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Abstract It is well known that minimization problems involving sublinear regularization terms are

ill-posed, in Sobolev spaces. Extended results to spaces of bounded variation functions BV were

recently showed in the special case of bounded regularization terms. In this note, a generalization

to sublinear regularization is presented in BV spaces. Notice that our results are optimal in the sense

that linear regularization leads to well-posed minimization problems in BV spaces.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

The aim of this note is the study of minimization problems on

the space of functions of bounded variation of functionals
involving sublinear terms of the total variation. These prob-
lems are motivated by applications in image restoration.

More precisely, we are interested by the ill-posedness of
minimization problems of the form

inf
u2BVðXÞ

JðuÞ; ð1Þ
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where

JðuÞ :¼ k
2
kf� ukL2ðXÞ þ

Z
X

UðjDujÞ; k > 0;

where the function U is sublinear at infinity. The functional

space BV(X) is the space of functions with bounded variation
BV(X) [2].

The set X is a bounded domain of RN, N P 2, f is a gi-

ven function in BV(X), which may represent an observed im-
age (for N = 2). The first term in J(u) measures the fidelity
to the data while the second one is a nontrivial smoothing
term involving the generalized gradient Du of the function u.

In what follows, we will assume the following hypotheses
on the smooth function U:

ðH1ÞU : Rþ ! Rþ and Uð0Þ ¼ U0ð0Þ ¼ 0;

ðH2ÞU is sublinear at infinity; i:e: lim
s!þ1

UðsÞ
s
¼ 0:

The condition (H1) implies that the function U is quadratic at

the origin. In image restoration, this means that at locations
where the variations of the intensity are weak (low gradients),
we would like to encourage smoothing, the same in all direc-
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tions. Conversely, the condition (H2) means that the ‘‘cost’’ of

edges is ‘‘low’’ and consequently, the corresponding regulariz-
ing term preserves edges.

It is clear that U can not be convex since the unique convex

function satisfying the conditions (H1) and (H2) is the trivial
function. This fact implies that there is no hope to recover
the lower semicontinuity of J with respect to the weak w con-
vergence ofMðX;RNÞ, the space of all N-vector bounded mea-

sures. More precisely, in [7,4,8,6] functionals of the form

FðkÞ :¼
Z
X

f x;
dk
dl

� �
dlþ

Z
X

f1 x;
dks

djksj

� �
djksj; ð2Þ

have been studied, where X is a locally compact space, mu is a
given positive measure inMðX;RNÞ, f1 is the recession func-
tion of f with respect to its second variable and k = (dk/dl) Æ
l +ks is the Lebesgue–Nikodym decomposition of k into abso-
lutely continuous and singular parts with respect to mu. It is
shown that for functionals of the form (2), the convexity of f
is a necessary condition to guarantee the lower semicontinuity

in the weak w convergence of MðX;RNÞ. Moreover, every
convex and weak w lower semicontinuous functional
F :MðX;RNÞ ! ½0;þ1� is representable in the form (2) with

a suitable convex function f, provided the additivity condition

Fðk1 þ k2Þ ¼ Fðk1Þ þ Fðk2Þ; for every k1; k2

2 MðX;RNÞ with k1 ? k2;

is satisfied.
For the reader’s convenience, we recall some background

facts used here. Let us define

K X;RN
� �

:¼ u 2C X;RN
� �

: suppðuÞ � X
� �

;

BC X;RN
� �

:¼ u 2 C X;RN
� �

: kuk1 :¼ sup
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
uiðxÞ

2

r
<þ1

( )
;

where supp(u) denotes the support of u. The space C0 X;RN
� �

is the closure of K X;RN
� �

in BC X;RN
� �

with respect to the uni-
form norm. The RN-valued Borel measures l 2 M X;RN

� �
rep-

resent the dual of C0 X;RN
� �

. The norm of mu is then

klk :¼ supfhl; ui : kuk1 6 1g:

The variation jlj 2 M X;RN
� �

is defined by its values on open

subsets of X

jljðxÞ :¼ supfhl; ui : kuk1 6 1; suppðuÞ � xg:

Then ŒlŒ = ŒlŒ(X) is the total variation of l. The weak topol-

ogy of MðX;RNÞ is as defined as: a sequence (ln) converges
weakly to mu inMðX;RNÞ, and written ln N l, if

lim
n!þ1

Z
hðxÞdlnðxÞ ¼

Z
hðxÞdlðxÞ; 8h 2 C0 X;RN

� �
:

In the sequel, for every u 2 L1
locðXÞ, Du will denote the distribu-

tional derivative of u.

