

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

On minimal sets and strictly weaker topologies

A.S. Farrag^{a,*}, M.Y. Bakier^b

^a Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt ^b Department of Mathematics, Faculty of Science, Assuit University, Assuit, Egypt

Available online 2 March 2012

KEYWORDS

Ultratopologies; Principal and nonprincipal topologies; Minimal open sets; T_{o} ; T_{i} ; Regular topologies

1. Introduction

Let τ_1 and τ_2 be two topologies on a nonempty set X then (1) τ_1 is weaker than τ_2 or τ_2 is stronger than τ_1 if $\tau_1 \subset \tau_2$ (2) τ_1 is strictly weaker than τ_2 if τ_1 is weaker than τ_2 and $\tau_1 \subset \tau \subset \tau_2$ such that $\tau \notin \{\tau_1, \tau_2\}$ implies that τ is not a topology on X. In [4] Frohlich defined an ultratopology on a set X to be a strictly weaker topology than the discrete topology D on X. The ultratopologies on X are divided into two classes the principal and the nonprincipal ultratopologies on X, $E_z \cup P_y$ and $E_z \cup F$, where E_z is the excluding, P_y is the particular point topologies on X, F is an ultrafilter on X and y, z are any two distinct points of X. In [5] Mashhour and Farrag showed that the principal ultratopology

* Corresponding author.

E-mail address: mybakier@yahoo.com (A.S. Farrag).

1110-256X @ 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

Peer review under responsibility of Egyptian Mathematical Society. doi:10.1016/j.joems.2011.10.004

Abstract In [1,2] Farrag characterized the stirictly weaker principal topologies than any given principal topology on a nonempty set by using the minimal open sets which are defined by Steiner [3]. This paper mainly generalizes this result by using the minimal sets, which are defined in the paper with respect to the given topology τ on a nonempty set.

© 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

> $E_z \cup P_y$ on a set X is the topology on X having the minimal basis $\beta_{yz} = \{\{x\}, \{y, z\}: x \in (X - \{z\})\}$ where y and z are two distinct points of X and denoted by D_{vz} . In [3] Steiner defined a minimal open set at a point $x \in X$ in a topological space (X, τ) to be the open set containing x and is contained in each open set containing x. The author defined also a principal topology on a set X to be the topology on X having the minimal basis that consists only of open sets minimal at each point $x \in X$. It is Proved that a topology τ on a set X is principal iff arbitrary intersections of members of τ are members of τ . In [1] the authors gave a necessary and sufficient conditions for the principal topology τ^* on X to be strictly weaker than a given principal topology τ on X and proved that τ^* must be of the form $\tau^* = \tau \cap D_{yz}$ which is denoted by τ_{yz} where y and z are two distinct points of X satisfying three conditions depending on the minimal open sets in τ . In M^cClusky and M^cCartan [6,7] and Kennedy and M^cCartan [8] defined the τ - kernel {x} of {x} to be the intersection of all open sets which contain the point x.

2. The minimal sets

Definition 2.1. Let (X, τ) be a topological space and $x \in X$. Then, $\widehat{\{x\}} = \bigcap \{G \in \tau : x \in G\}$ is called the minimal set at the point x with respect to τ on X. The set $\{x\}$ is defined in [6] to be the τ – kernel of $\{x\}$.

As a direct consequence of the definition of the minimal sets at the points of a nonempty set X with respect to a topology τ on X, if $x, y \in X$ are any two distinct points, then we have the following remarks and theorems:

Remark 2.2. If τ is a principal topology, then $\{x\} \in \tau$ is the minimal open set at the point x as it is defined in [3].

Remark 2.3. $x \in \{y\}$ implies that $\{x\} \subset \{y\}$. Therefore, $\{x\} = \{y\}$ iff $x \in \{y\}$ and $y \in \{x\}$.

