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Abstract In [1,2] Farrag characterized the stirictly weaker principal topologies than any given

principal topology on a nonempty set by using the minimal open sets which are defined by Steiner

[3]. This paper mainly generalizes this result by using the minimal sets, which are defined in the

paper with respect to the given topology s on a nonempty set.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.
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1. Introduction

Let s1 and s2 be two topologies on a nonempty setX then (1) s1 is
weaker than s2 or s2 is stronger than s1 if s1 � s2 (2) s1 is strictly
weaker than s2 if s1is weaker than s2 and s1 � s � s2 such that
s R {s1,s2} implies that s is not a topology on X. In [4] Frohlich
defined an ultratopology on a setX to be a strictly weaker topo-
logy than the discrete topology D on X. The ultratopologies on

X are divided into two classes the principal and the nonprincipal
ultratopologies on X, Ez [ Py and Ez [ F, where Ez is the
excluding, Py is the particular point topologies on X, F is an

ultrafilter on X and y, z are any two distinct points of X. In [5]
Mashhour and Farrag showed that the principal ultratopology
(A.S. Farrag).
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Ez [ Py on a setX is the topology onX having the minimal basis

byz = {{x}, {y,z}:x 2 (X � {z})}where y and z are two distinct
points ofX and denoted byDyz. In [3] Steiner defined a minimal
open set at a point x 2 X in a topological space (X,s) to be the

open set containing x and is contained in each open set contain-
ing x. The author defined also a principal topology on a setX to
be the topology onX having theminimal basis that consists only

of open sets minimal at each point x 2 X. It is Proved that a
topology s on a set X is principal iff arbitrary intersections of
members of s are members of s. In [1] the authors gave a neces-

sary and sufficient conditions for the principal topology s* onX
to be strictly weaker than a given principal topology s on X and
proved that s* must be of the form s* = s \ Dyz which is de-
noted by syzwhere y and z are two distinct points ofX satisfying

three conditions depending on the minimal open sets in s. In
McClusky and McCartan [6,7] and Kennedy and McCartan [8]

defined the s� kernel dfxg of {x} to be the intersection of all

open sets which contain the point x.

2. The minimal sets

Definition 2.1. Let (X,s) be a topological space and x 2 X.

Then, dfxg ¼ \fG 2 s : x 2 Gg is called the minimal set at the

point x with respect to s on X.

mailto:mybakier@yahoo.com
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The set dfxg is defined in [6] to be the s � kernel of {x}.

As a direct consequence of the definition of the minimal sets
at the points of a nonempty set X with respect to a topology s
on X, if x,y 2 X are any two distinct points, then we have the
following remarks and theorems:

Remark 2.2. If s is a principal topology, then dfxg 2 s is the
minimal open set at the point x as it is defined in [3].

Remark 2.3. x 2 dfyg implies that dfxg � dfyg. Therefore,dfxg ¼ dfyg iff x 2 dfyg and y 2 dfxg.
Remark 2.4. y 2 dfxg iff x 2 fyg iff s � Dyx. Therefore,dfxg ¼ fy 2 X : x 2 fygg ¼ fy 2 X : s � Dyxg and fxg ¼ fy 2
X : x 2 dfygg ¼ fy 2 X : s � Dxyg.

Remark 2.5. dfxg ¼ dfyg iff fxg ¼ fyg. For, dfxg ¼ dfyg iff

x 2 dfyg and y 2 dfxg iff y 2 fxg and x 2 fyg iff fxg ¼ fyg.
Remark 2.6. dfxg ¼ x for each point x 2 X iff fxg ¼ x for each
point x 2 X.

Remark 2.7. dfxg \ dfyg ¼ / for any two distinct points x,

y 2 X iff fxg \ fyg ¼ / for any two distinct points x, y 2 X.

Remark 2.8. If X is an infinite set, then we may have the same
family of minimal sets at the points of X with respect to each of
a class of topologies on X. For example, each of the class of the

T1 � topologies has the same family of the minimal sets, that isbb ¼ fdfxg : x 2 Xg ¼ ffxg : x 2 Xg.

