results about linear differential sys-
tems one can deduce easily the following useful proposition
(compare to Proposition 1.1 in [7]).

Proposition 2.11. Let p : A!M be a Lie algebroid. Then, for a
given variation of A-paths a and for given b0 : ½0; 1� ! A such
that #ðb0Þð�Þ ¼ @p�a

@� ð�; 0Þ there exists an unique transverse

variation b to a such that

Dða; bÞ ¼ 0 and bð�; 0Þ ¼ b0ð�Þ forany � 2 ½0; 1�:

Following [7], we can now define the homotpoy of A-paths

with fixed end-points. Let a0 and a1 be two A-paths on a Lie
algebroid p : A!M such that pða0ð0ÞÞ ¼ pða1ð0ÞÞ and
pða0ð1ÞÞ ¼ pða1ð1ÞÞ. An A-homotopy with fixed end-points

from a0 to a1 is a variation of A-paths a such that:

(i) pðað�; 0ÞÞ ¼ pðað0; 0ÞÞ and pðað�; 1ÞÞ ¼ pðað0; 1ÞÞ for any
� 2 ½0; 1�, að0; :Þ ¼ a0 and að1; :Þ ¼ a1,

(ii) the unique transverse variation b to a satisfying

Dða; bÞ ¼ 0 and bð�; 0Þ ¼ 0 satisfies also bð�; 1Þ ¼ 0.

The following Lemma will be useful latter.
Lemma 2.12. Let a0 : ½0; 1� ! A be an A-path and

b0 : ½0; 1� ! A an a0-section such that b0ð0Þ ¼ b0ð1Þ ¼ 0. Then
there exists an A-homotopy a with fixed end-points such that
að0; :Þ ¼ a0 and the corresponding transverse variation b satisfies

bð0; :Þ ¼ b0.

Proof. Consider the base path c0 : ½0; 1� !M of a0 and choose

an homotopy c : ½0; 1� � ½0; 1� !M with fixed end points such

that c lies in the same leaf as c0, cð0; :Þ ¼ c0 and
@c
@�
ð0; tÞ ¼ #ðb0ðtÞÞ. We choose also b : ½0; 1� � ½0; 1� ! A such

that bð0; tÞ ¼ b0ðtÞ for any t 2 ½0; 1�, bð�; 0Þ ¼ bð�; 1Þ ¼ 0 for

any � 2 ½0; 1� and @c
@�
ð�; tÞ ¼ #ðbð�; tÞÞ for any ð�; tÞ. From

(10), one can deduce that there exists an unique variation

a : ½0; 1� � ½0; 1� ! A such that the base path of a is c,
@c
@t
ð�; tÞ ¼ #ðað�; tÞÞ, að0; :Þ ¼ a0 and Dða; bÞ ¼ 0: This variation

is clearly an A-homotopy with fixed end-points and satisfies

the required properties. h
2.6. The modular class of a Lie algebroid

We recall briefly the definition of the modular class of a Lie
algebroid. For a detailed presentation see [8].

The canonical representation of a Lie algebroid A is the flat
A-connexion DA on the line bundle LA ¼ ^topA� ^topT�M
defined by

DA
a ðk� mÞ ¼ ½a; k� � mþ k� L#ðaÞm;

where a 2 CðAÞ, k 2 Cð^topAÞ and m 2 Cð^topT�MÞ. If k� m is
a nowhere-vanishing section of LA, the 1-form hk�m 2 CðA�Þ gi-
ven by

DA
a ðk� mÞ ¼ hk�mðaÞk� m ð11Þ

is a dA-cocycle and its class is independent of the choice of the
section k� m. The section hk�m is called a modular cocycle of A

and its class is called the modular class of A.
3. Riemannian metrics on Lie algebroids

In this section, we introduce the notion of Riemannian metric
on a Lie algebroid which is a natural extension of the notion of

Riemannian metric on a manifold. We show that most of the
classical notions associated to a Riemannian metric can be de-
fined in this context, namely, Levi-Civita connection, geode-

sics, geodesic flow, Sasaki metric, first and second variation
formulas, Jacobi fields, the exponential. . .We show also that
the Riemannian curvature of a Riemannian metric on a Lie
algebroid satisfies formulas which are formally identical to

the O’Neill formulas for Riemannian submersions.

3.1. The Levi-Civita connection of a Riemannian metric on a Lie

A Riemannian metric on a Lie algebroid p : A!M is the
data, for any x 2M, of a scalar product h ; ix on the fiber

Ax such that, for any local sections a; b 2 CðAÞ, the function
ha; bi is smooth.

A Riemannian metric on a Lie algebroid p : A!M is the

data, for any x 2M, of a scalar product h ; ix on the fiber
Ax such that, for any local sections a; b 2 CðAÞ, the function
ha; bi is smooth.
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The most interesting fact about Riemannian metrics on Lie

algebroids is the existence on the analogous of the Levi-Civita
connection. Indeed, if h ; i is a Riemannian metric on a Lie
algebroid p : A!M, then the formula

2hDab; ci ¼ #ðaÞ:hb; ci þ#ðbÞ:ha; ci �#ðcÞ:ha; bi þ h½c; a�; bi
þ h½c; b�; ai þ h½a; b�; ci

defines a linear A-connection which is characterized by the two
following properties:

(i) D is metric, i.e., #ðaÞ:hb; ci ¼ hDab; ci þ hb;Daci,

(ii) D is torsion free, i.e., Dab�Dba ¼ ½a; b�:

We call D the Levi-Civita A-connection associated to the
Riemannian metric h ; i.

In a system of coordinates ðx1; . . . ; xnÞ over a trivializing

neighborhood U of M where A admits a basis of local sections
ða1; . . . ; arÞ the Levi-Civita A-connection is determined by the
Christoffel’s symbols defined by Dai aj ¼

P
kC

k
ijak. A direct

computation gives

Ck
ij ¼

1

2

Xr
l¼1

Xn
u¼1

gkl biu@xuðgjlÞ þ bju@xuðgilÞ � blu@xuðgijÞ
� �

þ 1

2

Xr
l¼1

Xr
u¼1

gkl Cu
ijgul þ Cu

liguj þ Cu
ljgui

� �
; ð12Þ

where the structure functions bsi;Cu
st 2 C1ðUÞ are given by

#as ¼
Xn
i¼1

bsi@xi ðs ¼ 1; . . . ; rÞ;

½as; at� ¼
Xr
u¼1

Cu
stau ðs; t ¼ 1; . . . ; rÞ;

gij ¼ hai; aji and ðgijÞ denotes the inverse matrix of ðgijÞ.