Remark 2.4. $y \in \{x\}$ iff $x \in \overline{\{y\}}$ iff $\tau \subset D_{yx}$. Therefore, $\widehat{\{x\}} = \{y \in X : x \in \overline{\{y\}}\} = \{y \in X : \tau \subset D_{yx}\}$ and $\overline{\{x\}} = \{y \in X : x \in \overline{\{y\}}\} = \{y \in X : \tau \subset D_{xy}\}.$

Remark 2.5. $\widehat{\{x\}} = \widehat{\{y\}}$ iff $\overline{\{x\}} = \overline{\{y\}}$. For, $\widehat{\{x\}} = \widehat{\{y\}}$ iff $x \in \widehat{\{y\}}$ and $y \in \widehat{\{x\}}$ iff $y \in \overline{\{x\}}$ and $x \in \overline{\{y\}}$ iff $\overline{\{x\}} = \overline{\{y\}}$.

Remark 2.6. $\widehat{\{x\}} = x$ for each point $x \in X$ iff $\overline{\{x\}} = x$ for each point $x \in X$.

Remark 2.7. $\{x\} \cap \{y\} = \phi$ for any two distinct points x, $y \in X$ iff $\{x\} \cap \{y\} = \phi$ for any two distinct points $x, y \in X$.

Remark 2.8. If *X* is an infinite set, then we may have the same family of minimal sets at the points of *X* with respect to each of a class of topologies on *X*. For example, each of the class of the T_1 – topologies has the same family of the minimal sets, that is $\hat{\beta} = \{\widehat{\{x\}} : x \in X\} = \{\{x\} : x \in X\}.$

Remark 2.9. If (X, τ) is a topological space, then $\{x\} \notin \tau$ implies that each open set containing x is infinite. For let G be a finite subset of X, $G \in \tau$ and $x \in G$, then either $G - \{x\} = \phi$ which implies that $G = \{x\}$ or $G - \{x\} =$ $\{x_1, x_2, \ldots, x_n\}$ and so for each $i \in \{1, 2, \ldots, n\}$ there exists an open set $G^i \in \tau$ such that $x \in G^i$ and $x^i \notin G^i$. Then, $\{x\} = G \cap G_1 \cap G_2 \cap \ldots \cap G_n$ which implies in both cases that $\{x\} \in \tau$.

Remark 2.10. If τ^* and τ are two topologies on a nonempty set X and $x \in X$ such that $\{x\}^* \neq \{x\}$ where $\{x\}^*_*$ and $\{x\}$ are the minimal sets at the point x with respect to τ and to τ respectively, then $\tau \neq \tau$ but not conversely as it shown by Remark 2.8. For, $t \in \{x\}^* - \{x\}$ implies that there is an open set $G \in \tau$ such that $x \in G$ and $t \notin G$ then $G \notin \tau$ because any open set in τ containing x, contains t because $t \notin \{x\}^*$. Hence, $\tau \neq \tau$. Similarly: $t \in \{x\} - \{x\}^*$ implies that $\tau \neq \tau$.

Remark 2.11. Let (X, τ) be a topological space, then the following statements are equivalent:

- (1) (X, τ) is T_0 ,
- (2) $\{x\} \neq \{y\}$ for any two distinct points $x, y \in X$ and
- (3) $\widehat{\{x\}} \cap \overline{\{x\}} = \{x\}$, for each point $x \in X$.

Remark 2.12. By using Remarks 2.6 and 2.7 a topological space (X, τ) is T^1 iff $\widehat{\{x\}} = \{x\}$ for each point $x \in X$ iff $\widehat{\{x\}} \cap \widehat{\{y\}} = \phi$ for any two distinct points $x, y \in X$.

Theorem 2.13. Let (X, τ) be a regular topological space, then $\widehat{\{x\}} = \overline{\{x\}}$ for each $x \in X$. Moreover, the family $\widehat{\beta} = \{\widehat{\{x\}} : x \in X\}$ of the minimal sets at the points of X with respect to the topology τ on X is a partition of X.

Proof. Suppose that (X,τ) is a regular topological space. Then, every open set containing x also contains $\overline{\{x\}}$, hence $\overline{\{x\}} \subset \overline{\{x\}}$. If $y \in \overline{\{x\}} - \overline{\{x\}}$, then there is an open set $G \in \tau$ such that $y \in G$ and $x \notin G$. Since τ is regular then there is an open set $V \in \tau$ such that $y \in V \subset \overline{V} \subset G$. Then, $X - \overline{V}$ is an open set containing x but not y, a contradiction. Thus, $\overline{\{x\}} = \overline{\{x\}}$. If $y \in \overline{\{x\}}$ then $x \in \overline{\{y\}}$, and so $\overline{\{x\}} \subset \overline{\{y\}}$. On the other hand, $y \in \overline{\{x\}} = \overline{\{x\}}$ implies that $\overline{\{y\}} \subset \overline{\{x\}}$, and thus $\overline{\{x\}} = \overline{\{y\}}$ whenever $y \in \overline{\{x\}}$. This clearly shows that $\widehat{\beta} = \{\overline{\{x\}} : x \in X\}$ must be a partition of X.