Remark 2.9. If (X,s) is a topological space, then dfxg R s
implies that each open set containing x is infinite. For let G

be a finite subset of X, G 2 s and x 2 G, then either

G� dfxg ¼ / which implies that G ¼ dfxg or G� dfxg ¼
fx1; x2; . . . ; xng and so for each i 2 {1,2, . . . ,n} there exists an
open set Gi 2 s such that x 2 Gi and xi R Gi. Then,dfxg ¼ G \ G1 \ G2 \ . . . \ Gn which implies in both cases thatdfxg 2 s.

Remark 2.10. If s* and s are two topologies on a nonempty set

X and x 2 X such that dfxg�– dfxg where dfxg� and dfxg are the
minimal sets at the point x with respect to s

*
and to s respec-

tively, then s
*

„ s but not conversely as it shown by Remark

2.8. For, t 2 dfxg� � dfxg implies that there is an open set

G 2 s such that x 2 G and t R G then G R s
*
because any open

set in s
*

containing x, contains t because t 2 dfxg�. Hence,

s
*

„ s. Similarly: t 2 dfxg � dfxg� implies that s
*

„ s.

Remark 2.11. Let (X,s) be a topological space, then the follow-
ing statements are equivalent:

(1) (X,s) is T0,

(2) dfxg– dfyg for any two distinct points x, y 2 X and

(3) dfxg \ fxg ¼ fxg, for each point x 2 X.

Remark 2.12. By using Remarks 2.6 and 2.7 a topological

space (X,s) is T1 iff dfxg ¼ fxg for each point x 2 X iffd d
fxg \ fyg ¼ / for any two distinct points x, y 2 X.
Theorem 2.13. Let (X, s) be a regular topological space, thendfxg ¼ fxg for each x 2 X. Moreover, the family bb ¼ fdfxg :
x 2 Xg of the minimal sets at the points of X with respect to
the topology s on X is a partition of X.

Proof. Suppose that (X,s) is a regular topological space. Then,

every open set containing x also contains fxg, hence

fxg � dfxg. If y 2 dfxg � fxg, then there is an open set G 2 s
such that y 2 G and x R G. Since s is regular then there is an
open set V 2 s such that y 2 V � V � G. Then, X� V is an

open set containing x but not y, a contradiction. Thus,

fxg ¼ dfxg. If y 2 dfxg then x 2 fyg, and so fxg � fyg. On

the other hand, y 2 dfxg ¼ fxg implies that fyg � fxg, and

thus fxg ¼ fyg whenever y 2 dfxg. This clearly shows thatbb ¼ fdfxg : x 2 Xg must be a partition of X.

As a direct consequence of Theorem 2.13 we have the fol-
lowing corollary.

Corollary 2.14. (X,s) is a regular principal topological space iffbb ¼ fdfxg : x 2 Xg is a partition of X where each minimal set at

x is open iff each open set is closed.

Remark 2.15. As a direct consequence of Remarks 2.11, 2.12
and Theorem 2.13, if (X,s) is regular and not T1, then it is

not T0 i.e, a regular T0 is T3 which is an old and well known
result.

Theorem 2.16. Let (X, s) be a topological space, thenbb ¼ fdfxg : x 2 Xg is the minimal basis for a principal topologybs on X stronger than s. If, s is a principal topology on X, thenbs ¼ s.

Proof. Clearly; [fdfxg : x 2 Xg ¼ X, if x, y, z 2 X are distinct

such that x 2 dfyg \ dfzg, then dfxg � dfyg \ dfzg. Therefore,bb ¼ fdfxg : x 2 Xg is a basis for some topology bs on X. If
x 2 X and G 2 bs such that x 2 G, then there exists y 2 X such

that x 2 dfyg � G which implies that dfxg � G. Hence, dfxg 2 bs
is the minimal open set at the point x. Hence, bs is a principal

topology on X and bb is its minimal basis. If s is principal, thenbb ¼ fdfxg : x 2 Xg is its minimal basis and bs ¼ s.

Example bb ¼ ffxg : x 2 Xg is the family of the minimal

sets at the points of X with respect to the minimal T1 � topol-
ogy C on X, i.e the topology on X in which each proper non-
empty subset is member iff its complement if finite. Hence,bC ¼ D where D is the discrete topology on X.