Remark 3.1. There are two extremal cases:

1. The Lie algebroid A is the tangent bundle TM of a mani-
fold and we recover the classical notion of Riemannian

manifold.
2. The Lie algebroid A is a Lie algebra G considered as a Lie

algebroid over a point. In this case a Riemannian metric on

G is a scalar product h ; i and the Levi-Civita G-connection
is the product D : G � G ! G given by

2hDuv;wi ¼ h½u; v�;wi þ h½w; u�; vi þ h½w; v�; ui:

Actually D is the infinitesimal data associated to the Levi-Civi-

ta connection of the left invariant metric associated to h ; i on
any Lie group with G as a Lie algebra.

The general setting is a combination of these two extremal
cases. Indeed, let h ; i be a Riemannian metric on a Lie alge-

broid p : A!M with anchor #. For any leaf L of the charac-
teristic foliation and for any x 2 L,

Ax ¼ Gx 	 G?x ;

where G?x is the orthogonal to Gx with respect h ; ix. The
restriction of the anchor # to G?x is an isomorphism into
TxL and hence induces a scalar product on TxL
hu; viL ¼ ha; bi;

where a; b 2 G?x and #ðaÞ ¼ u and #ðbÞ ¼ v. Thus h ; i induces
a Riemannian metric h ; iL on L. We call it the induced Rie-
mannian metric on L. On the other hand, the scalar product
h ; ix induces a scalar product on Gx and we denote by bD the

Levi-Civita Gx-connection associated with ðGx; h ; ixÞ.
Let us precise more this situation. Fix a leaf L and consider

pL : AL ! L. We have

AL ¼ GL 	 G?L :

We call the elements of CðGLÞ vertical sections and the elements

of CðG?L Þ horizontal sections. For any section a, we denote by av

and ah, respectively, its horizontal and vertical component.
Note that the bracket of a vertical section with every section
is a vertical section. Thus, in the Riemannian point of view,

the short exact sequence

0! GL ! AL ! TL

is formally identical to a Riemannian submersion. So we can
introduce the O’Neill tensors [15] (see [1] for a detailed

presentation).
We denote by T and H the elements of CðA� � A� � AÞ

whose values on sections a; b are given by

Tab ¼ ðDavb
vÞh þ ðDavb

hÞv and Hab ¼ ðDahb
vÞh þ ðDahb

hÞv:

The following properties of T and H follow immediately from
the definition: for any a; b 2 CðAÞ,

Hahb
h ¼ 1

2
½ah; bh�v; ð13Þ

Davb
h ¼ Tavb

h þ ðDavb
hÞh; ð14Þ

Dahb
v ¼ ðDahb

vÞv þHahb
v; ð15Þ

Dahb
h ¼ Hahb

h þ ðDahb
hÞh: ð16Þ

Moreover, for any u; v 2 Gx,

Duv ¼ bDuvþ Tuv: ð17Þ

The following proposition is an immediate consequence of

(16).

Proposition 3.2. Let c : ½t0; t1� ! L be a smooth path and let
ch : ½t0; t1� ! G?L be the unique A-path with the base path c. Then
c is a geodesic with respect to the induced Riemannian metric on

L if and only if ch is a geodesic of the Levi-Civita A-connexion.

The following proposition gives an interpretation of the
tensors T and H.

Proposition 3.3.

1. The Levi-Civita A-connection is strongly compatible with
the Lie algebroid structure if and only if T ¼ H ¼ 0:

2. The Levi-Civita A-connection is weakly compatible with

the Lie algebroid structure if and only if T ¼ 0.

Proof. This is a consequence of Proposition 2.7, (14)–(16).
h
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3.2. Geodesic flow of a Riemannian Lie algebroid

The Riemannian structure on a Lie algebroid A gives arise to
an identification between A and A�. Thus A inherits a Poisson

structure from the canonical Poisson structure of A�. As the
classical case (when A ¼ TM), the Hamiltonian vector field
associated to the energy function on A is the geodesic flow

of the Riemannian Lie algebroid. In this section, we give a
complete proof of this fact and we generalize all the classical
notions related to the geodesic flow, namely, the Sasaki metric,
the first and second variation formulas, the Jacobi fields and

the exponential. We show that the divergence of the geodesic
flow according to the Sasaki metric is a modular cocycle and
the modular class of the Lie algebroid is the obstruction to

the vanishing of this divergence.
Let p : A!M be a Lie algebroid and h ; i a Riemannian

metric on A. The Riemannian metric defines a bundle isomor-

phism between A and A� which transport the Lie–Poisson
structure on A� into a Poisson structure say ph ; i in A. Let
E : A! R be the energy function given by EðaÞ ¼ 1

2
ha; ai

and let XE denote the hamiltonian vector field associated to
E with respect to ph ; i. The following result is a generalization
of a well-known result in Riemannian geometry.

Theorem 3.4. The geodesics of the Levi-Civita A-connection

associated to h ; i are the integral curves of the hamiltonian
vector field XE.

Proof. Let ðx1; . . . ; xnÞ be a system of coordinates over an open
set U ofM where A admits a basis of local sections ða1; . . . ; arÞ.
The structure functions bsi;Cu

st 2 C1ðUÞ are given by

#as ¼
Xn

i¼1
bsi@xi ðs ¼ 1; . . . ; rÞ;

½as; at� ¼
Xr

u¼1
Cu

stau ðs; t ¼ 1; . . . ; rÞ:

We denote by ðl1; . . . ; lrÞ the linear coordinates on the fibers of
A associated to ða1; . . . ; arÞ and by ðn1; . . . ; nrÞ its dual coordi-
nates onA�. Recall that the Poisson brackets on A� are given by

fxi; xjg ¼ 0; fxi; nsg ¼ �bsi and fns; ntg ¼
X
u

Cu
stnu:

Put gij ¼ hai; aji and denote by ðgijÞ the inverse matrix of ðgijÞ.
The isomorphism h ; i# : A� ! A, the energy function and XE

are given, respectively, by

ðx1; . . . ; xn; n
1; . . . ; nrÞ#ðx1; . . . ; xn;

Xr

i¼1
g1ini; . . . ;

Xr

i¼1
griniÞ;

E ¼ 1

2

X
i;j
gijlilj;

XE ¼
Xn

i¼1
fE; xig@xi þ

Xr

j¼1
fE; ljg@lj :

