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Abstract This short contribution summarizes a talk given on May 5, 2010, in Cairo, describing

some unexpected links between the Monge problem of optimal transport, the Riemann curvature

and the heat equation.
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For a start, let us recall the notion of push-forward, or

change of variables. If l(dx) and m(dy) are two (probability)
measures, and y = T(x) is a measurable map, then m = T#l
if for any measurable set B, one has l[T�1(B)] = m[B], or

equivalently, for any bounded measurable function u, one
has

R
u � Tdl ¼

R
udðT#lÞ. If l(dx) = f(x)dx and m(dy) =

g(y)dy in Rn, and T is 1-to-1, the equation is f(x) =

g(T(x))Œdet(d T)(x)Œ.
The Monge–Kantorovich problem is stated as follows: given

two probability measures l(dx) and m(dy), and a cost function

c(x,y), look at the variational problem

inf
T#l¼m

Z
c

ðx;TðxÞÞdlðxÞ:

In words, one wants to transport material at lowest cost, the
initial and final distributions of mass being given. In probabilis-
tic words, we are searching for a coupling of two random
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variables U and V, such that the law of each is given, and

we wish to minimize the expected value of c(U,V). For
instance if c(x,y) = Œx � yŒ2, we are trying to maximize the
correlation E; hU;Vi.

It can be shown (Brenier, Rachev, Rüschendorf) that the
optimal coupling takes the form T = rU, where U is convex.
This is a monotone change of variables: the Jacobian matrix of

T (= the Hessian of U) has nonnegative eigenvalues.
Monotone changes of variables are powerful: to illustrate

this, here is a short proof of the isoperimetric inequality, which

is a variation of an argument by Gromov. Define j X j¼ Ln½X�,
j @X j¼ Hn�1½@X�, and make a change of variables from X to B:
so y = T(x) 2 B = B(0,1). Assume that (i) T pushes uniform
measure forward to uniform measure; (ii) dT has nonnegative

eigenvalues at each point. So f(x) = 1/ŒXŒ, g(y) = 1/ŒBŒ, so
det(dT) = ŒBŒ/ŒXŒ. Then we write

j B j
j X j

� �1
n

¼ detdTð Þ
1
n ¼

Yn
i¼1

ki

 !1
n

6

Pn
i¼1ki

n
¼ r � T

n
;

where the ki = ki(x) are the eigenvalues of the Jacobian matrix.

Integration over X and Stokes formula yield

j X j � j B j
j X j

� �1
n

6

Z
X

r � T
n
¼ 1

n

Z
@X

T � m 6 j @X j
n

;

where m = m(x) is the outer unit normal, and the last inequality
follows from the fact that T is valued in the unit ball and m has
unit norm.
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As a variation, let us prove the Sobolev inequality in Rn,
following an argument by Cordero–Nazaret–Villani (2004).
Take p 2 (1,n), then we wish to prove

kukLpHðRnÞ 6 SnðpÞkrukLpðRnÞ pH ¼ np

n� p
:

Without loss of generality we may assume that u P 0 andR
up

H ¼ 1. Then the Sobolev inequality becomes just
0 < K 6 krukLpðRnÞ.

Let us pick an arbitrary probability density g, and introduce

a monotone change of variables T : up
H

dx! gðyÞdy; so the

Jacobian identity is gðTðxÞÞ ¼ uðxÞp
H

detðdTðxÞÞ. Then we compute,

assuming we can integrate by parts:
R
g1�

1
n ¼R

gðyÞ�
1
ngðyÞdy ¼

R
gðTðxÞÞ�

1
nup

H ðxÞdx ¼
R
ðdetdTðxÞÞ

1
nðupH Þ1�

1
nðxÞdx

6
1
n

R
ðr � TðxÞÞðupH 1�1

nð ÞÞðxÞdx ¼ � pH

n
1� 1

n

� � R
up

H 1�1
nð Þ�1ru � Tdx.

