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Abstract In this paper, two sample Bayesian prediction intervals for order statistics (OS) are

obtained. This prediction is based on a certain class of the inverse exponential-type distributions

using a right censored sample. A general class of prior density functions is used and the predictive

cumulative function is obtained in the two samples case. The class of the inverse exponential-type

distributions includes several important distributions such the inverse Weibull distribution, the

inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse

paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential

model and the inverse Rayleigh model are considered.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In many practical problems, one wishes to use the results of

previous data to predict a future observation from the same
population. One way to do this is to construct an interval
which will contain the future observation with a specified
(Y. Abdel-Aty).

tical Society. Production and

ptian Mathematical Society.

lsevier

r CC BY-NC-ND license.
probability. This interval is called a prediction interval. Predic-
tion has been applied in medicine, engineering, business, and
other areas. Bayesian prediction bounds for future observa-
tions based on certain distributions have been discussed by

several authors. Bayesian prediction bounds for future obser-
vations from the exponential distribution are considered by
Dunsmore [1], Lingappaiah [2], Evans and Nigm [3], Al-Hus-

saini and Jaheen [4], and Abdel-Aty et al. [5]. Bayesian predic-
tion bounds for future lifetimes under the Weibull model have
been derived by Evans and Nigm [6]. Bayesian prediction

bounds for observables having the Burr type XII distribution
were obtained by Nigm [7], Al-Hussaini and Jaheen [8], and
Ali Mousa and Jaheen [9,10].

Order statistics arise naturally in many real-life applications

involving data relating to life testing studies. Many authors have
studied order statistics and associated inferences, see for example,
David [11], Arnold et al. [12], and Balakrishnan and Cohen [13].

mailto:yahia1970@yahoo.com
http://dx.doi.org/10.1016/j.joems.2011.10.002
http://dx.doi.org/10.1016/j.joems.2011.10.002
http://www.sciencedirect.com/science/journal/1110256X
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In this paper, we study two sample Bayesian prediction

intervals for order statistics (OS) based on the class of the in-
verse exponential-type distributions using a right censored
sample. A general class of prior density functions which were
suggested by Al-Hussaini [14] is applied.

Throughout this paper we use the following definitions and
notation.

Let X be a random variable with absolutely continuous dis-

tribution function F(x) ” F(xŒh) and density function f(x) ”
f(xŒh), where the parameter h 2 H may be a real vector. Corre-
sponding to X we consider n OS X1:n 6 X2:n 6 . . .6 Xn:n.

The joint density function of the right type-II censored sam-
ple X1:n 6 X2:n 6 . . .6 Xr:n is given by

fXðxÞ ¼
n!

ðn� rÞ! ð1� FðxrÞÞn�r
Yr

i¼1
fðxiÞ

¼ n!
Xn�rþ1

i¼1
ciðn� rþ 1ÞFðxrÞn�r�iþ1

Yr
j¼1

fðxjÞ; ð1:1Þ

where x= (x1, . . .,xr), 1 6 r 6 n, and ciðn� rþ 1Þ ¼
ð�1Þn�r�iþ1

ði�1Þ!ðn�r�iþ1Þ!.

Let Y1:m 6 Y2:m 6 . . .6 Ym:m be the OS of the future ran-
dom sample of size m from the same population. Then the
marginal density function of the sth OS Ys:m is given by

fYs:m
ðysÞ ¼

m!

ðm� sÞ!ðs� 1Þ!FðysÞ
s�1ð1� FðysÞÞ

m�s
fðysÞ

¼ m!

ðs� 1Þ!
Xm�sþ1

w¼1
cwðm� sþ 1ÞFðysÞ

m�w
fðysÞ; ð1:2Þ

where 1 6 s 6 m and cwðm� sþ 1Þ ¼ ð�1Þm�s�wþ1
ðw�1Þ!ðm�s�wþ1Þ!.