As a direct consequence of Theorem 2.13 we have the following corollary.

Corollary 2.14. (X,τ) is a regular principal topological space iff $\widehat{\beta} = \{\widehat{\{x\}} : x \in X\}$ is a partition of X where each minimal set at x is open iff each open set is closed.

Remark 2.15. As a direct consequence of Remarks 2.11, 2.12 and Theorem 2.13, if (X, τ) is regular and not T_1 , then it is not T_0 i.e, a regular T_0 is T_3 which is an old and well known result.

Theorem 2.16. Let (X, τ) be a topological space, then $\widehat{\beta} = \{\widehat{\{x\}} : x \in X\}$ is the minimal basis for a principal topology $\widehat{\tau}$ on X stronger than τ . If, τ is a principal topology on X, then $\widehat{\tau} = \tau$.

Proof. Clearly; $\cup \{\widehat{\{x\}} : x \in X\} = X$, if $x, y, z \in X$ are distinct such that $x \in \{\widehat{y\}} \cap \{\widehat{z}\}$, then $\{\widehat{x}\} \subset \{\widehat{y}\} \cap \{\widehat{z}\}$. Therefore, $\widehat{\beta} = \{\{\widehat{x}\} : x \in X\}$ is a basis for some topology $\widehat{\tau}$ on X. If $x \in X$ and $G \in \widehat{\tau}$ such that $x \in G$, then there exists $y \in X$ such that $x \in \{\widehat{y}\} \subset G$ which implies that $\{\widehat{x}\} \subset G$. Hence, $\{\widehat{x}\} \in \widehat{\tau}$ is the minimal open set at the point x. Hence, $\widehat{\tau}$ is a principal topology on X and $\widehat{\beta}$ is its minimal basis. If τ is principal, then $\widehat{\beta} = \{\{\widehat{x}\} : x \in X\}$ is its minimal basis and $\widehat{\tau} = \tau$.

Example $\hat{\beta} = \{\{x\} : x \in X\}$ is the family of the minimal sets at the points of X with respect to the minimal T_1 – topology C on X, i.e the topology on X in which each proper nonempty subset is member iff its complement if finite. Hence, $\hat{C} = D$ where D is the discrete topology on X.

3. Strictly weaker topologies

Theorem 3.1. Let (X, τ) and (X, τ^*) be two principal topological spaces. Then, τ^* is a strictly weaker principal topology than τ iff there are two distinct points y and $z \in X$ satisfying the conditions:

(1) $y \notin U_z$,

- (2) $z \in U_x$ and $x \notin U_Z$ imply that $y \in U_x$ and
- (3) $x \in U_y$ and $y \notin U_x$ imply that $x \in U_z$

and $\tau^* = \tau \cap D_{yz}$ having the minimal basis $\beta_{yz} = \{U_x, U_y \cup U_z : U_x \in (\beta - \{U_z\})\}$ where β is the minimal basis for τ , U_x is the minimal open set at the point x for each $x \in X$.

If (X, τ) is a topological space and $A \subset X$ in [9] defined the τ - minimal set at A to be $\widehat{A} = \bigcup \{\widehat{x}\} : x \in A\}$ and proved that $\widehat{A} = \bigcap \{G \in \tau : A \subset G\}$ and clearly $A \subset B \subset X$ implies that $\widehat{A} \subset \widehat{B}$. If (X, τ) and (X, τ) are two topological spaces and $A \subset X$ then $\tau \subset \tau$ implies that $\widehat{A} \subset \widehat{A}^*$ and $\overline{A} \subset \overline{A}^*$ where \widehat{A}^* and \overline{A}^* are \widehat{A} and \overline{A} with respect to τ , respectively. In this article a generalization of Theorem 3.1 will be given for any topology τ principal or nonprincipal on a nonempty set X. Theorem 3.1 will be a special case.

