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Abstract We prove stochastic Fubini theorem for general stable measure which will be used to

develop some identities in law for functionals of one and two-parameter stable processes. This result

is subsequently used to establish the integration by parts formula for stable sheet.
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1. Introduction

Stochastic Fubini theorem for double Wiener integrals was
first proved by Donati-Martin and Yor [4] and then developed

further by Yor and other researchers. See [3] and the references
therein. Subsequently, this theorem was applied to establish
some identities in law for some quadratic functionals of

Brownian motion. Among these identities in law there is one
similar to the integration by parts formula which allowed some
interesting extensions of the famous Ciesielski-Taylor identity.

A simple explanation of the Ciesielski-Taylor identity is pre-
sented in the paper [10]. In view of this, it is natural to ask if
it is possible to developed this for other processes. Because
of their generality, Lévy processes, in particular stable pro-
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cesses, have been the object of intense research activity in

recent years (see e.g. [1,2] and [9]). In this regard it would be
of interest to have a stochastic Fubini theorem for such pro-
cesses. The first adequate extension of Stochastic Fubini theo-

rem to symmetric stable process and the related results was
established by Donati-Martin et al. [5].

Generalization of some well-known results for stochastic

processes indexed by a single parameter to those indexed by
two parameters has attracted considerable interest recently.
In general, processes parametrized by two parameters can pro-
vide more flexibility in their applications in modelling physical

phenomena. Of particular interest, for which several general-
izations have been established, are the Brownian sheet and
bivariate Brownian bridge. For example, as a consequences

of Stochastic Fubini theorem for general Gaussian measures,
the authors in [3] have obtained some identities in law, integra-
tion by parts formula and the law of a double stochastic inte-

gral for such processes. In the same context the authors in [7]
have established new identities in law for quadratic functionals
of conditioned bivariate Gaussian processes. In particular,
their results provide a two-parameter generalization of a

celebrated identity in law, involving the path variance of a
Brownian bridge, due to Watson [12]. We will see how this
kind of identities can be naturally extended to stable processes.

In Section 2, as a first step we establish stochastic Fubini
theorem for general Stable measure. This brings us, first, to
an identity in law of functionals of one parameter time chan-

ged stable process. In fact we extent the well-known identity
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in law involving quadratic functionals of the Brownian bridge

(for more details see [11]), which corresponds to 2-stable pro-
cess, to general a-stable process. As a second consequence we
produce, using minor additional technicalities, the same results
for the well-known symmetric a-stable sheet {Xa(t1,t2),

(t1,t2) 2 [0,1]2}, which may be described as follows:
Let I be the class of all sets in [0,1]2 of the type �2

i¼1
ðsi; ti�,

si,ti 2 [0,1]. For a given a function f : ½0; 1�2 ! R, the incre-

ment f(I) of f over the set I 2 I is defined by

f �2
i¼1

si; tið �
� �

¼ f t1; t2ð Þ � f t1; s2ð Þ � f s1; t2ð Þ þ f s1; s2ð Þ:

For a 2 (0,2]n{1}, Xa is a stochastic process taking values in

R defined on a probability space X;F ;Pð Þ such that:

(i) For any k 2 N and any choice of disjoint sets Ij 2 I ,
j 2 {1, . . ., k} the increments X(Ij) are independents.

(ii) For any I 2 I and u 2 R
E expðiuXðIÞÞ ¼ expð�kðIÞjujaÞ; ð1Þ

where k(I) is the Lebesgue measure of I.
It is well known that Xa belongs to the space Dð½0; 1�2;RÞ of
functions Z from [0,1]2 into R vanishing at the boundary and

satisfying

lim
ðt1 ;t2Þ6ðs1 ;s2Þ;ðs1 ;s2Þ!ðt1 ;t2Þ

Zðs1; s2Þ ¼ Zðt1; t2Þ;

where 6 denotes the natural partial ordering in [0,1]2.

It should be noted that our results for the stable sheet are
actually a continuation of those established by Peccati and
Yor [7] for the Brownian sheet.

Section 3 is devoted to the integration by parts formula
established first in [11] for the Brownian motion. Since then
several extensions have been made to various processes.

Namely the first one, for the one parameter stable process,
was given in [5] whereas the second one, for Brownian sheet,
was made in [3]. We are going here to show this formula for
stable sheet. Our proof is based on the main result of Section

2 and time reversal stochastic integral with respect to stable
process.

Let us fix some notations to be used throughout the paper:

X¼d Y means that the random variables X and Y have the same
distribution. Tc is a one-sided stable random variable with
exponent c if Eðexpð�uTcÞÞ ¼ expð�ucÞ, for u P 0.
2. Some identities in law between some Lévy functionals

The starting point of this study is Fubini theorem for Stable
measures. Let ðA;A; lÞ and ðB;B; mÞ be two measurable spaces,
with l and m denoting positive and r-finite measures.