BVðXÞ :¼ fu 2 L1ðX;RÞ : Du 2 M X;RN
� �

g:

Recall that the strong topology of BV(X) is given by the norm

kukBV :¼ kukL1ðXÞ þ jDujðXÞ

and its weak topology is given by:

un * u in BVðXÞ () uu ! u in L1ðXÞ and Dun

* Du inM X;RN
� �

:

In well-posed minimization problems, the standard defini-
tion of the term

R
X UðjDujÞ is very restrictive and concerns only

convex functions U with linear growth at infinity:

U1ð1Þ :¼ lim
s!þ1

UðsÞ
s
2 �0;þ1½: ð3Þ

Indeed, let u 2 BV(X) and let the Lebesgue decomposition of
the measure Du with respect to the N-dimensional Lebesgue
measure dx :

Du ¼ rudxþDsu;

where �u dx is the absolutely continuous (regular) part of the
measure Du and Dsu its singular part, which is mutually singu-
lar with dx. If the function U satisfies the growth condition (3)

at infinity, then the classical definition of
R

X UðjDujÞ is given by:Z
X

UðjDujÞ :¼
Z

X
UðjrujÞdxþ U1ð1Þ

Z
jDsuj: ð4Þ

The reason behind this definition is that under this restrictive

growth condition (3), the lower semi-continuity of the func-
tional: u #

R
X UðjDujÞ for the weak topology of BV(X) holds

true. This semi-continuity result is a key ingredient to show

that minimizing sequences are relatively compact in BV(X).
In our context, the hypothesis (H2) implies that the reces-

sion term U1(1) = 0, so the standard definition ofR
X UðjDujÞ ignores the singular part of the measure Du.

In [3], Aubert et al. studied two situations in image restora-
tion and decomposition:

� U Sublinear at infinity and the energy has no singular part
of TV.
� U Bounded and the the energy contains generalized singular

part of TV.

Thus, when the singular part is ignored in the definition ofR
X UðjDujÞ, the study is complete. However, when the singular
part in the definition of

R
X UðjDujÞ is considered, the study is

incomplete since only bounded functionals U are valid.
In this note we show that minimization problems involving

general sublinear regularizing terms are ill-posed, then it is
more convenient that our results cover a large class of natural
definitions of

R
X UðjDujÞ.

2. The main result

To provide a more general definition of the regularizing termR
X UðjDujÞ, we will recall some fine properties of functions of
bounded variation [5,1]. Let u 2 BV(X), we define the approx-
imate upper limit u+ and the approximate lower limit u� of u

on X as the following:

uþðxÞ :¼ inf t 2 ½�1;þ1� : lim
r!0

meas½fu> tg\Bðx; rÞ�
rN

¼ 0

	 

;

u�ðxÞ :¼ sup t 2 ½�1;þ1� : lim
r!0

meas½fu< tg\Bðx; rÞ�
rN

¼ 0

	 

;

where B(x, r) is the ball of center x and radius r. In particular,
Lebesgue points in X are those which verify u+(x) = u�(x).
We denote by Su the jump set, that is, the complement, up
to a set of HN�1 measure zero, of the set of Lebesgue points

Su :¼ fx 2 X : uþðxÞ > u�ðxÞg;
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where HN�1 is the (N � 1) � dimensional Hausdorff measure.