Lemma 3.2. Let (X, τ) be a topological space, $y, z \in X$ be two distinct points, $\tau_{yz} = \tau \cap D_{yz}$ and $A \subset X$. Then

(a) $\widehat{A}_{yz} \subset \widehat{A} \cup \{y\}$ and either $y \in \widehat{A}$ which implies that $\widehat{A}_{yz} = \widehat{A}$ or $y \notin \widehat{A}$ which implies that.

$$\widehat{A}_{yz} = \begin{cases} \widehat{A} & \text{if } z \notin \widehat{A} \\ \widehat{A} \cup \widehat{y} & \text{if } z \in \widehat{A} \end{cases}$$

(b) A_{yz} ⊂ A ∪ {z} and either z ∈ A which implies that A_{yz} = A or z ∉ A which implies in [6] that

$$\overline{A}_{yz} = \begin{cases} \overline{A} & \text{if } y \notin \overline{A} \\ \overline{A} \cup \overline{\{z\}} & \text{if } y \in \overline{A} \end{cases}$$

Proof. (a) $t \notin \widehat{A} \cup \{\overline{y}\}$ implies that there are two open sets U, $V \in \tau$ such that $A \subset U$, $y \in V$ and $t \notin U \cup V$ which imply that $U \cup V \in \tau_{yz}$ and $A \subset U \cup V$ which imply that $t \notin \widehat{A}_{yz}$. Then $\widehat{A}_{yz} \subset \widehat{A} \cup \{\overline{y}\}$. Also

(1) $z \notin \widehat{A}$ implies that there exists an open set $U \in \tau$ such that $A \subset U$ and $z \notin U$. Then $t \notin \widehat{A}$ implies that there is an open set $V \in \tau$ such that $A \subset V$ and $t \notin V$. Then $U \cap V \in \tau_{yz}$ since $z \notin U \cap V$, $A \subset U \cap V$ and $t \notin U \cap V$ which implies that $t \notin \widehat{A}_{yz}$ and so $\widehat{A}_{yz} = \widehat{A}$.

(2) If $z \in \widehat{A}$ then $G \in \tau_{yz}$ such that $A \subset G$ implies that $z \in G$ implies that $y \in G$ implies that $y \in \widehat{A}_{yz}$ implies that $\widehat{\{y\}} \subset \widehat{\{y\}}_{yz} \subset \widehat{A}_{yz}$. Hence $\widehat{A}_{yz} = \widehat{A} \cup \widehat{\{y\}}$.(b) $z \in \overline{A} \cup \overline{\{z\}}$ implies that $\overline{A} \cup \overline{\{z\}} \in \tau_{yzc}$ where $\tau^{yzc} = \{X - G: G \in \tau^{yz}\}$ implies that $\overline{A}_{yz} \subset \overline{A} \cup \overline{\{y\}}$. Also

(1) $y \notin \overline{A}$ implies that $\overline{A} \in \tau_{vzc}$ implies that $\overline{A}_{vz} = \overline{A}$.

(2) $y \in \overline{A}$ implies that $z \in \overline{A}_{yz}$ implies that $\overline{\{z\}} \subset \overline{\{z\}}_{yz} \subset \overline{A}_{yz}$ implies that $\overline{A}_{yz} = \overline{A} \cup \overline{\{z\}}$.

Theorem 3.3. Let (X, τ) be a topological space, $\widehat{\beta} = \{\widehat{\{x\}} : x \in X\}$ be the family of the minimal sets at the points of X with respect to the topology τ and y, $z \in X$ be two distinct points satisfying the following conditions:

- (1) $y \notin \{z\}$,
- (2) $z \in \{x\}$ and $x \notin \{z\}$ imply that $y \in \{x\}$ and
- (3) $x \in \{y\}$ and $y \notin \{x\}$ imply that $x \in \{z\}$ Then, $\widehat{\beta}_{yz} = \{\{x\}, \{y\} \cup \{z\} : \{x\} \in (\widehat{\beta} - \{z\})\}$ is the family of the minimal sets at the points of x with respect to the topology $\tau_{yz} = \tau \cap D_{yz}$ on X. If τ is a topology on

X such that $\tau \neq \tau_{yz}$ and $\tau_{yz} \subset \tau \subset \tau$, then $\tau_{yz}^* = \tau^* \cap D_{yz} = \tau_{yz}$ and the families of the minimal sets at the points of X with respect to τ and τ are the same.