According to (7), we must show that, for i ¼ 1; . . . ; n and
j ¼ 1; . . . ; r,

fE; xig ¼
X
k

lkb
ki and fE; ljg ¼ �

X
s;t

lsltC
j
st; ð18Þ

where Cj
st are the Christoffel symbols given by (12), i.e.,

Ck
ij ¼

1

2

Xr
l¼1

Xn
u¼1

gkl biu@xuðgjlÞ þ bju@xuðgilÞ � blu@xuðgijÞ
� �

þ 1

2

Xr
l¼1

�
Xr
u¼1

gkl Cu
ijgul þ Cu

liguj þ Cu
ljgui

� �
:

1. The first relation in (18) is a straightforward computation.
Indeed,

fE; xig ¼
1

2

X
k;l

gklflkll; xig ¼
1

2

X
k;l

gkl lkfll; xig þ llflk; xigð Þ

¼
X
k;l

gkllkfll; xig ¼
X
k;l

gkllkf
X
j

gljnj; xig

¼
X
k;l;j

gklg
ljlkfnj; xig ¼

X
k;l;j

gklg
ljlkb

ji

¼
X
k;j

X
l

gklg
lj

 !
lkb

ji ¼
X
k

lkb
ki:

2. We must work much more to establish the second relation
in (18).Note first thatX
s;t

lsltC
j
st ¼

1

2

�
X
s;t;u;l

gjl bsu@xuðgtlÞ þ btu@xuðgslÞ � blu@xuðgstÞ
� �

lsl

þ 1

2

X
s;t;u;l

gjl Cu
stgul þ Cu

lsgut þ Cu
ltgus

� �
lslt ¼

ðaÞ

�
X
s;t;u;l

gjl bsu@xuðgtlÞ �
1

2
blu@xu ðgstÞ

� �
lslt

þ
X
s;t;u;l

gjlgutC
u
lslslt:

ð19Þ

We have used in (a) the fact that Cst
u ¼ �Cts

u . Now

2fE; ljg ¼
X
s;t

fgstlslt; ljg

¼
X
s;t

gstflslt; ljg þ lsltfgst; ljg
� �

¼
X
s;t

gstlsflt; ljg þ gstltfls; ljg
� �

þ
X
s;t;l

lsltg
jlfgst; nlg

¼ 2
X
s;t

gstlsflt; ljg �
X
s;t;l;u

gjlblu@xuðgstÞlslt: ð20Þ

By comparing (19) and (20), one can see that the desired rela-
tion is equivalent toX
s;t

gstlsflt; ljg ¼
X
s;t;u;l

gjl �bsu@xuðgtlÞ þ blu@xuðgstÞ
� �

lslt

�
X
s;t;u;l

gjlgutC
u
lslslt: ð21Þ

Let us establish this relation. Note first that

fli; ljg ¼
X
k;l

gilnl; g
jknk

� 	
¼
X
k;l

gilgjkfnl; nkg þ gilnkfnl; g
jkg þ gjknlfgil; nkg

� �
¼
X
k;l;u

gilgjkCu
lknu þ

X
k;l;u

gilnkb
lu@xuðgjkÞ

�
X
k;l;u

gjknlb
ku@xuðgilÞ

¼
X
k;l;u

gilgjkCu
lknu þ

X
k;l;u

blk gil@xkðgjuÞ � gjl@xkðgiuÞ
� �

nu:
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HenceX
s;t

gstlsflt; ljg ¼
X
s;t;k;l;u

gstg
tlgjkCu

lklsnu

þ
X
s;t;k;l;u

blk gtl@xkðgjuÞ � gjl@xkðgtuÞ
� �

gstlsnu:

NowX
s;t;k;l;u

gstg
tlgjkCu

lklsnu ¼
X
s;k;u

gjkCu
sklsnu ¼

X
s;t;k;u

gjkCu
sklsgutlt

¼ �
X
s;t;u;l

gjlgutC
u
lslslt:

X
s;t;k;l;u

blkgtl@xkðgjuÞgstlsnu ¼
X
s;k;u

bsk@xkðgjuÞlsnu

¼
X
s;t;k;u

bskgut@xkðgjuÞlslt

¼
X
s;t;k;u

bsk@xkðgutgjuÞlslt

�
X
s;t;k;u

bskgju@xkðgutÞlslt

¼ �
X
s;t;u;l

bsugjl@xuðgltÞlslt:

X
s;t;k;l;u

blkgjl@xkðgtuÞgstlsnu ¼ �
X
s;t;k;l;u

blkgjl@xkðgstÞgtulsnu

¼ �
X

s;t;k;l;u;h

blkgjl@xkðgstÞgtuguhlslh

¼ �
X
s;t;k;l

blkgjl@xkðgstÞlslt

¼ �
X
s;t;u;l

blugjl@xuðgstÞlslt:

Thus we get (21) and the theorem follows. h

The flow of the Hamiltonian vector field XE is called the
geodesic flow of h ; i.

Remark 3.5. Let p : A!M be a Riemannian Lie algebroid.

Then:

1. For any leaf L, the geodesic vector field X E is tangent to AL

and to Gx for any x 2 L. This follows from the fact that geo-

desics are A-paths.
2. From Proposition 3.2, one can deduce that, for any leaf L,

the geodesic vector field X E is tangent to G?L .

Corollary 3.6. Let p : A!M be Riemannian Lie algebroid.
Then

1. If L is a compact leaf then the geodesic flow is complete in
restriction to AL.

2. If M is compact then the geodesic flow is complete and for

any leaf L the induced Riemannian metric h ; iL is complete.

We will now construct an analogous of the Sasaki metric on
A and study the divergence of the geodesic flow with respect to
this metric. Actually, the Sasaki metric is not defined on A but

only on AL where L is a leaf of the characteristic foliation.
Let p : A!M be a Riemannian Lie algebroid with anchor

#. Fix a leaf L, consider pL : AL ! L and put VAL ¼ KerdpL.
For any a 2 AL, we consider the subspace H?AL of TaAL

consisting of the tangent vectors Va such that there exists an
horizontal A-path a : ½0; 1� ! G?L satisfying pðað0ÞÞ ¼ pðaÞ
and Va ¼ d

dtjt¼0s
t
aðaÞ; where sa is the parallel transport along

a. We have

TAL ¼ VAL 	H?AL: ð22Þ

Indeed, we define K : TAL ! AL as follows. Fix a 2 AL and

Z 2 TaAL and choose b : ½0; 1� ! AL such that bð0Þ ¼ a and
_bð0Þ ¼ Z. There exists an unique horizontal A-path
a : ½0; 1� ! G?L with the base path p � bðtÞ. Put
KðZÞ ¼ ðDabÞð0Þ:

It is easy to check that K is well-defined, KerK ¼ H?AL and,
for any Z 2 VAL, KðZÞ ¼ Z. Then the relation (22) follows.