Let Xa
lðhÞ : h 2 LaðA;A; lÞ

n o
and Xb

m ðkÞ : k 2 LbðB;B; mÞ
� �

be two independent stable symmetric processes, with a,b 2
(0,2]n{1}, indexed respectively by functions in LaðA;A; lÞ
and LbðB;B; mÞ, that is, for any u 2 R, h 2 LaðA;A; lÞ and

k 2 LbðB;B; mÞ, we have

E exp iuXa
l hð Þ

n oh i
¼ exp �

Z
A

uhðaÞj jal dað Þ
� �

;

and
E exp iuXb
m kð Þ

� �� 	
¼ exp �

Z
B

ukðbÞj jbm dbð Þ
� �

:

Here we give some examples:
Let Xa

t ; t 2 ½0; 1�
� �

be a symmetric stable process with
index a, that is a Lévy process such that for any t 2 [0,1]
and u 2 R its characteristic function is defined by

E exp iuXa
t

� �� 	
¼ exp �t uj jað Þ:
1. For ðA;A; lÞ ¼ ð½0; 1�;B ½0; 1�ð Þ; dtÞ, then X a
lðhÞ has a sto-

chastic integral representationZ

Xa

l hð Þ¼d
1

0

hðsÞdXa
s :
2. For ðA;A; lÞ ¼ ð½0; 1�;Bð½0; 1�Þ; gðdtÞÞ, where g denotes a
positive and r-finite measure such that g({0}) = 0, we

have Z

Xa

l hð Þ¼d
1

0

hðsÞdXa
g 0;s½ �:
3. For ðA;A; lÞ ¼ ð½0; 1�2;Bð½0; 1�2Þ; dt dsÞ, X a
lðhÞ has the

law representation asZ

Xa

lðhÞ¼
d

½0;1�2
hðt1; t2ÞdXaðt1; t2Þ:
We now state a fundamental identity, which holds almost

surely, on which our main result Theorem (1) is based on.Z
A

Z
B

/ a; bð ÞXb
m dbð Þ

� �
Xa

l dað Þ

¼
Z
B

Z
A

/ a; bð ÞXa
l dað Þ

� �
Xb

m dbð Þ; ð2Þ

for any / : A� B! R, A� B-measurable function such thatZ
A

Z
B

/ a; bð Þj jbm dbð Þ




 



a=bl dað Þ < þ1;

andZ
B

Z
A

/ a; bð Þj jal dað Þ




 



b=am dbð Þ < þ1:

The main result in this section, which is fundamental for the
rest of the development, is as follows:

Theorem 1. Consider for a,b 2 (0,2]n{1} the random variables

Yb;a ¼
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ
and

Ya;b ¼
Z
B

Z
A

/ða; bÞXa
lðdaÞ





 



bmðdbÞ:
Then the following identity holds

Yb;a

� �1=c
Tc¼d Ya;b; ð3Þ

where c = a/b and Tc is a one-sided stable random variable with
exponent c, which is assumed to be independent of Yb,a.

For a = b the identity in law(3) becomes
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Z
A

Z
B

/ða; bÞXa
mðdbÞ





 



alðdaÞ¼d Z
B

Z
A

/ða; bÞXa
lðdaÞ





 



amðdbÞ:
ð4Þ

Proof 1. Taking the characteristic functions of both sides of
(2), for any u 2 R, we obtain:

E exp � uj ja
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ� � �
¼ E exp � uj jb

Z
B

Z
A

/ða; bÞXa
l dað Þ





 



bmðdbÞ
 !" #

: ð5Þ

Taking r ¼ juja as a new variable, the equality (5) becomes

E exp �r
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ� � �
¼ E exp �r1=c

Z
B

Z
A

/ a; bð ÞXa
lðdaÞ





 



bmðdbÞ
 !" #

:

On the other hand, it is easy to see that

E exp �r
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ� � �

¼ E exp � r1=c
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ� �1=c
( )c !" #

¼ E exp �r1=c
Z
A

Z
B

/ða; bÞXb
m ðdbÞ





 



alðdaÞ� �1=c

Tc

 !" #
;

where Tc is a one-sided stable random variable with exponent c
independent of Yb,a.

Hence, we have obtained

E exp �r1=c
Z
A

Z
B

/ a; bð ÞXb
m dbð Þ





 



al dað Þ
� � �

¼ E exp �r1=c
Z
B

Z
A

/ a; bð ÞXa
l dað Þ





 



bm dbð Þ
 !1=c

Tc

0@ 1A24 35;
which is equivalent to (3). h

Remark 1. It should be noted that the case a = b = 2, which
corresponds to the Gaussian measures, has been considered in

[3].
2.1. One parameter case

Let . be a probability on [0,1] and set At = .([0, t]). It is well
known that the variation of A corresponds to the total varia-

tion of .. Define the right continuous inverse of A, namely
for any t 2 [0,1],

Ct ¼ inf s : As > tf g:

It is easily seen that ACt
P t and CAt

P t for every t and

At ¼ inf s : Cs > tf g:

Moreover we have a change variable formula stated as
follows:Z t

0

hðsÞ.ðdsÞ ¼
Z t

0

hðsÞdAs ¼
Z At

0

hðCsÞds; 8 t 2 0; 1½ �: ð6Þ
It should be noted that A and C play symmetric roles. The

reader is referred to the book [8] for more details and some re-
lated results.