Proof By the condition (1) $y \notin \{\overline{z}\}$ implies that $\widehat{\{z\}} \neq \widehat{\{y\}} \cup \widehat{\{z\}}$. Since $\tau_{yz} \subset \tau$ then $\widehat{\{x\}} \subset \widehat{\{x\}}_{yz}$ for each point $x \in X$. If, $G \in \tau$ such that $y \in G$, then $G \in \tau_{yz}$ which implies that $\{y\}_{yz} = \{y\}$. If $x \in X$ such that $\{x\} \notin \{\{y\}\}$, $\{\overline{z}\}\$, then we have two cases $z \in \{x\}$ or $z \notin \{x\}$. If $z \in \{x\}$, then by the condition (2) $y \in \{x\}$ and so $G \in \tau$ such that $x \in G$ implies that $G \in \tau_{vz}$ implies that $\{x\}_{vz} = \{x\}$. If, $z \notin \{\widehat{x}\}$ then by Lemma 3.2(a) $\{\widehat{x}\}_{yz} = \{\widehat{x}\}$. Also by Lemma 3.2(a) $\widehat{\{z\}}_{yz} = \widehat{\{y\}} \cup \widehat{\{z\}}$. Therefore, $\widehat{\beta}_{yz} = \widehat{\{\{x\}, \{y\}\}} \cup \widehat{\{z\}}$: $\widehat{\{x\}} \in (\beta - \{\widehat{\{z\}}\})\}$. By the condition (1) $y \notin \widehat{\{z\}}$ implies that $\tau \cap D_{yz} \neq \tau$ and clearly $\tau_{yz} \subset \tau$. If τ^* is a topology on X such that $\tau^* \neq \tau_{yz}$ then, $\tau_{yz} \subset \tau^* \subset \tau$ implies that $\tau_{yz} \subset \tau^* \cap D_{yz} \subset \tau^*$ $\tau \cap D_{yz} = \tau_{yz}$ implies that $\tau_{yz}^* = \tau_{yz}$. Then, $\{x\}_{yz}^* = \{x\}_{yz}$ and $\widehat{\beta}_{yz} = \{\widehat{\{x\}}, \widehat{\{y\}} \cup \widehat{\{z\}} : \widehat{\{x\}} \in (\widehat{\beta} -, \widehat{\{z\}})\} = \{\widehat{\{x\}}^*, \widehat{\{y\}}^*$ $\cup \widehat{\{z\}^*} : \widehat{\{x\}^*} \in (\widehat{\beta}^* - \widehat{\{z\}^*}) = \widehat{\beta}_{vz}^* \text{ and } \widehat{\beta}^* = \{\widehat{\{x\}^*} : x \in X\}.$ Since $\tau_{yz} \subset \tau^* \subset \tau$, $\{x\} \subset \{x\}^* \subset \{x\}_{yz} = \{x\}$ which implies that $\{x\}^* = \{x\}$ for each point $x \in X$ such that $\{x\} \neq \{z\}$ and $\{\overline{z}\}_{yz} = \{\overline{z}\}_{yz}^*$ implies that $\{\overline{y}\} \cup \{\overline{z}\} = \{\overline{y}\}^* \cup \{\overline{z}\}^*$. If, $t \in \{\overline{z}\}^* - \{\overline{z}\}$, then $t \in \{\overline{z}\}^*$ implies that $t \in \{\overline{y}\} \cup \{\overline{z}\}$ implies that $t \in \{y\}$ because $t \notin \{z\}$ and we have two cases: (i) $v \notin \{t\}$ which implies by condition (3) that $t \in \{z\}$ and this contradicts that $t \notin \{\overline{z}\}$. (ii) $y \in \{t\}$ which implies that $\{\widehat{y}\} \subset \{\widehat{t}\} \subset \{\widehat{t}\}^* \subset \{\widehat{z}\}^*$ because $\tau^* \subset \tau$ and $t \in \{\widehat{z}\}^*$ which implies that $y \in \{\overline{z}\}^*$ which implies that $\tau^* \subset D_{vz}$ which implies that $\tau^* = \tau^* \cap D_{yz} = \tau^*_{yz} = \tau_{yz}$ which contradicts that $\tau^* \neq \tau_{yz}$. Hence, such point t does not exist and so, $\{\overline{z}\}^* = \{\overline{z}\}$ because $\overline{\{z\}} \subset \overline{\{z\}^*}$. This completes the Proof.