Let ðx1; . . . ; xlÞ be a system of local coordinates on an open

set U in L and ða1; . . . ; arÞ is a basis of local sections (over U) of
AL. This defines a system of coordinates ðx1; . . . ; xl; l1; . . . ; lrÞ
on AL and if Z ¼

P
jbj@xj þ

P
jZ

j@lj then

KðZÞ ¼
X
l

Zl þ
X
i;j

ailjC
l
ij

 !
al; ð23Þ

where dpLðZÞ ¼ #ð
P

iaiaiÞ and
P

iaiai 2 G?L .

Remark 3.7. In general, the geodesic vector field does not lies
in KerK. Indeed, one can check easily that for any a 2 AL

KðXEðaÞÞ ¼ �Dava:

We define the Sasaki metric on AL by

gLðZa;ZaÞ ¼ hdapðZaÞ; dapðZaÞiL þ hKðZaÞ;KðZaÞi:

The projection pL : AL ! L becomes a Riemannian submer-
sion. We consider now the Liouville vector field r! on AL

which is the vector field generating the flow /tðaÞ ¼ eta. By di-
rect computation one can get

½ r!;XE� ¼ XE: ð24Þ

From this relation, one deduce that XE preserves the Riemann-

ian volume on AL associated to gL if and only if XE preserves
the Riemannian volume of the restriction of gL to the spheres
bundle UAL ¼ fa 2 AL; ha; ai ¼ 1g. Let us compute the diver-

gence of the geodesic vector field with respect to gL.

Theorem 3.8. The divergence the geodesic vector field XE with
respect to the Sasaki metric gL is given by

divðXEÞðaÞ ¼ Tradav þ hah;Ni; ð25Þ

where adav : GpðaÞ ! GpðaÞ, b! ½av; b� and N ¼
P

iTbibi where
ðb1; . . . ; bsÞ is any orthonormal basis of GpðaÞ and T is the O’Neill
tensor.

Proof. Denote by l the dimension of L and choose a system of
local coordinates ðx1; . . . ; xlÞ in some open set U of L. Choose
ða1; . . . ; alÞ an orthonormal basis of sections of G?L ! U and

ðb1; . . . ; br�lÞ an orthonormal basis of sections of GL ! U.
We get a system of coordinates ðx; lÞ in AL. Put, for any
i ¼ 1; . . . ; l,
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#ðaiÞ ¼
X
j

pij@xj and Zi ¼
X
j

pij@xj �
X
l

ð
X
j

ljC
l
ijÞ@ll :

By using (23), one can check easily that KðZiÞ ¼ 0 and

Kð@liÞ ¼ ai for i ¼ 1; . . . ; l and Kð@liÞ ¼ bi for
i ¼ lþ 1; . . . ; l� r. Moreover ðZ1; . . . ;Zl; @l1 ; . . . ; @lrÞ is an
orthonormal frame of gL and hence

divðXEÞ ¼
X
i

gLð½Zi;XE�;ZiÞ þ
X
j

gLð½@lj ;XE�; @ljÞ:

Recall that

XE ¼
Xl

i;k¼1
pkilk@xi �

X
j;s;t

lsltC
j
st@lj :

So, for 1 6 j 6 l,

½@lj ;XE� ¼
X
i

pji@xi �
X
i;t

ltðCi
jt þ Ci

tjÞ@li ;

gLð½@lj ;XE�; @ljÞ ¼ hKð½@lj ;XE�Þ;Kð@ljÞi ¼
ð23Þ �

X
t

ltC
j
tj ¼ 0;

since Cj
tj ¼ hDataj; aji ¼ �haj;Dataji:

For j P lþ 1

½@lj ;XE� ¼ �
X
i;t

ltðCi
jt þ Ci

tjÞ@li ;

gLð½@lj ;XE�; @ljÞ ¼ �
X
t

ltC
j
jt:

HenceX
j

gLð½@lj ;XE�; @ljÞ ¼ �
X
jPlþ1

X
t

ltC
j
jt

¼ �
X
jPlþ1

Xl

t¼1
lthDbj at; bji �

X
jPlþ1

�
X
tPlþ1

lthDbj bt; bji

¼ hah;
X
jPlþ1
Dbj bji �

X
jPlþ1
hDbj a

v; bji

¼ hah;
X
jPlþ1

Tbjbji �
X
jPlþ1
h½bj; av�; bji

¼ hah;Ni þ Tradav :

On the other hand, one can see easily that

XE ¼
Xl

k¼1
lkZ

k �
Xr
j¼1

X
sPlþ1;t

lsltC
j
st@lj ¼

Xl

k¼1
lkZ

k þ V:

Note that V is vertical and since, for any i ¼ 1; . . . ; l, Zi is basic
(with respect to the Riemannian submersion pL : AL ! L) then
½Zi;V� is vertical. Note also that, for any i; k ¼ 1; . . . ; l,
dpLð½Zi;Zk�Þ ¼ #ð½ai; ak�Þ. HenceX
i

gLð½Zi;XE�;ZiÞ ¼
X
i;k

gLð½Zi; lkZ
k�;ZiÞ

¼
X
i

ZiðliÞ þ
X
i;k

lkh#ð½ai; ak�Þ;#aiiL

¼
X
i

ZiðliÞ þ
X
i;k

lkh½ai; ak�
h
; aii

¼
X
i

ZiðliÞ þ
X
i;k

lkh½ai; ak�; aii

¼ �
X
i;k

lkC
i
ik þ

X
i;k

lkC
i
ik ¼ 0:
Finally, we get the desired formula. h

The following proposition gives an interesting interpreta-
tion of divXE, namely divXE is a modular cocycle.

Proposition 3.9. Let p : A!M be a transitive Riemannian Lie
algebroid such that both A and TM are orientable. Denote by
k 2 Cð^topAÞ and m 2 Cð^topT�MÞ, respectively, the Riemann-
ian volume associated to h ; i and the Riemannian volume

associated to h ; iM then

DAðk� mÞ ¼ divðXEÞðk� mÞ;

where DA is the canonical representation of A. Thus divðXEÞ is a
modular cocycle.