2. Two sample Bayesian predication intervals

The random variable X is said to be inverse exponential-type
distributed if the distribution function F(x) is given in the fol-
lowing form

Fðx j hÞ ¼ exp½�kðxÞ�; ðx > 0; h 2 HÞ: ð2:1Þ

where k(x) ” k(x;h) should be a continuous, monotone increas-
ing, differentiable function of x such that k(x) fi1 as x fi 0+

and k (x) fi 0 as x fi1. Then the probability density function

is given by

fðx j hÞ ¼ �k0ðxÞ exp½�kðxÞ�: ð2:2Þ

Specific distributions considered as particular cases of this

class of distributions are inverse exponential, inverse Rayleigh,
inverse Weibull, inverse Pareto, negative exponential, negative
Weibull, negative Pareto, negative power, Gumbel, exponenti-
ated-Weibull, loglogistic, Burr X, inverse Burr XII and inverse

paralogistic distributions.
To obtain a Bayesian prediction interval we need a suitable

prior parameter distribution. The class of prior density func-

tions suggested by Al-Hussaini [14] given by

pðh; dÞ / Cðh; dÞ exp½�Dðh; dÞ�; h 2 H; ð2:3Þ

is used, where d is vector of prior parameters.

Theorem 2.1. Let X1:n 6 X2:n 6 � � �6 Xr:n be a right type-II
censored sample that follows the distribution (2.1). Let

Y1:m 6 Y2:m 6 � � �6 Ym:m be the OS of the future random
sample of size m from the same population. Then 100s %
Bayesian prediction bounds for Ys:m based on the first sample are

obtained by solving the following two equations with respect to t

m!

ðs� 1Þ! I
�1
Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn� rþ 1Þcwðm� sþ 1Þ

m� wþ 1

�
Z

h2H

Yr

j¼1
gjðh; xÞ

� �
exp½�ðfiðh;xÞ þ ðm� wþ 1Þkðt; hÞÞ�dh

¼
ð1� sÞ=2
ð1þ sÞ=2;

�
ð2:4Þ

where 1 6 s 6 m,

gjðh; xÞ ¼ �k0ðxj; hÞ½Cðh; dÞ�1=r; ð2:5Þ

fiðh;xÞ ¼ ðn� r� iþ 1Þkðxr; hÞ þ
Xr

j¼1
kðxj; hÞ

þDðh; dÞ; ð2:6Þ

and

I ¼
Xn�rþ1

i¼1
ciðn� rþ 1Þ

�
Z

h2H

Yr

j¼1
gjðh; xÞ

� �
exp½�fiðh;xÞ�dh: ð2:7Þ

Proof

Substituting from (2.1) and (2.2) in (1.1), we obtain

fXðxÞ¼n!
Xn�rþ1

i¼1
ciðn�rþ1Þ

Yr

j¼1
ð�k0ðxj;hÞÞ

� �
�exp � ðn�r� iþ1Þkðxr;hÞþ

Xr

j¼1
kðxj;hÞ

� �h i
; ð2:8Þ

and substituting (2.1) and (2.2) in (1.2), we obtain

fYs:mðys j hÞ ¼
m!

ðs� 1Þ!
Xm�sþ1

w¼1
cwðm� sþ 1Þð�k0ðys; hÞÞ

� exp½�ðm� wþ 1Þkðys; hÞ�: ð2:9Þ

Since the posterior density function is given by

p�ðh j xÞ ¼ I�1pðh; dÞfXðxÞ; ð2:10Þ

where

I ¼
Z

h2H
pðh; dÞfXðxÞdh;

substituting from (2.3) and (2.8) in (2.10), we obtain the

posterior density function

p�ðh jxÞ¼ I�1
Xn�rþ1

i¼1
ciðn�rþ1Þ

Yr

j¼1
gjðh;xÞ

� �
exp �fiðh;xÞ½ �;

ð2:11Þ

where

gjðh;xÞ ¼ �k0ðxj; hÞ½Cðh; dÞ�1=r;
fiðh;xÞ ¼ ðn� r� iþ 1Þkðxr; hÞ þ

Xr

j¼1
kðxj; hÞ þDðh; dÞ;

and

I ¼
Xn�rþ1

i¼1
ciðn� rþ 1Þ

Z
h2H

Yr

j¼1
gjðh;xÞ

� �
exp½�fiðh;xÞ�dh:

Since the Bayesian predictive density function is given by

Pðys j xÞ ¼
Z

h2H
fYs:mðys j hÞp�ðh j xÞdh; ð2:12Þ
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combining (2.9) and (2.11) with (2.12), we get the Bayesian

predictive density function

Pðys j xÞ ¼
m!