Proposition 1. Let Xa be a symmetric stable process with index
a. Then we have

Z 1

0

.ðduÞ Xa
u �

Z 1

0

Xa
s.ðdsÞ

� �



 



a¼d Z 1

0

dCu X
a
u � uXa

1



 

a; ð7Þ

and using the equality (6) we obtainZ 1

0

.ðduÞ Xa
u �

Z 1

0

Xa
s.ðdsÞ

� �



 



a¼d Z 1

0

du Xa
Au
� AuX

a
1



 

a: ð8Þ

Proof 2. Let us consider the function / : ½0; 1�2 ! R defined by

/ u; sð Þ ¼ 1 s6uð Þ � 1� sð Þ
� 	

;

and set

ðA;A; lÞ ¼ ð½0; 1�;Bð½0; 1�Þ; dCtÞ and ðB;B; mÞ
¼ ð½0; 1�;Bð½0; 1�Þ; dtÞ:

It is easily seen thatZ 1

0

dXa
u/ðu; sÞ ¼ Xa

1 � Xa
s

� �
� 1� sð ÞXa

1 ¼ �Xa
s þ sXa

1;

andZ 1

0

dXa
Cs

/ðu; sÞ ¼ Xa
Cu
� Xa

C0
�
Z 1

0

ð1� sÞdXa
Cs
:

Now using integration by parts formula we obtainZ 1

0

dXa
Cs

/ðu; sÞ ¼ Xa
Cu
�
Z 1

0

Xa
Cs�

ds:

The set s : Cs – Cs�f g is countable and so far it is Lebesgue
negligible. Owing to this fact we may replace Xa

Cs�
by Xa

Cs
in the

right-hand side. Thus we haveZ 1

0

dXa
Cs

/ðu; sÞ ¼ Xa
Cu
�
Z 1

0

Xa
Cs
ds:

Let eXa be an independent copy of Xa. Applying the identity
(4), with Xa

m ¼ Xa
t and Xa

l ¼ eXa
Ct
, one has

Z 1

0

Xa
Cu
�
Z 1

0

Xa
Cs
ds





 



adu ¼d Z 1

0

Xa
s � sXa

1



 

adCs:

Now the identity (7) follows simply from (6). This ends the
proof. h

Remark 2. (i) Let (Bs,s 6 1) is a Brownian motion. It is well
known, see [11], that the following identity holds

Z 1

0

.ðdtÞ Bu �
Z 1

0

.ðdsÞBs

� �2

¼d
Z 1

0

ð eB. 0;t½ �Þ2dt; ð9Þ

where eBs; s 6 1
� �

is a standard Brownian bridge. It follows
from (6) thatZ 1

0

.ðdtÞ Bu �
Z 1

0

.ðdsÞBs

� �2

¼d
Z 1

0

ð eBsÞ2dCs;
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which corresponds to the case a = 2 in the identity (7) once we

know that standard Brownian bridge has (Bu � uB1; u 6 1) as
a representation in law.

(ii) For p> 0, let .(du) = du p up�1, we have

At ¼ tp and Ct ¼ t1=p:

It follows from the identity (7) thatZ 1

0

dupup�1 Bu �
Z 1

0

psp�1Bsds

� �



 



2 ¼d Z 1

0

du Bup � upB1j j2

¼d
Z 1

0

du eBup




 


2 ¼ 1

p

Z 1

0

duu
1
p�1 eBu




 


2:
Note that for p = 1 we haveZ 1

0

du Bu �
Z 1

0

Bsds

� �



 



2 ¼d Z 1

0

du eBu




 


2;
which was obtained in [4].
2.2. Two parameters case

Let l = m be the Lebesgue measure on [0,1]2, so that

ðA;A; lÞ ¼ ðB;B; mÞ ¼ ð½0; 1�2;Bð½0; 1�2Þ; dt1dt2Þ:

Then Xa and Xb are two independent symmetric stable

sheet. We consider now the random variables

Zaðs1; s2Þ ¼
Z Z

½0;1�2
/ðs1; s2; t1; t2ÞXaðdt1; dt2Þ;

and

Zb t1; t2ð Þ ¼
Z Z

0;1½ �2
/ s1; s2; t1; t2ð ÞXb ds1; ds2ð Þ:

In this special case, the conclusion of Theorem 1 becomesZ Z
½0;1�2

Zaðs1; s2Þj jbds1ds2

 !1=c

Tc ¼d
Z Z

½0;1�2
Zb t1; t2ð Þ


 

adt1dt2:

ð10Þ

The consideration developed above can be applied to the
following:

/1 s1; s2; t1; t2ð Þ ¼ 1 0;s1½ �ðt1Þ1 0;s2½ �ðt2Þ � 1� t1ð Þ 1� t2ð Þ;
/2 s1; s2; t1; t2ð Þ ¼ 1 0;s1½ �ðt1Þ1 0;s2½ �ðt2Þ � 1� t1ð Þ1 0;s2½ �ðt2Þ
� 1� t2ð Þ1 0;s1½ �ðt1Þ þ 1� t1ð Þ 1� t2ð Þ:

In this setting, we have

Proposition 2. For a 2 (0,2]n{1} the following identities holdZ 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Z 1

0

Xa t1; t2ð Þdt1dt2




 



ads1ds2

¼d
Z 1

0

Z 1

0

Xa t1; t2ð Þ � t1t2X
a 1; 1ð Þj jadt1dt2; ð11Þ

andZ 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Xa s1; t2ð Þdt2 �
Z 1

0

Xa t1; s2ð Þdt1






þ
Z 1

0

Z 1

0

Xa t1; t2ð Þdt1dt2




ads1ds2

¼d
Z 1

0

Z 1

0

Xa t1; t2ð Þ � t1X
a 1; t2ð Þ � t2X

a t1; 1ð Þj

þ t1t2X
a 1; 1ð Þjadt1dt2 ð12Þ
Proof 3. Applying (10) to /1 and /2 with a = b, we get

Z 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Z 1

0

1� t1ð Þ 1� t2ð ÞXa dt1; dt2ð Þ




 



ads1ds2

¼d
Z 1

0

Z 1

0

Xa �2
i¼1

ti; 1ð �
� �

� 1� t1ð Þ 1� t2ð ÞXa 1; 1ð Þ




 



adt1dt2

andZ 1

0

Z 1

0

Xa s1; s2ð Þj

�
Z 1

0

Z 1

0

1� t1ð Þ1 0;s2½ �ðt2ÞXa dt1; dt2ð Þ

�
Z 1

0

Z 1

0

1� t2ð Þ1 0;s1½ �ðt1ÞXa dt1; dt2ð Þ

þ
Z 1

0

Z 1

0

1� t1ð Þ 1� t2ð ÞXa dt1; dt2ð Þ




ads1ds2

¼d
Z 1

0

Z 1

0

Xa �2
i¼1

ti; 1ð �
� �

� 1� t1ð ÞXa 1; t2; 1ð �ð Þ






� 1� t2ð ÞXa t1; 1ð �; 1ð Þ þ 1� t1ð Þ 1� t2ð ÞXa 1; 1ð Þjadt1dt2:

It is readily checked that the following identities hold:Z 1

0

Z 1

0

1� t1ð Þ 1� t2ð ÞXa dt1; dt2ð Þ ¼
Z 1

0

Z 1

0

Xa t1; t2ð Þdt1dt2Z 1

0

Z 1

0

1� t1ð Þ1 0;s2½ �ðt2ÞXa dt1; dt2ð Þ ¼
Z 1

0

Xa t1; s2ð Þdt1Z 1

0

Z 1

0

1� t2ð Þ1 0;s1½ �ðt1ÞXa dt1; dt2ð Þ ¼
Z 1

0

Xa s1; t2ð Þdt2:

Hence, the above identities in law become:

Z 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Z 1

0

Xa t1; t2ð Þdt1dt2




 



ads1ds2
¼d
Z 1

0

Z 1

0

Xa �2
i¼1

ti; 1ð �
� �

� 1� t1ð Þ 1� t2ð ÞXa 1; 1ð Þ




 



adt1dt2

andZ 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Xa t1 ; s2ð Þdt1 �
Z 1

0

Xa s1; t2ð Þdt2 þ
Z 1

0

Z 1

0

Xa t1 ; t2ð Þdt1dt2




 



ads1ds2
¼d
Z 1

0

Z 1

0

Xa �2
i¼1

ti ; 1ð �
� �

� 1� t1ð ÞXa 1; t2; 1ð �ð Þ






� 1� t2ð ÞXa t1; 1ð �; 1ð Þ þ 1� t1ð Þ 1� t2ð ÞXa 1; 1ð Þjadt1dt2:

Now from (1) the following distributional identity between
processes

Xa �2
i¼1

ti; 1ð �
� �

; t1; t2ð Þ 2 0; 1½ �2
� �
¼d Xa 1� t1; 1� t2ð Þ; t1; t2ð Þ 2 0; 1½ �2
n o

;

hold which leads us, with the change variable (r1,r2) =

(1 � t1,1 � t2), to the identities (11) and (12). h

Remark 3. It should be noted that the identities (11) and (12)
are the extension of the identity (7), with .(du) = du, to the
two parameters case.