Proof. Choose a local orthonormal basis ða1; . . . ; anÞ of sec-
tions of G?L and a local orthonormal basis ðb1; . . . ; br�nÞ of sec-
tions of GL. Recall that

DA
a ðk� mÞ ¼ ½a; k� � mþ k� L#ðaÞm:

Now

½a; k� ¼
Xn
i¼1
h½a; ai�; aii þ

Xr�n
i¼1
h½a; bi�; bii

 !
k;

¼
Xn
i¼1
h½ah; ai�; aii þ

Xr�n
i¼1
h½a; bi�; bii

 !
k;

L#ðaÞm ¼
Xn
i¼1
h½#ðaiÞ;#ðaÞ�;#ðaiÞiM

 !
m

¼
Xn
i¼1
h½ai; ah�; aii

 !
m:

On the other hand,Xr�n
i¼1
h½a; bi�; bii ¼

Xr�n
i¼1
h½av; bi�; bii þ

Xr�n
i¼1
h½ah; bi�; bii

¼ Tradav þ
Xr�n
i¼1
hah;Dbi bii ¼

ð17Þ
Tradav

þ hah;
Xr�n
i¼1

Tbibii;

which completes the proof. h

Remark 3.10.

1. If A ¼ TM then divðX EÞ ¼ 0 and one recover the classical
Liouville Theorem.

2. If A is a Lie algebra then divðX EÞ ¼ 0 if and only if A is

unimodular.
3. If A is a transitive unimodular Lie algebroid then there

exists a Riemannian metric on A such that divðX EÞ ¼ 0.

We will now establish the first and the second variation for-

mulas in the context of Riemannian Lie algebroids.
Let p : A!M be a Riemannian Lie algebroid with anchor

#. For any A-path a : ½0; 1� ! A, the energy and the length of
a are given, respectively, by
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EðaÞ ¼ 1

2

Z 1

0

haðtÞ; aðtÞidt and LðaÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
haðtÞ; aðtÞi

p
dt:

For any m; q lying in the same leaf of the characteristic folia-

tion, we denote by Xmq the set of A-path a such that
pðað0ÞÞ ¼ m and pðað1ÞÞ ¼ q.

Proposition 3.11 (First variation formulas). Let p : A!M be
a Riemannian Lie algebroid. Then:

1. For any variation of A-paths a : ½0; 1� � ½0; 1� ! A and for
any b a transverse variation to a, one has

d

d�
EðaÞ ¼ hbð�; 1Þ; að�; 1Þi � hbð�; 0Þ; að�; 0Þi �

Z 1

0

hb;Dtaidt

�
Z 1

0

hDða; bÞ; aidt:

2. The h-critical points of E : Xmq ! R, namely the A-paths a0

such that

d

d�
EðaÞj�¼0 ¼ 0

for any A-homotopy a in Xmq starting at a0, are geodesics.
3. For any variation of A-paths a such that a0 is parameterized

with arc-length,

d

d�
EðaÞj�¼0 ¼

d

d�
LðaÞj�¼0:

4. An A-path a0 2 Xmq is h-critical for L, namely

d

d�
LðaÞj�¼0 ¼ 0

for any A-homotopy in Xmq starting at a0, if and only if there
exists a change of parameter l such that the A-path
~a0 ¼ l0a0ðlÞ is a geodesic.

Proof.

1. Let us compute d
d�EðaÞ. We have

d

d�
Eða�Þ ¼

1

2

d

d�

Z 1

0

ha;aidt¼ 1

2

Z 1

0

d

d�
ha;aidt¼

Z 1

0

hD�a;aidt

¼
Z 1

0

hDtb;aidt�
Z 1

0

hDða;bÞ;aidt ðProposition2:10Þ

¼
Z 1

0

@tðhb;aiÞdt�
Z 1

0

ðhb;DtaiÞdt�
Z 1

0

hDða;bÞ;aidt

¼ hbð�;1Þ;að�;1Þi� hbð�;0Þ;að�;0Þi�
Z 1

0

hb;Dtaidt

�
Z 1

0

hDða;bÞ;aidt:

Analogously one can get

d

d�
LðaÞ ¼

Z 1

0

jaj�1=2@tðhb; aiÞdt

�
Z 1

0

jaj�1=2ðhb;DtaiÞdt

�
Z 1

0

jaj�1=2hDða; bÞ; aidt: ð26Þ
2. Let a0 be geodesic and let a be an A-homotopy with fixed

end-point starting at a0. Then there exists a transverse var-
iation b to a such that bð�; 0Þ ¼ bð�; 1Þ ¼ 0 and Dða; bÞ ¼ 0.
Hence from 1, we get

d

d�j�¼0
EðaÞ ¼ 0:

Conversely, suppose that a0 is an A-path which is a h-crit-
ical point of E : Xmq ! R. Consider the a0-section
b0ðtÞ ¼ fðtÞDta0 where f : ½0; 1� ! R is a smooth function

such that fð0Þ ¼ fð1Þ ¼ 0. According to Lemma 2.12, there
exists an A-homotopy a with fixed end-points and starting
at a0 and such the corresponding transverse variation b
satisfies bð0; tÞ ¼ b0ðtÞ. By applying the formula in 1., we
get

0 ¼
Z 1

0

fðtÞhDta0;Dta0idt

and hence Dta0 ¼ 0 which means that a0 is a geodesic.
3. This is a consequence of (26) and ja0j ¼ 1.
4. Immediate from 2. and 3. h

Proposition 3.12. Second variation formulas). Let p : A!M
be a Riemannian Lie algebroid. Then the following assertions
hold.

1. For any variation of A-paths a such that a0 is a geodesic and
for any b a transverse variation to a such that Dða; bÞ ¼ 0,
one has

d2

d�2
EðaÞj�¼0 ¼ hD�bð0; 1Þ; að0; 1Þi � hD�bð0; 0Þ; að0; 0Þi

þ
Z 1

0

hDtb0;Dtb0idtþ
Z 1

0

hb0;Rða0; b0Þa0idt:

2. Let a be an A-homotopy of A-paths such that a0 is a geodesic
and let b be the corresponding transverse variation. One
has

d2

d�2
EðaÞj�¼0 ¼

Z 1

0

hDtb0;Dtb0idtþ
Z 1

0

hb0;Rða0; b0Þa0idt:

3. Let a be a variation of A-paths such that a0 is a geodesic
parameterized by arc length and let b a transverse variation
to a such that Dða; bÞ ¼ 0. One has

d2

d�2
LðaÞj�¼0 ¼ hD�bð0; 1Þ; að0; 1Þi � hD�bð0; 0Þ; að0; 0Þi

þ
Z 1

0

hDtb0;Dtb0idtþ
Z 1

0

hb0;Rða0; b0Þa0idt

�
Z 1

0

ha0;Dtb0idt:

4. Let a be an A-homotopy of A-paths such that a0 is a geodesic
parameterized by arc length and let b be the corresponding

transverse variation. One has

d2

d�2
LðaÞj�¼0 ¼

Z 1

0

hDtb0;Dtb0idtþ
Z 1

0

hb0;Rða0; b0Þa0idt

�
Z 1

0

ha0;Dtb0idt:
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Proof.