ðs� 1Þ! I
�1
Xn�rþ1

i¼1
ciðn� rþ 1Þ

Z
h2H

Yr

j¼1
gjðh;xÞ

� �
� exp½�fiðh; xÞ� �

Xm�sþ1

w¼1
cwðm� sþ 1Þð��kðys; hÞÞ

� exp½�ðm� wþ 1Þkðys; hÞ�dh: ð2:13Þ

Since the predictive cumulative distribution function of Ys:m is
given by

Pð0 6 Ys:m 6 t j xÞ ¼
Z t

0

Pðys j xÞdys;

then

Pð0 6 Ys:m 6 t j xÞ ¼ m!

ðs� 1Þ! I
�1
Z t

0

Xn�rþ1

i¼1
ciðn� rþ 1Þ

�
Z

h2H

Yr

j¼1
gjðh;xÞ

� �
exp½�fiðh;xÞ�

�
Xm�sþ1

w¼1
cwðm� sþ 1Þð�k0ðys; hÞÞ

� exp½�ðm� wþ 1Þkðys; hÞ�dhdys

¼ m!

ðs� 1Þ! I
�1
Xn�rþ1

i¼1
ciðn� rþ 1Þ

�
Z

h2H

Yr

j¼1
gjðh;xÞ

� �
exp½�fiðh;xÞ�

�
Xm�sþ1

w¼1
cwðm� sþ 1Þ
m� wþ 1

� exp½�ðm� wþ 1Þkðt; hÞ�dh: ð2:14Þ

Then 100s% Bayesian prediction bounds (lower–upper) for
Ys:m based on the first sample are obtained by solving the fol-
lowing two equations with respect to t

m!

ðs� 1Þ! I
�1
Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn� rþ 1Þcwðm� sþ 1Þ

m� wþ 1

�
Z

h2H

Yr

j¼1
gjðh;xÞ

� �
exp½�ðfiðh;xÞ þ ðm� w

þ 1Þkðt; hÞÞ�dh

¼ ð1� sÞ=2
ð1þ sÞ=2:

�

3. Example

In this section we study two sample Bayesian prediction inter-
vals for order statistics (OS) based on the inverse Weibull mod-

el which is one of the most important models in the inverse
exponential-type class of distributions. For example the in-
verse Weibull (IW) distribution has been used to model the

degradation of mechanical components (Keller and Kanath
[15]) such as the dynamic components (pistons, crankshaft,
etc.) of diesel engines. Properties of IW distribution have been
obtained by, for example, Calabria and Pulcini [16; 17] and

Mahmoud et al. [18].
The distribution function of the inverse Weibull model is gi-

ven by

Fðx j hÞ ¼ exp½�ðaxÞ�b�; x > 0 ð3:1Þ

where h = (a,b), a > 0 and b > 0.
Hence
kðxÞ ¼ a�b

xb
and k0ðxÞ ¼ � ba�b

xbþ1 : ð3:2Þ

Suppose that a is an unknown and bis known. Then we will
use the prior density function which was suggested by Calabria

and Pulcini [17] (when bis known) as

pðk; dÞ / a�cb�1 exp½�da�b�; ð3:3Þ

where a > 0, d = (c,d) and c,d > 0.

Hence

Cðh; dÞ ¼ a�cb�1 and Dðh; dÞ ¼ da�b: ð3:4Þ

Using (2.14), (3.2) and (3.4) then the predictive cumulative

distribution function of Ys:m is given by

Pð06Ys:m6 t jxÞ

¼ m!