The set Su is countably rectifiable, and for HN�1 almost every-
where x 2 X, we can define a normal vector nu(x). In [1], L.
Ambrosio showed that for every u 2 BV(X), the singular part

of the finite measure Du can also be decomposed into a jump
Ju part and a Cantor part Cu

Du ¼ ðruÞdxþ ðuþ � u�ÞnuHN�1
jSu
þ Cu: ð5Þ

The jump part Ju ¼ ðuþ � u�ÞnuHN�1
jSu

and the Cantor part Cu

are mutually singular. Moreover, the measure Cu is diffuse, i.e.

Cu({x}) = 0 for every x 2 X and Cu(B) = 0 for every B � X
such that HN�1ðBÞ < þ1, that is, when the support of Cu is
not empty, its Hausdorff dimension is strictly greater than

N � 1.
Now, we can give the more general definition:

Definition 1. Let u 2 BV(X) and let Du 2 M X;RN
� �

be its
distributional derivative. We define the measure U(ŒDu Œ)as
follows:

UðjDujÞ :¼ UðjrujÞdxþ U1 uþ � u�ð ÞdHN�1
jSu
þ U2ðj Cu jÞ;

where Du is decomposed as in (5) and Ui are any nonnegative

functions satisfying Ui(t) = 0 if and only if t= 0, i=1, 2.

The previous definition extends the standard total varia-

tion, i.e. U(s) = s

UðjDujÞ :¼ jrujdxþ uþ � u�ð ÞdHN�1
jSu
þ jCuj;

and also general total variations associated to convex func-
tions U : Rþ ! Rþ with linear growth at infinity. Indeed, let
U1 be the recession function of U defined by U1(z):¼
limsfi1U(s z)/s and the standard definition of the measure

Uðj Du jÞ :¼ UðjrujÞdxþ U1ð1Þ uþ � u�ð ÞdHN�1
jSu
þ U1ð1Þ

j Cu j :

In this case, the functions U1, U2 in Definition 1 are given by
U1(s) = U2(s) = U1(1) · s, for every s P 0.

Now let X be a bounded domain in R2 and f 2 L2 (X) be an

observed image which corresponds to the ideal image u cor-
rupted by a Gaussian noise g 2 L2(X); that is f = R u + g. It
is well-known since the seminal work of Tikhonov and Arsenin

[9], that the restored (ideal) image u is not other than the min-
imizer of a certain strictly convex energy

EðvÞ :¼ k
2

Z
X
ðf� vÞ2 dxþ

Z
X

WðjrvjÞdx;

on an adequate functional space, where the function W has to

be chosen to realize some desired regularization effects. The
parameter k > 0 can be interpreted as the Lagrange multiplier
with respect to the constraint on the variance of the noise g or
as a regularizing coefficient.

In what follows, consider the functional

JðuÞ :¼ k
2

Z
X
ðf� uÞ2 dxþ

Z
X

UðjrujÞdx

þ
Z
Su

U1 uþ � u�ð ÞdHN�1 þ
Z

XnSu
U2ðj Cu jÞ; ð6Þ
Now we state our result

Theorem 1. Consider the functional J defined by (6),

where U satisfies (H1) and (H2). Let f be an arbitrary function
in L1(X). Then

inf
u2BVðXÞ

JðuÞ ¼ 0:

Moreover, the infimum of J on BV(X) is achieved if and only if f
is constant.

Idea of the proof. The idea is to discretize the domain X into
An

ij :¼ ½xn
i ; x

n
iþ1� � ½yni ; yniþ1� and then consider a sequence (vn)

of affine functions, bounded in infinity norms by vertfvert1,

such that vn fi f in L2(X). The key point is a tricky calculation
that shows thatZ

X
UðjrvnjÞdx 6

2kfk1
n

PerðXÞ þ 1

2
½PerðXÞ�2 n2�b ! 0;

for some b > 2. Using the fact (vn)n 2 BV(X), we conclude that
infu2BV(X) J(u) = 0. Therefore,

� if f is constant then f 2 BV(X) and J(f) = 0 and conse-
quently J has a minimizer on BV(X),

� conversely, if J has a minimizer bu on BV(X) then necessarilybu ¼ f , rbu ¼ 0, buþ ¼ bu� and Cbu ¼ 0; hence bu is constant.
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