1. From the first variation formula, we have

d

d�
EðaÞ ¼ hbð�; 1Þ; að�; 1Þi � hbð�; 0Þ; að�; 0Þi �

Z 1

0

hb;Dtaidt:

Then

d2

d�2
EðaÞ ¼ hD�bð�; 1Þ; að�; 1Þi þ hbð�; 1Þ;D�að�; 1Þi

� hD�bð�; 0Þ; að�; 0Þi � hbð�; 0Þ;D�að�; 0Þi

�
Z 1

0

hD�b;Dtaidt�
Z 1

0

hb;D�Dtaidt:

Z 1

0

hb;D�Dtaidt ¼
Z 1

0

hb;DtD�aidt

þ
Z 1

0

hb;Rðb; aÞaidt ðProposition2:10Þ

¼
Z 1

0

@tðhb;D�aiÞdt�
Z 1

0

hDtb;D�aidt

þ
Z 1

0

hb;Rðb; aÞaidt

¼ hbð�; 1Þ;D�að�; 1Þi � hbð�; 0Þ;D�að�; 0Þi

�
Z 1

0

hDtb;Dtbidtþ
Z 1

0

hb;Rðb; aÞaidt

Hence

d2

d�2
EðaÞ ¼ hD�bð�; 1Þ; að�; 1Þi � hD�bð�; 0Þ; að�; 0Þi

�
Z 1

0

hD�b;Dtaidtþ
Z 1

0

hDtb;Dtbidt

þ
Z 1

0

hb;Rða; bÞaidt:

2. In this situation, we have D�bð�; 1Þ ¼ D�bð�; 0Þ ¼ Dta ¼ 0
and the formula follows:3 and 4 are left to the reader. h

As an application of Proposition 3.11 2, we give now a

description of the geodesics of a left invariant Riemannian
metric on a Lie group using the geodesics of its Lie algebra
considered as a Riemannian Lie algebroid.

Let G be a Lie group and G ¼ TeG its Lie algebra. For any

u 2 G, we denote by uþ the associated left invariant vector field
on G. Suppose that G is endowed with a left invariant Rie-
mannian metric g and put h ; i ¼ ge. If we think G as a Lie

algebroid, ðG; h ; iÞ is a Riemannian Lie algebroid and we will
explain how one can construct the geodesics of ðG; gÞ from the
geodesics of ðG; h ; iÞ. Choose a basis ðe1; . . . ; enÞ of G and put

gij ¼ h ei; eji . Recall that the geodesics of ðG; h ; iÞ are the inte-
gral curves of the geodesic vector field XE given in the linear
coordinates ðx1; . . . ; xnÞ associated to ðe1; . . . ; enÞ by

XE ¼ �
X
s;t;j

xsxtC
j
st@xj ;

where Cj
st are given by

Cj
st ¼

1

2

X
l;u

glj gulC
u
st þ gutC

u
ls þ gusC

u
lt

� �
:

Here ðgijÞ is the inverse matrix of ðgijÞ and Ck
ij are given by

½ei; ej� ¼
P

uC
u
ijeu:

Proposition 3.13. Let h 2 G and v 2 ThG. Then the geodesic
c : R! G of ðG; gÞ satisfying cð0Þ ¼ h and _cð0Þ ¼ v is the
integral curve passing through h of the time-depending family of

left invariant vector fields ðaþðtÞÞt2R where a : R! G is the
geodesic of ðG; h ; iÞ satisfying að0Þ ¼ Lh�1

� �
�ðvÞ.

Proof. Note first that by invariance the integral curves of

ðaþðtÞÞt2R are complete. Note also that both ðG; gÞ and
ðG; h ; iÞ are geodesically complete. Let c : R! G be the inte-
gral curve of ðaþðtÞÞt2R satisfying cð0Þ ¼ h. We have

_cð0Þ ¼ aþð0Þ ¼ Lhð Þ�ðað0ÞÞ ¼ Lh � Lh�1ð Þ�ðvÞ ¼ v:

We will show that for any t1; t2 2 R, the restriction of c to
½t1; t2� is a critical point of the energy functional Eg : X! R

where X is the space of smooth curves l : ½t1; t2� ! G such that
lðt1Þ ¼ cðt1Þ and lðt2Þ ¼ cðt2Þ.

Let ~c : ½0; 1� � ½t1; t2� ! G be an homotopy with end-fixed

points such that ~cð0; :Þ ¼ c. It is well-known (see [7]) that the
variation ~a : ½0; 1� � ½t1; t2� ! G given by

~að�; tÞ ¼ L~cð�;tÞ�1
� �

�

@~c
@t
ð�; tÞ

� �
is a G-homotopy. Moreover, ~að0; :Þ ¼ a and, by invariance,

Egð~cÞ ¼ Eh ; ið~aÞ. By applying Proposition 3.11, we get
d
d�
Eh ; ið~aÞj�¼0 ¼ 0. Thus, d

d�
Egð~cÞj�¼0 ¼ 0 and, by applying the

classical result on geodesics of Riemannian metric we deduce
that c is a geodesic. h

Remark 3.14. If the Riemannian metric g is bi-invariant then
Ck

ij ¼ 1
2
Ck

ij and hence XE vanishes identically. We deduce from
Proposition 3.5 that the geodesic of ðG; gÞ passing through

h 2 G and with initial velocity v 2 ThG is the integral curve
(passing through h) of the left invariant vector field ðLh�1�ðvÞÞ

þ
.

Let us define now Jacobi sections along a geodesic.

Definition 3.15. Let A be a Riemannian Lie algebroid and
a : ½0; 1� ! A a geodesic. A Jacobi a-section is an a-section b
which satisfies

b00 � Rða; bÞa ¼ 0;

where b0 is the derivative of b along a and so on.

Proposition 3.16. Let a : ½0; 1� ! A be a geodesic in a Riemann-

ian Lie algebroid A. Then for any a; b 2 Apðað0ÞÞ there exists one
and only one Jacobi a-section such that bð0Þ ¼ a and b0ð0Þ ¼ b.
If bð0Þ ¼ 0 and b0ð0Þ ¼ kað0Þ then bðtÞ ¼ ktaðtÞ for any t. If
bð0Þ and b0ð0Þ are orthogonal to að0Þ, then bðtÞ is orthogonal

to aðtÞ for any t. In particular the vector space of Jacobi a-sec-
tions has dimension 2r and the subspace of Jacobi a-sections
which are normal to a has dimension 2ðr� 1Þ.