A bit of algebra with the exponents shows that the latter is

¼ � pH

n
1� 1

n

� � R
up

H=p0ru � Tdx where 1/p + 1/p0 = 1. At this
point we apply Hölder’s inequality, to obtain an upper bound

pH

n
1� 1

n

� � Z
uðxÞp

H

j TðxÞjp
0

� � 1
p0
Z
j rujp

� �1
p

¼ pH

n
1� 1

n

� � Z
gðyÞ j yjp

0
� � 1

p0
Z
j rujp

� �1
p

:

As a conclusion we have shownZ
g1�

1
n 6

pH

n
1� 1

n

� � Z
gðyÞ j yjp

0
� � 1

p0
Z
j rujp

� �1
p

;

and obviously this solves the problem since g is arbitrary and
fixed (independently of u).

Spectacular developments of this method were achieved by

Figalli, Maggi and Pratelli in relation to the so-called quanti-
tative Wulff isoperimetry.

Other unexpected applications of optimal transport have

flourished in the past few decades: incompressible fluid
mechanics (Brenier); invariant measures for Lagrangian
systems (Mather); semi-geostrophic equations (Cullen); weak

solutions of Monge-Ampère (Brenier, Caffarelli); Boltzmann
equation (Tanaka); collapse of sandpiles (Prigozhin);
design of reflectors and lenses (Oliker, Wang); image match-

ing/warping (Tannenbaum); modelling of irrigation basins
(Santambrogio); reconstruction of early Universe (Frisch); etc.

I will mention a particularly striking one, which makes the
connection between the Monge problem and the Fourier equa-

tion, thus reuniting in mathematics these two mathematicians
who were very close in real life.
In 1998, Jordan, Kinderlehrer and Otto discovered a deep
link between the heat/Fourier equation otq = Dq, the
Boltzmann H functional HðqÞ ¼

R
q log q, and the optimal

transport cost functional Cðl; mÞ ¼ infT#l¼m

R
d x;TðxÞð Þ2

lðdxÞ. The link appears when the base space is Rn or, say, a
compact Riemannian manifold (M,g). It provides a way to

solve the Fourier equation by a Monge-based scheme, which
is an unorthodox gradient flow scheme. One way to present this
is to discretize in time; and from time t to time t+ Dt, given

q(t), search for q(t+ Dt) as the minimizer of HðqÞ þ CðqðtÞ;qÞ
2Dt .

As Dt fi 0, this evolution gives the heat equation. Note that
by construction the entropy �H ¼ �

R
q log q increases with

time (which we know by other means for the heat equation,

of course).
This observation was the starting point of unexpected

developments relating optimal transport and the Riemannian

curvature. To understand them, let us introduce an interpola-
tion along optimal transport: the interpolation lt between l0
and l1 is obtained by stopping each geodesic at time t in the

transport process: Tt(x) is the trajectory from T0(x) = x to
T1(x) = T(x), and lt = (Tt)#l0. The path (lt)06t61 is then a
a geodesic in the space of probability measures, when the geo-
metric structure is given by the distance

ffiffiffiffi
C
p
ðl; mÞ.

We have seen that H always goes down along the gradient
flow, which is the heat equation. But now what is the behavior
of H along this interpolation?

Recall the definition of sectional curvature. A possible
definition is as follows. Let u, v 2 TxM be orthogonal unit
vectors, then the sectional curvature j(u,v) at x along the plane

generated by u, v measures the divergence of geodesics, w.r.t.
to Euclidean geometry: dðexpxtu; expxtvÞ ¼

ffiffiffi
2
p

t 1� j
12
t2þ

�
Oðt4ÞÞ. Then Ricci curvature is, up to a constant, the ‘‘average
sectional curvature’’: If (e,e2, . . . ,en) is an orthonormal basis

of TxM, then RicðeÞ :¼
Pn

j¼2jðe; ejÞ; this extends to a
quadratic form, which can be expressed in terms of second
derivatives of the metric g.

The relation discovered as a consequence of works by Otto–
Villani, Cordero–McCann–Schmuckenschläger, Lott–Villani,
Sturm, is that the Ricci curvature is P0 if and only if

HðltÞ ¼
R

qt logqtdvol is a convex function of t along any
interpolation along optimal transport.

This discovery has been the basis of the development of

synthetic theory of Ricci curvature bounds, in a way that com-
plements the synthetic theory of sectional curvature bounds by
Cartan–Alexandrov–Toponogov.

All this story is told, with many details and hundreds of

references, in my reference textbook Optimal transport, old
and new (Springer, 2008).
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