We close this section by a simple extension of the identities
in the above proposition. Precisely, using the same techniques

as before we obtain another variant of the identities in law (11)
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and (12) with .1(dt1).2(dt2) instead of dt1dt2 where .1 and .2
are two probability measures on [0,1]. Let Ai

t ¼ .ið½0; t�Þ and
Ci

t ¼ inffs : As > tg for i= 1, 2 and t 2 [0,1]. We set
ðA;A; lÞ ¼ ð½0; 1�2;Bð½0; 1�2Þ; dt1dt2Þ and ðB;B; mÞ ¼ ð½0; 1�2;
Bð½0; 1�2Þ; dC1

t1
dC2

t2
Þ. With these notations, we may state :

Proposition 3. For the symmetric stable sheet Xa and the
probability measures .1 and .2 we have

Z 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Z 1

0

Xa t1; t2ð Þ.1ðdt1Þ.2ðdt2Þ




 



a.1ðds1Þ.2ðds2Þ

¼d
Z 1

0

Z 1

0

Xa t1; t2ð Þ � t1t2X
a 1; 1ð Þj ja.1ðdt1Þ.2ðdt2Þ; ð13Þ

andZ 1

0

Z 1

0

Xa s1; s2ð Þ �
Z 1

0

Xa s1; t2ð Þ.2ðdt2Þ






�
Z 1

0

Xa t1; s2ð Þ.1ðdt1Þ þ
Z 1

0

Z 1

0

Xa t1; t2ð Þ.1ðdt1Þ.2ðdt2Þ




a.1ðds1Þ.2ðds2Þ:

¼d
Z 1

0

Z 1

0

Xa t1; t2ð Þ � t1X
a 1; t2ð Þ � t2X

a t1; 1ð Þ þ t1t2X
a 1; 1ð Þj ja

.1ðdt1Þ.2ðdt2Þ: ð14Þ

The above proposition allows us to establish some exten-

sions of certain identities in law developed by Peccati and
Yor in [7] for the Brownian sheet.

Let p,q> 0 and {W= W(t1, t2):(t1, t2) 2 [0,1]2} is a stan-
dard Brownian sheet on [0,1] vanishing on the axes. We asso-
ciate to W the following processes:

� {B(W) = B(W)(t1,t2):(t1,t2) 2 [0,1]2} is the canonical bivariate
Brownian bridge associated to W, i.e.

BðWÞðt1; t2Þ ¼Wðt1; t2Þ � t1t2Wð1; 1Þ;

� BðW Þ0 ¼ BðW Þ0 ðt1; t2Þ : ðt1; t2Þ 2 ½0; 1�2
n o

is the canonical
bivariate tied down Brownian bridge associated to W, i.e.

B
ðWÞ
0 ðt1; t2Þ ¼Wðt1; t2Þ � t1Wð1; t2Þ � t2Wðt1; 1Þ þ t1t2Wð1; 1Þ:

Then for .1(du) = du p up�1 and .2(du) = du q uq�1 the iden-
tity identities (13)–(14) become:

Z 1

0

Z 1

0

W s1; s2ð Þ � pq

Z 1

0

Z 1

0

W t1; t2ð Þtp�11 tq�12 dt1dt2





 



2sp�11 sq�12 ds1ds2

¼d ;

Z 1

0

Z 1

0

BðWÞðt1; t2Þ


 

2tp�11 tq�12 dt1dt2;

andZ 1

0

Z 1

0

W s1; s2ð Þ � q

Z 1

0

W s1; t2ð Þtq�12 dt2 � p

Z 1

0

W t1; s2ð Þtp�11 dt1






þpq

Z 1

0

Z 1

0

W t1; t2ð Þtp�11 tq�12 dt1dt2





asp�11 sq�12 ds1ds2

¼d
Z 1

0

Z 1

0

B
ðWÞ
0 ðt1; t2Þ




 


2tp�11 tq�12 dt1dt2:
3. Application: integration by parts formula

It is well known that Theorem 1 has several applications.

Namely, an identity which resembles to integration by parts
formula. Here, we give two examples yielding such identity.

The first one deals with one parameter stable process and it
was previously given in [5] but our method is quite different.
Whereas the second one is new and consider the two parame-
ters case. In the sequel we write dx for the unit mass at point x.