3. Strictly weaker topologies

Theorem 3.1. Let (X,s) and (X,s*) be two principal topological
spaces. Then, s* is a strictly weaker principal topology than s iff

there are two distinct points y and z 2 X satisfying the
conditions:

(1) y R Uz,
(2) z 2 Ux and x R UZ imply that y 2 Ux and

(3) x 2 Uy and y R Ux imply that x 2 Uz
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and s* = s \ Dyz having the minimal basis byz = {Ux,

Uy [ Uz:Ux 2 (b � {Uz})} where b is the minimal basis for s,
Ux is the minimal open set at the point x for each x 2 X.

If (X,s) is a topological space and A � X in [9] defined the

s � minimal set at A to be bA ¼ Sfdfxg : x 2 Ag and proved
that bA ¼ TfG 2 s : A � Gg and clearly A � B � X implies
that bA � bB. If (X,s) and (X, s

*
) are two topological spaces and

A � X then s
*

� s implies that bA � bA� and A � A� where bA�
and A� are bA and A with respect to s

*
, respectively. In this

article a generalization of Theorem 3.1 will be given for any
topology s principal or nonprincipal on a nonempty set X.

Theorem 3.1 will be a special case.

Lemma 3.2. Let (X,s) be a topological space, y, z 2 X be two
distinct points, syz = s \ Dyz and A � X. Then

(a) bAyz � bA [ dfyg and either y 2 bA which implies that
bAyz ¼ bA or y R bA which implies that.
(
bAyz ¼
bA if z R bAbA [ by if z 2 bA
(b) Ayz � A [ fzg and either z 2 A which implies that Ayz ¼ A

or z R A which implies in [6] that
(

Ayz ¼

A if y R A

A [ fzg if y 2 A
Proof. (a) t R bA [ dfyg implies that there are two open sets U,

V 2 s such that A � U, y 2 V and t R U [ Vwhich imply that
U [ V 2 syz and A � U [ V which imply that t R bAyz. ThenbAyz � bA [ dfyg. Also

(1) z R bA implies that there exists an open set U 2 s such

that A � U and z R U. Then t R bA implies that there is an
open set V 2 s such that A � V and t R V. Then U \ V 2 syz
since z R U \ V, A � U \ V and t R U \ V which implies

that t R bAyz and so bAyz ¼ bA.

(2) If z 2 bA then G 2 syz such that A � G implies that z 2 G

implies that y 2 G implies that y 2 bAyz implies thatdfyg � dfygyz � bAyz. Hence bAyz ¼ bA [ dfyg. (b) z 2 A [ fzg
implies that A [ fzg 2 syzc where syzc = {X � G:G 2 syz}

implies that Ayz � A [ fyg. Also

(1) y R A implies that A 2 syzc implies that Ayz ¼ A.

(2) y 2 A implies that z 2 Ayz implies that fzg � fzgyz �
Ayz implies that Ayz ¼ A [ fzg.

Theorem 3.3. Let (X, s) be a topological space,bb ¼ fdfxg : x 2 Xg be the family of the minimal sets at the
points of X with respect to the topology s and y, z 2 X be two
distinct points satisfying the following conditions:

(1) y R dfzg,
(2) z 2 dfxg and x R dfzg imply that y 2 dfxg and

(3) x 2 dfyg and y R dfxg imply that x 2 dfzgThen,bbyz ¼ fdfxg; dfyg [ dfzg : dfxg 2 ðbb � dfzgÞg is the family

of the minimal sets at the points of X with respect to
the topology syz = s \ Dyz on X. If s

*
is a topology on
X such that s
*

„ syz and syz � s
*

� s, then

s�yz ¼ s� \ Dyz ¼ syz and the families of the minimal sets
at the points of X with respect to s and s

*
are the same.

Proof By the condition (1) y R dfzg implies thatdfzg – dfyg [ dfzg. Since syz � s then dfxg � dfxgyz for each

point x 2 X. If, G 2 s such that y 2 G, then G 2 syz which

implies that dfygyz ¼ dfyg. If x 2 X such that dfxg R fdfyg;dfzgg, then we have two cases z 2 dfxg or z R dfxg. If

z 2 dfxg,then by the condition (2) y 2 dfxg and so G 2 s such

that x 2 G implies that G 2 syz implies that dfxgyz ¼ dfxg.If,
z R dfxg then by Lemma 3.2(a) dfxgyz ¼ dfxg. Also by Lemma