Proof. Take an orthonormal basis ða1; . . . ; arÞ of Apðað0ÞÞ such
that a1 ¼ kað0Þ. The parallel transport along a of the vectors ai
gives a basis of orthonormal a-sections ðs1; . . . ; srÞ with
s1 ¼ ka. Every Jacobi a-section b is a linear combination of si,

say b ¼
P

iyisi, whose coefficients satisfy the differential system
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y00i �
Xr
j¼2
h Rða; sjÞa; sii yj ¼ 0:

For given initial conditions bð0Þ ¼ a and b0ð0Þ ¼ b, the exis-
tence and uniqueness of b come from standard results about
linear differential systems.

If bð0Þ ¼ 0 and b0ð0Þ ¼ kað0Þ then bðtÞ ¼ ktaðtÞ since
b00ðtÞ ¼ 0.

The condition bð0Þ and b0ð0Þ to be orthogonal to a means
that y1ð0Þ ¼ 0 and y01ð0Þ ¼ 0. In that case y1ðtÞ ¼ 0 for any t,
since y00ðtÞ ¼ 0. h

Proposition 3.17. Let a0 : ½0; 1� ! A be a geodesic, and a be a
variation of a0 such that all A-paths að�; :Þ are geodesics. Then,
for any transverse variation b of a such that Dða; bÞ ¼ 0, b0 is a
Jacobi a0-section. Conversely, every Jacobi a0-section can be

obtained in this way.

Proof. We have

b000ðtÞ ¼ DtDtbð0; tÞ:

Performing the two exchanges of t and �, we get from Propo-

sition 2.10

b000ðtÞ ¼ DtD�að0; tÞ ¼ D�Dtað0; tÞ þ Rða0; b0Þa0:

Since the A-paths a� are geodesics, the first term vanishes and
we get

b000 ¼ Rða0; b0Þa0:

Conversely, take a Jacobi a0-section b and the geodesic c such
that cð0Þ ¼ bð0Þ. Take parallel sections s0 and s1 along c such

that s0ð0Þ ¼ a0ð0Þ and s1ð0Þ ¼ b0ð0Þ. Set
sð�Þ ¼ s0ð�Þ þ �s1ð�Þ and að�; tÞ ¼ /tðsð�ÞÞ;

where /t is the geodesic flow. Consider the transverse variation
b to a such that bð�; 0Þ ¼ cð�Þ and Dða; bÞ ¼ 0. We will show

that bð0; :Þ and b coincide. Remark first that these two a0-sec-
tions satisfy the same differential equation namely

y00 � Rða0; yÞa0 ¼ 0:

Since bð0Þ ¼ bð0; 0Þ ¼ cð0Þ, let us show that Dtbð0; 0Þ ¼ b0ð0Þ.
Since Dtb ¼ D�a, we have D�að0; 0Þ is the value at 0 of the
derivative of the curve að�; 0Þ along the A-path bð�; 0Þ. Or

að�; 0Þ ¼ sð�Þ and bð�; 0Þ ¼ cð�Þ and we get
D�að0; 0Þ ¼ s1ð0Þ ¼ b0ð0Þ. h

As the classical case, the Jacobi sections can be used to
compute the derivative of the exponential which can be defined
as follows. Let p : A!M be a Riemannian Lie algebroid. Fix

a point m 2M and denote by L the leaf containing m. We de-
fine the exponential

expm : U � Am ! L

where Um ¼ fa 2 Am;/1ðaÞ is definedg and expmðaÞ ¼
p � /1ðaÞ (/ is the geodesic flow).

Proposition 3.18. We have

daexpmðuÞ ¼ #ðbð1ÞÞ

where b is the Jacobi section along t#/tðaÞ with initial condition
bð0Þ ¼ 0 and b0ð0Þ ¼ u.
Proof. We have

daexpmðuÞ ¼
d

d�j�¼0
pð/1ðaþ �uÞÞ:

We consider the variation of geodesics að�; tÞ ¼ /tðaþ �uÞ with
fixed initial point. We consider the transverse variation b such
that bð�; 0Þ ¼ 0 and Dða; bÞ ¼ 0. We have that b0 is a Jacobi a0-

section such that b0ð0Þ ¼ 0 and #ðb0ð1ÞÞ ¼ d
d�j�¼0pð/1ðaþ �uÞÞ

by construction. h

As the classical case, we define the sectional curvature of
two linearly independent vectors a; b 2 Am by

Kða; bÞ ¼ � h Rða; bÞa; bi
h a; ai h b; bi � h a; bi 2 :
Proposition 3.19. Let p : A!M be a Riemannian Lie alge-
broid. If the sectional curvature is everywhere nonpositive then

expm is a submersion for every m 2M.

Proof. Fix a 2 Am and let J a
0 be the space of Jacobi sections b

along aðtÞ ¼ /tðaÞ such that bð0Þ ¼ 0 (/ is the geodesic flow).
We define the linear application

n : J a
0 ! Apð/1ða0ÞÞ

by nðbÞ ¼ bð1Þ: We will show that n is injective and hence an

isomorphism since dimJ a
0 ¼ dimApð/1ða0ÞÞ. Suppose that

b 2 J a
0 satisfies bð1Þ ¼ 0. The function f : ½0; 1� ! R given by

fðtÞ ¼ h bðtÞ; bðtÞi satisfies

f0ðtÞ ¼ 2hb0ðtÞ; bðtÞi;
f00ðtÞ ¼ 2hb0ðtÞ; b0ðtÞi þ 2hb00ðtÞ; bðtÞi

¼ 2hb0ðtÞ; b0ðtÞi þ 2hRðaðtÞ; bðtÞÞaðtÞ; bðtÞi:

Hence f00 P 0 and since fð0Þ ¼ fð1Þ ¼ 0 we deduce that f van-
ishes identically and then b ¼ 0. This shows that n is injective
and hence an isomorphism. From Proposition 3.18, one can

identify Kerdaexpm with n�1ðGpð/1ðaÞÞÞ and the proposition fol-
lows. h
4. O’Neill’s formulas for curvature

Let p : A!M be a Riemannian Lie algebroid. The different
curvatures (sectional curvature, Ricci curvature and scalar cur-
vature) can be defined as the classical case (when A ¼ TM).