ðs�1Þ!I
�1
Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn� rþ1Þcwðm� sþ1Þ

m�wþ1

�
Z 1

0

Yr

j¼1
1

x
ðbþ1Þ
j

 !
br�a�rb�cb�1

� exp �a�b
Xj¼1

r

1

xb
j

þðn�r� iþ1Þ
xb
r

þðm�wþ1Þ
tb

þd

 !" #
da

¼ m!

ðs�1Þ!I
�1
Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn� rþ1Þcwðm� sþ1Þ

ðm�wþ1Þ

�
Xr

j¼1
1

xb
j

þðn�r� iþ1Þ
xb
r

þðm�wþ1Þ
tb

þd

 !�ðrþcÞ
;

ð3:5Þ

where

I¼
Xn�rþ1

i¼1
ciðn� rþ1Þ�

Xr

j¼1
1

xb
j

þðn�r� iþ1Þ
xb
r

þd

 !�ðrþcÞ0
@

1
A: ð3:6Þ
3.1. Special cases

The inverse Weibull model contains many important special

cases such as the inverse exponential model and the inverse
Rayleigh model. In the following the inverse exponential mod-
el and the inverse Rayleigh model are considered.

(1) The inverse exponential model.

We can obtain the inverse exponential model as special case

of the inverse Weibull model by setting b = 1. Hence the
distribution functionof the inverse exponentialmodel is givenby

Fðx j aÞ ¼ exp
�1
ax

� �
; x > 0;

where a > 0,

kðxÞ ¼ 1

ax
and k0ðxÞ ¼ �1

ax2
: ð3:7Þ

Putting b = 1 in (3.5), then the predictive cumulative distribu-
tion function of Ys:m is given by

Pð06Ys:m6 t jxÞ¼ m!

ðs�1Þ!I
�1

Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn�rþ1Þcwðm�sþ1Þ

m�wþ1

�
Xr

j¼1
1

xj

þðn�r� iþ1Þ
xr

þm�wþ1

t
þd

� ��ðrþcÞ
;ð3:8Þ
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where

I¼
Xn�rþ1

i¼1
ciðn�rþ1Þ�

X
j¼1r

1

xj

þðn� r� iþ1Þ
xr

þd

� ��ðrþcÞ( )
: ð3:9Þ

(2) The inverse Rayleigh model.

We can obtain the inverse Rayleigh model as special case of
the inverse Weibull model by setting b = 1. Hence the distri-
bution function of the inverse Rayleigh model is given by

Fðx j hÞ ¼ exp
�1
ðaxÞ2

" #
; x > 0;

where a > 0,

kðxÞ ¼ 1

ðaxÞ2
and k0ðxÞ ¼ �2a

�2

x3
: ð3:10Þ

Putting b = 2 in (3.5), then the predictive cumulative distri-
bution function of Ys:m is given by

Pð06Ys:m6 t jxÞ¼ m!

ðs�1Þ!I
�1
Xn�rþ1

i¼1

Xm�sþ1

w¼1
ciðn�rþ1Þcwðm�sþ1Þ

m�wþ1

�
Xr

j¼1
1

x2
j

þðn�r� iþ1Þ
x2
r

þm�wþ1

t2
þd

 !�ðrþcÞ
; ð3:11Þ

where

I¼
Xn�rþ1

i¼1
ciðn� rþ 1Þ �

Xr

j¼1
1

x2
j

þ ðn� r� iþ 1Þ
x2
r

þ d

 !�ðrþcÞ8<
:

9=
;:

Remark 3.1. We can see that (3.5) agrees with expression (19)
obtained by Calabria and Pulcini [17] when b is known.

Remark 3.2. We can obtain the Bayesian prediction interval
for OS from the inverse Weibull distribution when both a
and b are unknown from Theorem 2.1 directly and we can

see that it agree with Calabria and Pulcini [17].

Remark 3.3. We can obtain the Bayesian prediction intervals
for OS from the inverse Pareto distribution and the inverse
Burr distribution from Theorem 2.1 directly.
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