Remark 3.4. Let X be an infinite set, y and z be two distinct points of X satisfy the conditions (1), (2) and (3) of Theorem 3.3 and τ be a nonprincipal topology on X. Then, $\hat{\beta}_{yz} = \{\{x\}, \{y\} \cup \{z\} : \{x\} \in (\hat{\beta} - \{\{z\}\})\}$ may be a family with respect to more than one topology on X. For, $\tau = \{G \subset X: y \notin G \text{ or } \{y, z\} \subset G \text{ such that } X - G \text{ is finite}\} =$ $E_y \cup (P_{\{y, z\}} \cap C)$ is a nonprincipal topology on X in which $\{y\} = \{y, z\}$ and $\{z\} = \{z\}$. So, $\hat{\beta}_{yz} = \{\{x\}, \{y, z\} : x \in (X - \{y, z\})\}$ is the family of the minimal sets with respect to the topologies:

$$\begin{split} \tau_1 &= \{G \subset X: \{y, z\} \cap G = \phi \text{ or } \{y, z\} \subset G \text{ such that } X - G \\ \text{ is finite} \} &= E_{\{y, z\}} \cup (P_{\{y, z\}} \cap C) = \tau_{yz} \text{ and} \\ \tau_2 &= \{G \subset X: X - G \text{ is finite and either } \{y, z\} \cap G = \phi \text{ or} \\ \{y, z\} \subset G\} \cup \{\phi\} = (E_{\{y, z\}} \cap C) \cup (P_{\{y, z\}} \cap C) = \tau_{yz}^* \\ \text{ Clearly } \tau_1 = \tau \cap D_{yz} = \tau_{yz} \neq \tau_2 = \tau^* \cap D_{yz} = \tau_{yz}^* \text{ where} \\ \tau^* &= \{G \subset X: X - G \text{ is finite and either } y \notin G \text{ or} \\ \{y, z\} \subset G\} \cup \{\phi\} = (E_y \cap C) \cup (P_{\{y, z\}} \cap C) \end{split}$$

and clearly the minimal sets with respect to τ and τ^* are coincided, $\tau^* \subset \tau$ and $\tau^*_{yz} \subset \tau_{yz}$. In fact $\tau_1 = \tau \cap D_{yz}$ is not strictly

weaker than τ for, if $\tau^+ = \{G \subset X; \{y, z\} \cap G = \phi \text{ or } X - G \text{ is finite and either } \{y, z\} \cap G = \{z\} \text{ or } \{y, z\} \cap G = \{y, z\}\} = E_{\{y, z\}} \cup (E_y \cap P_z \cap C) \cup (P_{\{y, z\}} \cap C).$ Then, $\tau_1 = \tau_{yz} \subset \tau^+ \subset \tau$ where $E_A = \{G \subset X: G \cap A = \phi\} \cup \{X\}, P_A = \{G \subset X: G \cap A = A\} \cup \{\phi\}$ and *C* is the cofinite topology on *X*. While $\tau_2 = \tau^* \cap D_{yz} = \tau^*_{yz}$ is a strictly weaker topology on *X* than τ^* for, if τ^* is a topology on *X* such that $\tau^*_{yz} \subset \tau^{**} \subset \tau^*$, then $G \in \tau^{**} - \tau^*_{yz}$ implies that $z \in G$ and $y \notin G$. Hence, $G \cup (X - \{y, z\}) = X - \{y\} \in \tau^*$ since $X - \{y, z\} \in \tau^*_{yz}$. So, if $G \subset X$ such that X - G is finite, $z \in G$ and $y \notin G$, then $X - (G \cup \{y\}) = \{x_1, x_2, \ldots, x_n\}$ and $X - \{x_i\} \in \tau^*_{yz}$ for each $i \in \{1, 2, \ldots, n\}$. So, $G = (X - \{y\}) \cap (X - \{x_1\}) \cap (X - \{x_2\}) \cap \ldots \cap (X - \{x_n\}) \in \tau^{**}$. Hence, $\tau^{**} = \tau^*$.