For any leaf L, the short exact sequence

0! GL ! AL ! TL

is formally identical to a Riemannian submersion and hence all
formulas on curvature given by O’Neill are valid in this con-

text. We denote by K, K̂ and eK, respectively, the sectional cur-
vature of the Riemannian metrics h ; i, the restriction of h ; i
to GL and the induced metric on L. The following proposition

is a reformulation of Corollary 9.29 pp. 241 in [1].

Proposition 4.1. Let a; b; s1; s2 2 CðALÞ such that a; b are
vertical, s1; s2 are horizontal and ja ^ bj ¼ 1, js1j ¼ jaj ¼ 1,
js1 ^ s2j ¼ 1. Then

Kða; bÞ ¼ bKða; bÞ þ jTabj2 � hTaa;Tbbi;
Kðs1; aÞ ¼ hðDs1TÞaa; s1i � jTas1j þ jHs1aj

2;

Kðs1; s2Þ ¼ eKðs1; s2Þ � 3jHs1s2j
2
:
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The last formula says that the leaves carry ‘‘more curva-

ture’’ than the Lie algebroid and by applying Mayer theorem
(see for instance [1]) we get:

Proposition 4.2. Let A!M be a complete Riemannian alge-
broid and let L be a leaf of the characteristic foliation such that

for any linearly independent horizontal sections s1; s2 over L,
Kðs1; s2ÞP k. Then diamL 6 pffiffi

k
p and hence L is compact.

There is another case when one can apply Mayer theorem.
Consider a Riemannian Lie algebroid p : A!M such that the
O’Neill tensor T vanishes and fix a leaf L and denote by r and ~r
respectively the Ricci curvature of the Riemannian metrics h ; i
and h ; iL. The formula 9:36c pp.244 in [1] applies in our con-
text and gives

rðs1; s2Þ ¼ ~rð#ðs1Þ;#ðs2ÞÞ � 2
Xl

i¼1
hHs1ai;Hs2aii

where ða1; . . . ; alÞ is any orthonormal basis of G?L . By applying
Mayer theorem (see for instance [1]) we get:

Proposition 4.3. Let A!M be a complete Riemannian alge-

broid such that T ¼ 0 and let L be a leaf of the characteristic
foliation such that there exists a constant k such that the
restriction of r to G?L satisfies

r P ðn� 1Þk�2h ; i:

Then diamL 6 pffiffi
k
p and hence L is compact.
5. Integrability of Riemannian Lie algebroids

In this section, we show that a Riemannian Lie algebroid such
that the O’Neill tensor H vanishes is integrable and we give a
large class of Riemannian Lie algebroids which satisfy this

condition.
A groupoid is a small category C in which all the arrows are

invertible. We shall write M for the set of objects of C, while
the set of arrows of C will be denoted by C. We shall often iden-
tify M with the subset of units of C. The structure maps of C
will be denoted as follows: s; t : C !M will stand for the

source map, respectively the target map, m : C2 ¼
fðg; hÞ; sðgÞ ¼ tðhÞg ! C the multiplication map ðmðg; hÞ ¼
ghÞ, i : C ! C1 ðiðgÞ ¼ g�1Þ for the inverse map and
u : M! C ðuðxÞ ¼ 1xÞ for the unit map. Given g 2 C, the right
multiplication by g is only defined on the s-fiber at tðgÞ, and
induces a bijection

Rg : s�1ðtðgÞÞ ! s�1ðsðgÞÞ:

A Lie groupoid is a groupoid C, equipped with the structure of
smooth manifold both on the C and on the M such that all the

structure maps are smooth and s and t are submersions.
The construction of a Lie algebra of a given Lie group ex-

tends to Lie groupoids. Explicitly, if C is a Lie groupoid, the

vector bundle TsC ¼ KerðdsÞ over C of s-vertical tangent vec-
tors pulls back along i : M! C to a vector bundle A over
M. This vector bundle has the structure of a Lie algebroid.

Its anchor # : A! TM is induced by the differential of the
target map, dt : TC ! TM. The sections of A over M can be
identified by the space of right invariant s-vertical vector fields

which induce a Lie bracket on the space of sections of A. With
this construction in mind, one can see that a Riemannian

structure on A is equivalent to the data of a Riemannian metric
on any s-fiber such that, for any g 2 C,
Rg : s�1ðtðgÞÞ ! s�1ðsðgÞÞ is an isometry. In this case, for any
x 2M, t : s�1ðxÞ ! Lx is a Riemannian submersion where

the leaf Lx is endowed with the metric defined in 3.1.
A Lie algebroid A is called integrable if it is isomorphic to

the Lie algebroid associated to a Lie groupoid. In [7], Crainic

and Fernandes give a final solution to the problem of integra-
bility of Lie algebroids. They show that the obstruction to inte-
grability can be controlled by two computable quantities.

The following proposition is a direct application of Crai-
nic–Fernandes results on integrability.

Proposition 5.1. Let p : A!M be a Riemannian Lie algebroid
such that H ¼ 0. Then A is integrable.

Proof. For any leaf L, the vanishing ofH implies, according to
(13), that the space of sections of G?L ! L is a Lie subalgebra of
CðALÞ and hence there is a splitting r : TL! AL of the

anchor, which is compatible with the Lie bracket. By applying
Corollary 5.2 in [7], we get the result. h

There is a large class of Lie algebroids for which one can
apply this result. Let ðM; pÞ be a Poisson manifold. The cotan-
gent bundle T�M carries a structure of a Lie algebroid where
the anchor is the contraction by p, p# : T�M! TM and the

Lie bracket is given by the Koszul bracket

½a; b� ¼ Lp#ðaÞb� Lp#ðbÞa� dpða; bÞ

where a; b 2 X1ðMÞ. Let h ; i be a Riemannian structure in
T�M. In [3], the author studied the triple ðM; p; h ; iÞ such that

p is parallel with respect the Levi-Civita T�M-connection D. A
triple ðM; p; h ; iÞ satisfying Dp ¼ 0 is called Riemann–Poisson
manifold. The condition Dp ¼ 0 implies that Kerp# is invari-
ant by parallel transport and hence D is strongly compatible

with the Lie algebroid structure of T�M. By using Proposition
3.3, we deduce that H ¼ 0. So we get the following result.

Corollary 5.2. Let ðM; p; h ; iÞ be a Riemann–Poisson manifold.

Then the Lie algebroid structure of T�M associated to p is
integrable.
References

[1] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin–

Hiedelberg–New York, 1987.

[2] M. Boucetta, Compatibilité des structures pseudo-
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