3.1. One parameter case

Let f; g : 0; 1½ � ! Rþ be two continuous functions with f
decreasing and g increasing. Let us now choose A= B =
[0,1] and define the measure l and m by

l dsð Þ ¼ �dfðsÞ þ fð1Þd1ðdsÞ and m dtð Þ ¼ gð0Þd0ðdtÞ þ dgðtÞ:

Here we are mainly concerned with the definition of time
reversal stochastic integral with respect to Lévy process. First
we make the following notation: Let Z be a process with

càdlàg paths defined on [0,1]. Z ¼ Zt; t 2 ½0; 1�
� �

will always
denote the associated time reversed process of the process Z
given by:

Zt ¼
0 if t ¼ 0;

Z 1�tð Þ� � Z1� if 0 < t < 1;

Z0 � Z1� if t ¼ 1;

8><>:
where Zu� denotes the left limit at u, 0 < u 6 1.

Note that the function t ´ f(1 � t) is increasing. It is well
known that a semimartingale remains a semimartingale under
time changes. Thus the process {Yt:¼Xa(f(1 � t)); t 2 [0,1]} is a

semimartingale since Lévy processes are semimartingales. Thus
the process

Yt ¼
0 if t ¼ 0;

XaðfðtÞÞ � Xaðfð0ÞÞ if 0 < t < 1;

Xaðfð1ÞÞ � Xaðfð0ÞÞ if t ¼ 1;

8><>:
is again a semimartingale.

The stochastic integral of u 2 LaðA;A;�dfÞ with respect to

the process {Xa(f(t)), t 2 [0,1]} is defined by time reversal as
follows:Z t

0

uðsÞdXaðfðsÞÞ :¼
Z t

0

uð1� sÞdXaðfð1� sÞÞ; t 2 ½0; 1�:

ð15Þ

Consequently, for u 2 R and t 2 [0,1], we have

E exp iu

Z t

0

uðsÞdXaðfðsÞÞ
� � �

¼ E exp iu

Z 1

1�t
uð1� sÞdXaðfð1� sÞÞ

� � �
¼ exp �

Z 1

1�t
uuð1� sÞj jadfð1� sÞ

� �
¼ exp

Z t

0

uuðaÞj jadfðaÞ
� �

:

For more details on time reversal stochastic integrals the read-
er is referred to [6].

Let Xa and eXa are two a-stable symmetric processes and set

Xa
l hð Þ ¼ hð1ÞXaðfð1ÞÞ �

Z 1

0

hðsÞdXaðfðsÞÞ; h 2 La A;A; lð Þ;

where the stochastic integral is defined by (15) and
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Xa
m kð Þ ¼ kð0Þ eXaðgð0ÞÞ þ

Z 1

0

kðtÞd eXaðgðtÞÞ; k 2 LaðB;B; mÞ;

where the stochastic integral is defined in the usual sense.

Since f is decreasing (resp. g is increasing) and using the
fact that the increments of X are independents it follows that
Xa(f(1)) and

R 1

0
hðsÞdXaðfðsÞÞ (resp. Xa(g(0)) and

R 1

0
hðsÞ

dXaðgðsÞÞ) are independent. So, for all u 2 R, we have

E exp iuXa
l hð Þ

n oh i
¼ exp �

Z 1

0

uhðsÞj jal dsð Þ
� �

;

and

E exp iuXb
m kð Þ

� �� 	
¼ exp �

Z 1

0

ukðtÞj jbm dtð Þ
� �

:

A simple calculation, on one hand yieldsZ 1

0

1 sPt½ �X
a
m dtð Þ ¼ Xa

m 1 0;s½ �
� �

¼ eXaðgðsÞÞ;

andZ 1

0

Z 1

0

1 sPt½ �X
a
m dtð Þ





 



al dsð Þ ¼
Z 1

0

�dfðsÞ eXaðgðsÞÞ



 


a

þ fð1Þ eXaðgð1ÞÞ



 


a:

On the other handZ 1

0

1 sPt½ �X
a
l dsð Þ ¼ Xa

l 1 t;1½ �
� �

¼ XaðfðtÞÞ;

andZ 1

0

Z 1

0

1 sPt½ �X
a
l dsð Þ





 



am dtð Þ ¼
Z 1

0

dgðtÞ XaðfðtÞÞj ja þ gð0Þ Xaðfð0ÞÞj ja:

In order to obtain the desired integration by parts formula, we
shall use (4) of Theorem 1 with /(s,t) = 1[sPt], which enable us
to get the following

Proposition 4. For any symmetric stable process Xa we haveZ 1

0

�dfðsÞ XaðgðsÞÞj ja þ fð1Þ Xaðgð1ÞÞj ja ¼d
Z 1

0

dgðtÞ XaðfðtÞÞj ja

þ gð0Þ Xaðfð0ÞÞj ja

We recall that the above integration by parts formula was
shown by Donati-Martin et al. in [5] using the discrete version
of the Fubini-type identity in law (3).
3.2. Two parameters case