3.2(a) dfzgyz ¼ dfyg [ dfzg. Therefore, bbyz ¼ fdfxg; dfyg [ dfzg :dfxg 2 ðb� fdfzggÞg. By the condition (1) y R dfzg implies that
s \ Dyz „ s and clearly syz � s. If s* is a topology on X such
that s* „ syz then, syz � s* � s implies that syz � s* \ Dyz �
s \ Dyz = syzimplies that s�yz ¼ syz. Then, dfxg�yz ¼ dfxgyz and

so bbyz ¼ fdfxg; dfyg [ dfzg : dfxg 2 ðbb�; dfzgÞg ¼ fdfxg�; dfyg�
[dfzg� : dfxg� 2 ðbb� � dfzg�Þg ¼ bb�yz and bb� ¼ fdfxg� : x 2 Xg.
Since syz � s* � s, dfxg � dfxg� � dfxgyz ¼ dfxg which implies

that dfxg� ¼ dfxg for each point x 2 X such that dfxg – dfzg
and dfzgyz ¼ dfzg�yz implies that dfyg [ dfzg ¼ dfyg� [ dfzg�. If,

t 2 dfzg� � dfzg, then t 2 dfzg� implies that t 2 dfyg [ dfzg
implies that t 2 dfyg because t R dfzg and we have two cases:

(i) y R cftg which implies by condition (3) that t 2 dfzg and this

contradicts that t R dfzg. (ii) y 2 cftg which implies thatdfyg � cftg � cftg� � dfzg� because s* � s and t 2 dfzg�which
implies that y 2 dfzg� which implies that s* � Dyz which implies

that s� ¼ s� \Dyz ¼ s�yz ¼ syz which contradicts that s* „ syz.

Hence, such point t does not exist and so, dfzg� ¼ dfzg becausedfzg � dfzg�. This completes the Proof.

Remark 3.4. Let X be an infinite set, y and z be two distinct

points of X satisfy the conditions (1), (2) and (3) of Theorem
3.3 and s be a nonprincipal topology on X. Then,bbyz ¼ fdfxg; dfyg [ dfzg : dfxg 2 ðbb � fdfzggÞg may be a family

with respect to more than one topology on X. For,
s = {G � X:y R G or {y,z} � G such that X � G is finite} =
Ey [ (P{y, z} \ C) is a nonprincipal topology on X in whichdfyg ¼ fy; zg and dfzg ¼ fzg. So, bbyz ¼ ffxg; fy; zg : x 2 ðX�
fy; zgÞg is the family of the minimal sets with respect to the
topologies:

s1 = {G � X: {y,z} \ G= / or {y, z} � G such that X � G
is finite} =E{y, z} [ (P{y,z} \ C) = syz and
s2 = {G � X:X � G is finite and either {y,z} \ G= / or

{y,z} � G} [ {/} ¼ ðEfy;zg \ CÞ [ ðP fy;zg \ CÞ ¼ s�yz

Clearly s1 ¼ s \ Dyz ¼ syz – s2 ¼ s� \ Dyz ¼ s�yz where
s* = {G � X:X � G is finite and either y R G or

{y,z} � G} [ {/} = (Ey \ C) [ (P{y, z} \ C)

and clearly the minimal sets with respect to s and s* are coin-
cided, s* � s and s�yz � syz.In fact s1 = s \ Dyz is not strictly
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weaker than s for, if s+ = {G � X:{y,z} \ G= / or X � G is

finite and either {y,z} \ G = {z} or {y,z} \ G = {y,z}} = E{y,

z} [ (Ey \ Pz \ C) [ (P{y,z} \ C). Then, s1 = syz � s+ � s
where EA = {G � X:G \ A= /} [ {X}, PA = {G � X:G \
A= A} [ {/} and C is the cofinite topology on X. While
s2 ¼ s� \ Dyz ¼ s�yz is a strictly weaker topology on X than s*

for, if s** is a topology on X such that s�yz � s�� � s�, then
G 2 s�� � s�yz implies that z 2 G and y R G. Hence, G [ (X � {y,

z}) = X � {y} 2 s** since X � fy; zg 2 s�yz.So, if G � X such
that X � G is finite, z 2 G and y R G, then X � (G [ {y}) =
{x1, x2, . . . ,xn} andX � fxig 2 s�yz for each i 2 {1,2, . . . ,n}.
So, G = (X � {y}) \ (X � {x1}) \ (X � {x2}) \ . . . \ (X �
{xn}) 2 s**. Hence, s** = s*.