Remark 3.5. Let τ and τ^* be two topologies on a nonempty set $X, \tau^* \subset \tau, \tau \neq \tau^*$ and $y, z \in X$ be two distinct points satisfying the conditions (1), (2) and (3) of Theorem 3.3 then:

- (1) $G \in \tau \tau^*$ such that $y \in G$ or $y, z \notin G$ imply that $\tau_{yz} \neq \tau^*_{yz}$, (2) $\tau_{yz} \subset \tau^* \subset \tau$ imply that $\tau - \tau^* \subset \{G \in \tau : z \in G \text{ and } y \notin G\} = \tau - \tau_{yz}$ and $\tau_{yz} = \tau^*_{yz}$.
- (3) $\hat{\tau}_{yz}$ is a strictly weaker principal topology than $\hat{\tau}$ on X where $\hat{\tau}$ is the topology on X defined by Theorem 2.16.

Corollary 3.6. Let τ be a principal topology on X, β be the minimal basis for τ and y, $z \in X$ be two distinct points satisfying the conditions (1), (2) and (3) of Theorem 3.1. Then, $\beta_{yz} = \{U_x, U_y \cup U_z: U_x \in (\beta - \{U_z\})\}$ is the minimal basis for the principal topology $\tau_{yz} = \tau \cap D_{yz}$ which is strictly weaker than τ where U_x is the minimal open set at x for each point $x \in X$.

Proof. It is a direct consequence of Theorem 3.3.

Lemma 3.7. Let (X, τ) be a topological space and $x, y, z, t \in X$ such that $x \notin \{\widehat{z}\}$ and $y \notin \{\widehat{t}\}$. Then, $\widehat{\beta}_{xz} \neq \widehat{\beta}_{yt}$ implies that $\tau_{xz} \neq \tau_{yt}$.

Proof. By Theorem 3.3; if $\{\widehat{t}\} \in \widehat{\beta}_{xz} - \widehat{\beta}_{yt}$ and $\{\widehat{z}\} \in \widehat{\beta}_{yt} - \widehat{\beta}_{xz}$ then there are two cases: (i) $\{\widehat{z}\} = \{\widehat{t}\}$ in this case if $G \in \tau$ then $z \in G$ iff $t \in G$. Since $\{\widehat{z}\}_{xz} = \cap\{G \in \tau_{xz} : z \in G\} = \cap\{G \in \tau : z, t, x \in G\}$ and $\{\widehat{t}\}_{yt} = \cap\{G \in \tau_{yt} : t \in G\} = \cap\{G \in \tau : z, t, y \in G\}$ hence $\widehat{\beta}_{xz} \neq \widehat{\beta}_{yt}$ implies that $\{\widehat{z}\}_{xz} \neq \{\widehat{t}\}_{yt}$ implies that $\{G \in \tau : z, t, x \in G\} \neq \{G \in \tau_{xz}, t, y \in G\}$ hence $\widehat{\beta}_{xz} \neq \widehat{\beta}_{yt}$ implies that $\{\widehat{z}\}_{xz} \neq \{\widehat{t}\}_{yt}$ implies that $\{G \in \tau : z, t, x \in G\} \neq \{G \in \tau; z, t, y \in G\}$ implies that there exists $G \in \tau$ such that $z \in G$ and either (1) $x \in G$ and $y \notin G$ which implies that $G \in \tau_{xz} - \tau_{yt}$ or (2) $y \in G$ and $x \notin G$ which implies that either $z \notin \{\widehat{t}\}$ or $t \notin \{\widehat{z}\}$. If $z \notin \{\widehat{t}\}$ then by Lemma 3.2(a) $\{\widehat{t}\}_{xz} = \{\widehat{t}\}$ and $\{\widehat{t}\}_{yt} = \{\widehat{y}\} \cup \{\widehat{t}\} \neq \{\widehat{t}\}$ which implies that $\{\widehat{t}\}_{xz} \neq \{\widehat{t}\}_{yt}$. Hence by Remark 2.10 $\tau_{xz} \neq \tau_{yt}$. Similarly, $t \notin \{\widehat{z}\}$ implies that $\tau_{xz} \neq \tau_{yt}$.