Let f1; g1 : ½0; 1� ! Rþ (resp. f2; g2 : ½0; 1� ! Rþ) be two
continuous functions, with f1 (resp. f2) decreasing, and g1 (resp.
g2) increasing. Let us now choose A = B = [0,1] · [0,1] and

define the measure l and m by:

l ds1; ds2ð Þ ¼ �df1ðs1Þ þ d1 ds1ð Þf1ð1Þf g �df2ðs2Þ þ d1 ds2ð Þf2ð1Þf g
m dt1; dt2ð Þ ¼ dg1ðt1Þ þ d0 dt1ð Þg1ð0Þf g dg2ðt2Þ þ d0 dt2ð Þg2ð0Þf g:

For a process Z in D ½0; 1�2;R
� �

, we denote by Z the associated

time reversed process of the process Z given by:
Zðt1; t2Þ ¼

0 if t1t2 ¼ 0;

Z 1� t1ð Þ�; 1� t2ð Þ�ð Þ � Z 1�; 1� t2ð Þ�ð Þ
�Z 1� t1ð Þ�; 1�ð Þ þ Z 1�; 1�ð Þ if 0 < t1; t2 < 1;

Z 0; 1� t2ð Þ�ð Þ � Z 1�; 1� t2ð Þ�ð Þ
�Z 0; 1�ð Þ þ Z 1�; 1�ð Þ if t1 ¼ 1; t2 < 1;

Z 1� t1ð Þ�; 0ð Þ � Z 1�; 0ð Þ
�Z 1� t1ð Þ�; 1�ð Þ þ Z 1�; 1�ð Þ if t1 < 1; t2 ¼ 1

Z 0; 0ð Þ � Z 1�; 0ð Þ
�Z 0; 1�ð Þ þ Z 1�; 1�ð Þ if t1 ¼ t2 ¼ 1

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
where Z(u�,v�) denotes limðs1 ;s2Þ6ðu;vÞ;ðs1 ;s2Þ!ðu; vÞZðs1; s2Þ and
6denotes the natural partial ordering in [0,1]2.

Let Xa
i s1; s2ð Þ : s1; s2ð Þ 2 ½0; 1�2

n o
, i= 1, 2 be a pair of inde-

pendent stable sheet. The stochastic integral of w 2 La A;A;ð
df1df2Þ with respect to the process Xa

1 f1 s1ð Þ; f2 s2ð Þð Þ;
�

s1; s2ð Þ 2 ½0; 1�2g is defined by time reversal as follows:Z t1

0

Z t2

0

wðs1; s2ÞdXa
1 f1 s1ð Þ; f2 s2ð Þð Þ

¼
Z t1

0

Z t2

0

wð1� s1; 1� s2ÞdXa
1 f1 1� s1ð Þ; f2 1� s2ð Þð Þ; ð16Þ

for (t1,t2) 2 [0,1]2. Moreover, for u 2 R and t1,t2 2 [0,1], we

have

E exp iu

Z t1

0

Z t2

0

wðs1; s2ÞdXa
1 f1 s1ð Þ; f2 s2ð Þð Þ

� � �
¼ E exp iu

Z 1

1�t1

Z 1

1�t2
wð1� s1; 1� s2ÞdXa

1 f1 1� s1ð Þ; f2 1� s2ð Þð Þ
� � �

¼ exp �
Z 1

1�t1

Z 1

1�t2
uwð1� s1; 1� s2Þj jadf1ð1� s1Þdf2ð1� s2Þ

� �
¼ exp �

Z t1

0

Z t2

0

uwða; bÞj jadf1ðaÞdf2ðbÞ
� �

:

Now, for h 2 La A;A; lð Þ and k 2 La A;A; lð Þ, we define

Xa
l hð Þ ¼

Z 1

0

Z 1

0

h s1; s2ð ÞdXa
1 f1 s1ð Þ; f2 s2ð Þð Þ

�
Z 1

0

h 1; s2ð Þds2Xa
1 f1 1ð Þ; f2 s2ð Þð Þ

þ
Z 1

0

h s1; 1ð Þds1Xa
1 f1 s1ð Þ; f2 1ð Þð Þ þ h 1; 1ð ÞXa

1 f1 1ð Þ; f2 1ð Þð Þ;

where the first stochastic integral is defined by (16) and du
means stochastic integration with respect to the variable u de-

fined by (15) and

Xa
m kð Þ ¼

Z 1

0

Z 1

0

k t1; t2ð ÞdXa
2 g1 t1ð Þ; g2 t2ð Þð Þ

þ
Z 1

0

k 0; t2ð Þdt2Xa
2 g1 0ð Þ; g2 t2ð Þð Þ

þ
Z 1

0

k t1; 0ð Þdt1Xa
2 g1 t1ð Þ; g2 0ð Þð Þ

þ k 0; 0ð ÞXa
2 g1 0ð Þ; g2 0ð Þð Þ:

Since the increments of each process Xa
1 and Xa

2 are indepen-

dents it follows, for all u 2 R, h 2 LaðA;A; lÞ and k 2
LbðB;B; mÞ, that
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E exp iuXa
l hð Þ

n oh i
¼ exp �

Z 1

0

Z 1

0

uhðs1; s2Þj jal ds1; ds2ð Þ
� �

and

E exp iuXb
m kð Þ

� �� 	
¼ exp �

Z 1

0

Z 1

0

ukðt1; t2Þj jbm dt1; dt2ð Þ
� �

:

Now using a simple calculation we getZ 1

0

Z 1

0

1fs1Pt1g1fs2Pt2gX
a
mðdt1; dt2Þ ¼ Xa

mð1½0;s1 ��½0;s2 �Þ ¼ Xa
2ðg1ðs1Þ; g2ðs2ÞÞ;

andZ 1

0

Z 1

0

lðds1; ds2Þ
Z 1

0

Z 1

0

1fs1Pt1g1fs2Pt2gX
a
mðdt1; dt2Þ





 



a
¼
Z 1

0

Z 1

0

df1ðs1Þdf2ðs2Þ Xa
2ðg1ðs1Þ; g2ðs2ÞÞ



 

a
� f1ð1Þ

Z 1

0

df2ðs2Þ Xa
2ðg1ð1Þ; g2ðs2ÞÞ



 

a
� f2ð1Þ

Z 1

0

df1ðs1Þ Xa
2ðg1ðs1Þ; g2ð1ÞÞ



 

a
þ f1ð1Þf2ð1Þ Xa

2ðg1ð1Þ; g2ð1ÞÞ


 

a:

We also obtainZ 1

0

Z 1

0

1fs1Pt1g1fs2Pt2gX
a
l ds1; ds2ð Þ ¼ Xa

l 1½t1 ;1��½t2 ;1�
� �

¼ Xa
1ðf1ðt1Þ; f2ðt2ÞÞ;

andZ 1

0

Z 1

0

m dt1; dt2ð Þ
Z 1

0

Z 1

0

1 s1Pt1f g1 s2Pt2f gX
a
l ds1; ds2ð Þ





 



a
¼
Z 1

0

Z 1

0

dg1ðt1Þdg2ðt2Þ Xa
1 f1 t1ð Þ; f2 t2ð Þð Þ



 

a
þ g1ð0Þ

Z 1

0

dg2ðt2Þ Xa
1 f1 0ð Þ; f2 t2ð Þð Þ



 

a
þ g2ð0Þ

Z 1

0

dg1ðt1Þ Xa
1 f1 t1ð Þ; f2 0ð Þð Þ



 

a
þ g1ð0Þg2ð0Þ Xa

1 f1 0ð Þ; f2 0ð Þð Þ


 

a:

Having all these preliminaries in mind and using once again (4)

with / s1; s2; t1; t2ð Þ ¼ 1 s1Pt1f g1 s2Pt2f g, we obtain the two param-
eters version of Proposition 4 as follows:

Proposition 5. For every Xa stable sheet we haveZ 1

0

Z 1

0

df1ðs1Þdf2ðs2Þ Xa g1 s1ð Þ; g2 s2ð Þð Þj ja

� f1ð1Þ
Z 1

0

df2ðs2Þ Xa g1 1ð Þ; g2 s2ð Þð Þj ja

� f2ð1Þ
Z 1

0

df1ðs1Þ Xa g1 s1ð Þ; g2 1ð Þð Þj ja

þ f1ð1Þf2ð1Þ Xa g1 1ð Þ; g2 1ð Þð Þj ja

¼d
Z 1

0

Z 1

0

dg1ðt1Þdg2ðt2Þ Xa f1 t1ð Þ; f2 t2ð Þð Þj ja

þ g1ð0Þ
Z 1

0

dg2ðt2Þ Xa f1 0ð Þ; f2 t2ð Þð Þj ja

þ g2ð0Þ
Z 1

0

dg1ðt1Þ Xa f1 t1ð Þ; f2 0ð Þð Þj ja

þ g1ð0Þg2ð0Þ Xa f1 0ð Þ; f2 0ð Þð Þj ja
It should be noted that the case a = 2, that is Xa is a

Brownian sheet, was covered in [3].
3.3. Particular cases

1. g1(0) = g2(0) = f1(1) = f2(1) = 0, we obtainZ 1

0

Z 1

0

df1ðs1Þdf2ðs2Þ Xa g1 s1ð Þ; g2 s2ð Þð Þj ja

¼d
Z 1

0

Z 1

0

dg1ðt1Þdg2ðt2Þ Xa f1 t1ð Þ; f2 t2ð Þð Þj ja:

2. g1(t) = g2(t) = t2 and f1(s) = f2(s) = log(1/s)Z 1

0

Z 1

0

1

s1s2ð Þ1=a
Xa s21; s

2
2

� �











a

ds1ds2

¼d 4

Z 1

0

Z 1

0

t1t2ð Þ1=aXa log 1=t1ð Þ; log 1=t2ð Þð Þ



 


adt1dt2:
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