Remark 3.5. Let s and s* be two topologies on a nonempty set
X, s* � s, s „ s* and y, z 2 X be two distinct points satisfying

the conditions (1), (2) and (3) of Theorem 3.3 then:

(1) G 2 s � s* such that y 2 G or y, z R G imply that syz–s�yz,

(2) syz � s* � s imply that s � s* � {G 2 s:z 2 G and
y R G} = s � syz and syz ¼ s�yz.

(3) bsyz is a strictly weaker principal topology than bs on X

where bs is the topology on X defined by Theorem 2.16.

Corollary 3.6. Let s be a principal topology on X, b be the min-
imal basis for s and y, z 2 X be two distinct points satisfying the
conditions (1), (2) and (3) of Theorem 3.1. Then, byz = {Ux,

Uy [ Uz:Ux 2 (b � {Uz})} is the minimal basis for the principal
topology syz = s \ Dyz which is strictly weaker than s where Ux

is the minimal open set at x for each point x 2 X.

Proof. It is a direct consequence of Theorem 3.3.

Lemma 3.7. Let (X, s) be a topological space and x, y, z, t 2 X

such that x R dfzg and y R cftg. Then, bbxz–bbyt implies that

sxz „ syt.

Proof. By Theorem 3.3; if cftg 2 bbxz � bbyt and dfzg 2 bbyt � bbxz

then there are two cases: (i) dfzg ¼ cftg in this case if G 2 s then

z 2 G iff t 2 G. Since dfzgxz ¼ \fG 2 sxz : z 2 Gg ¼ \fG 2
s : z; t; x 2 Gg and cftgyt ¼ \fG 2 syt : t 2 Gg ¼ \fG 2 s : z;

t; y 2 Gg hence bbxz–bbyt implies that dfzgxz– cftgyt implies that

{G 2 s: z, t, x 2 G} „ {G 2 s:z, t, y 2 G} implies that there
exists G 2 s such that z 2 G and either (1) x 2 G and y R G
which implies that G 2 sxz � syt or (2) y 2 G and x R G which

implies that G 2 syt � sxz. Therefore sxz „ syt. (ii) dfzg– cftg
which implies that either z R cftg or t R dfzg. If z R cftg then by

Lemma 3.2(a) cftgxz ¼ cftg and cftgyt ¼ dfyg [ cftg– cftg which

implies that cftgxz– cftgyt. Hence by Remark 2.10 sxz „ syt. Sim-

ilarly, t R dfzgimplies that sxz „ syt.

Lemma 3.8. Let (X,s) be a topological space and x, y, z, t 2 X

be such that x R dfzg and y R cftg. Then, sxz = s \ Dxz = s \
Dyt = syt iff dfxg ¼ dfyg and dfzg ¼ cftg.
Proof. Clearly, x R dfzg and y R cftg iff s R {sxz, syt}. Suppose

that dfxg ¼ dfyg and dfzg ¼ cftg. Then, by Remark 2.4
y 2 dfxg and z 2 cftg implies that s � Dyx \ Dzt which implies
that s = s \ Dyx \ Dzt which implies that s \Dxz ¼ s \Dyx\
Dxz \Dzt � s \Dyz \Dzt � s \Dyt. Similarly, one can show

that s \ Dyt � s \ Dxz.

Conversely; by Lemma 3.2(a) dfzgxz ¼ dfxg [ dfzg andcftgyt ¼ dfyg [ cftg. Then, dfzg– cftg implis that z R cftg which

implies by Lemma 3.2(a) that cftg 2 bbxz which implies by Lem-

ma 3.7 that sxz „ syt because cftg R bbyt or t R dfzg which implies

by Lemma 3.7 that sxz „ syt because dfzg R bbxz. Hence, sxz =

syt implies that dfzg ¼ cftg. If, dfzg ¼ cftg and dfxg – dfyg, then
either x R dfyg or y R dfxg. Now dfzgxz ¼ cftgyt implies thatdfxg [ dfzg ¼ dfyg [ cftg and there are two cases:

(1) x R dfyg implies that x 2 cftg which implies that x 2 dfzg
this contradicts the assumption that x R dfzg.

(2) y R dfxg implies that y 2 dfzg which implies that y 2 cftg
this contradicts the assumption that y R cftg.

Hence, dfzg ¼ cftg and dfxg – dfyg imply that dfzgxz – cftgyt
implies that bbxz – bbyt implies by Lemma 3.7 that sxz „ syt.

Its contra positive is if x R dfzg and y R cftg then, sxz = syt im-

plies that dfxg ¼ dfyg. This completes the proof.

Remark 3.9. In general Lemma 3.8 is not true for, let X be an
infinite set, x, y,z and t be distinct points of X and X* = X �
{t}. Then, s = {G � X*:z R G or {x,z} � G and X � G is

finite} [ {X}is a topology on X in which dfxg ¼ fxg,dfzg ¼ fx; zg, dfyg ¼ fyg and cftg ¼ X which implies that

sxz = s \ Dxz = s = s \ Dyt = syt while dfxg– dfyg and dfzg
– cftg. Because of which the conditions x R dfzg and y R cftg
equivalently s R fsxz; syt; g are given in Lemma 3.8.

Theorem 3.10. Let (X,s) be a topological space and y,z be two
distinct points of X such that syz = s \ Dyz is strictly weaker

than s. Then the points y and z satisfy the conditions (1), (2)
and (3) of Theorem 3.3.

Proof. If y 2 dfzg, then s = s \ Dyz and accordingly y R dfzg.If
z 2 dfxg then, s = s \ Dzx and so s \ Dyz = s \ Dyz \ Dzx �
s \ Dyx � s If x R dfzg, then by Lemma 3.2(a) dfzgyx ¼ dfzg
implies that dfzgyz – dfzgyx since, dfzgyz – dfzg because y R dfzg
which implies by Remark 2.10 that s \ Dyz „ s \ Dyx which

implies that s \ Dyx = s because syz is strictly weaker than s

and so y 2 dfxg. Clearly by Lemma 3.2(a), dfzgyz ¼ dfyg [ dfzg
and if x 2 dfyg, then x 2 dfzgyz which implies that s \ Dyz � Dxz

which implies that s \ Dyz � s \ Dxz � s. Now dfzgyz ¼ dfzgxz
implies that dfyg [ dfzg ¼ dfxg [ dfzg and so y R dfxg implies

that y 2 dfzg implies that s � Dyz implies that s \ Dyz = s
which contradicts that s \ Dyz is strictly weaker than s. Then,dfzgyz– dfzgxz which implies by remark (2.10) that s \ Dyz „
s \ Dxz which implies that s \ Dxz = s which implies that

x 2 dfzg. This completes the proof.
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Corollary 3.11. If, (X,s) is a principal topological space, then

syz = s \ Dyz is a strictly weaker principal topology on X than s
iff y and z satisfy the conditions (1), (2) and (3) of Theorem 3.3.

Theorem 3.12. Let (X,s) and (X,s*) be two topological spaces
and s* be strictly weaker than s such that s and s* have different
families bb and bb� of minimal sets. Then, there are two distinct
points y, z 2 X satisfy the conditions (1), (2) and (3) of Theo-
rem 3.3 such that s* = s \ Dyz = syz.

Proof. For each point x 2 X, let dfxg and dfxg� be the minimal

sets at x with respect to s and s*, respectively. Since bb�–bb then

there is a point z 2 X such that dfzg�– dfzg, then there is a point

y 2 dfzg� � dfzg since dfzg � dfzg� because s* � s. Then, s is not

contained in Dyz because y R dfzg which implies that s „ s \ Dyz

and s* � Dyz because y 2 dfzg� and so, s* � s implies that

s* � s \ Dyz � s. If, s* is strictly weaker than s then,
s* = s \ Dyz = syz. If, there is a point t 2 X � {z} such thatcftg�– cftg, then using the same argument there is a point

x 2 cftg� � cftg such thats* = s \ Dxt. Hence, s \ Dyz = s \
Dxt and so by Lemma 3.8 dfxg ¼ dfyg and dfzg ¼ cftg . Clearly
by Theorem 3.10 y and z satisfy the conditions (1), (2) and (3)

of Theorem 3.3.

Corollary 3.13. Theorem3.1 is a direct consequence ofCorollary
3.11 and Theorem 3.12.

Remark 3.14. By using Remark 2.4 one can write the condi-

tions (1), (2) and (3) of Theorem 3.3 as follows:

(1) z R fyg,
(2) x 2 fzg and z R fxg imply that x 2 fyg and
(3) y 2 fxg and x R fyg imply that z 2 fxg.

Proposition 3.15. Let s be a topology on a nonempty set X and
syz = s \ Dyz be a topology on X satisfies the condition (3) of The-

orem 3.3. Then, fxgyz ¼ fxg for each x 2 X such that fxg–fyg.

Proof. If fxg–fyg then either y R fxg which implies by
Lemma 3.2(b) that fxgyz ¼ fxg or x R fyg and y 2 fxg which
implies by condition (3) of Theorem 3.3 that z 2 fxg and so
again by Lemma 3.2(b) fxgyz ¼ fxg.

Theorem 3.16. Let (X,s) be a T0 topological space and y,z 2 X
be two distinct points satisfying the conditions (1), (2) and (3)

of Theorem 3.3. Then, (X,syz) is To iff z R dfyg
Proof. If, (X,syz) is To, then by Remark 2.11 dfygyz– dfzgyz and
by Lemma 3.2(a) dfygyz ¼ dfyg and dfzgyz ¼ dfyg [ dfzg which

implies that z R dfyg.
Conversely; if z R dfyg then, dfyg– dfyg [ dfzg and sodfygyz– dfzgyz. If (X,s) is To and x 2 X then, dfxg– dfzg and by

Theorem 3.3 bbyz ¼ fdfxg; dfyg [ dfzg : dfxg R ðbb � fdfzggÞg.
Then, dfxgyz– cftgyz for any two distinct points t,x 2 X � {z}.

If there is a point x 2 X � {y,z} such that dfxgyz ¼ dfzgyz, then
dfxg ¼ dfyg [ dfzg. Then, y; z 2 dfxg and either x 2 dfyg which

implies that dfxg ¼ dfyg or x 2 dfzg which implies thatdfxg ¼ dfzg which contradicts that (X,s) is To. This contradic-

tion means that dfxgyz– dfzgyz for each point x 2 X. Hence

(X,syz) is To.

Corollary 3.17. If,(X,s) is T1 and y,z 2 X are any two distinct

points, then:

(1) by Remark 2.11 (X,syz) is To and (X, (syz)zy) is not To.

(2) by Remark 2.12 (X,syz) is not T1.
Theorem 3.18. Let (X, s) be a regular topological space and
y,z 2 X be two distinct points satisfying the conditions (1),
(2) and (3) of Theorem 3.3. Then, (X,syz) is not regular and

(X, (syz)zy) is regular.

Proof. It is a direct consequence of Theorems 2.13 and 3.3.

Theorem 3.19. Let X be an infinite set, p 2 X and y,z 2 X � {p}
be any two distinct points. Then (1) s = C [ Ep = {G � X:

p R G or X � G is finite} is a topology on X where C is the cofi-
nite topology and Ep is the excluding point topology onX with the
excluding point p and (2) syz = s \ Dyz is a strictly weaker

topology on X than s.

Proof. syz ¼ s \Dyz ¼ ðC \DyzÞ [ ðEp \DyzÞ ¼ Cyz [ ðEpÞyz.
If syz � s* � s then G 2 s* � syz implies that G 2 s such that
z 2 G and y R G. Now G 2 s* implies that X � {y,z} [ G=

X � {y} 2 s* because X � {y, z} 2 Cyz � s* and x 2 X such that
x „ y implies that X � {x} 2 Cyz and so {X � {x}:x 2 X} � s*

which implies that C � s* and {y,z} \ G= {z} 2 s* since

fy; zg 2 ðEpÞyz � s� and hence {z} 2 s* which implies that
Ep � s*. So, s* = s. Therefore syz is a strictly weaker topology
on X than s.

Theorem 3.20. Let X be an infinite set, (X,C) be the minimal T1

topological space and y,z 2 X be any two distinct points. Then,
Cyz = C \ Dyz is a strictly weaker topology on X than C

Remark 3.21. If (X,s) is T1, then Cyz � syz for any two points

y,z 2 X.

Remark 3.22. If (X,s) is a topological space, then syz � bsyz � bs
and syz � s � bs. If s is a principal topology on X, then
syz ¼ bsyz is a strictly weaker topology on X than s.
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