Lemma 3.8. Let (X,τ) be a topological space and $x, y, z, t \in X$ be such that $x \notin \{\widehat{z}\}$ and $y \notin \{\widehat{t}\}$. Then, $\tau_{xz} = \tau \cap D_{xz} = \tau \cap$ $D_{yt} = \tau_{yt}$ iff $\{\widehat{x}\} = \{\widehat{y}\}$ and $\{\widehat{z}\} = \{\widehat{t}\}$.

Proof. Clearly, $x \notin \{\widehat{z}\}$ and $y \notin \{\widehat{t}\}$ iff $\tau \notin \{\tau_{xz}, \tau_{yt}\}$. Suppose that $\{x\} = \{y\}$ and $\{\overline{z}\} = \{\widehat{t}\}$. Then, by Remark 2.4

 $y \in \{x\}$ and $z \in \{t\}$ implies that $\tau \subset D_{yx} \cap D_{zt}$ which implies that $\tau = \tau \cap D_{yx} \cap D_{zt}$ which implies that $\tau \cap D_{xz} = \tau \cap D_{yx} \cap D_{zt} \cap D_{zt} \subset \tau \cap D_{yz} \cap D_{zt} \subset \tau \cap D_{yt}$. Similarly, one can show that $\tau \cap D_{yt} \subset \tau \cap D_{xz}$.

Conversely; by Lemma 3.2(a) $\{\overline{z}\}_{xz} = \{\overline{x}\} \cup \{\overline{z}\}$ and $\{\overline{t}\}_{yt} = \{\overline{y}\} \cup \{\overline{t}\}$. Then, $\{\overline{z}\} \neq \{\overline{t}\}$ implies that $z \notin \{\overline{t}\}$ which implies by Lemma 3.2(a) that $\{\overline{t}\} \in \widehat{\beta}_{xz}$ which implies by Lemma 3.7 that $\tau_{xz} \neq \tau_{yt}$ because $\{\overline{t}\} \notin \widehat{\beta}_{yt}$ or $t \notin \{\overline{z}\}$ which implies by Lemma 3.7 that $\tau_{xz} \neq \tau_{yt}$ because $\{\overline{z}\} \notin \widehat{\beta}_{xz}$. Hence, $\tau_{xz} = \tau_{yt}$ implies that $\{\overline{z}\} = \{\overline{t}\}$. If, $\{\overline{z}\} = \{\overline{t}\}$ and $\{\overline{x}\} \neq \{\overline{y}\}$, then either $x \notin \{\overline{y}\}$ or $y \notin \{\overline{x}\}$. Now $\{\overline{z}\}_{xz} = \{\overline{t}\}_{yt}$ implies that $\{\overline{x}\} \cup \{\overline{z}\} = \{\overline{y}\} \cup \{\overline{t}\}$ and there are two cases:

- (1) $x \notin \{y\}$ implies that $x \in \{t\}$ which implies that $x \in \{z\}$ this contradicts the assumption that $x \notin \{z\}$.
- (2) y ∉ {x} implies that y ∈ {z} which implies that y ∈ {t} this contradicts the assumption that y ∉ {t}.

Hence, $\widehat{\{z\}} = \{\widehat{t}\}$ and $\widehat{\{x\}} \neq \widehat{\{y\}}$ imply that $\widehat{\{z\}}_{xz} \neq \widehat{\{t\}}_{yt}$ implies that $\widehat{\beta}_{xz} \neq \widehat{\beta}_{yt}$ implies by Lemma 3.7 that $\tau_{xz} \neq \tau_{yt}$. Its contra positive is if $x \notin \widehat{\{z\}}$ and $y \notin \widehat{\{t\}}$ then, $\tau_{xz} = \tau_{yt}$ implies that $\widehat{\{x\}} = \widehat{\{y\}}$. This completes the proof.

Remark 3.9. In general Lemma 3.8 is not true for, let X be an infinite set, x, y, z and t be distinct points of X and $X^* = X - \{t\}$. Then, $\tau = \{G \subset X^*: z \notin G \text{ or } \{x, z\} \subset G \text{ and } X - G \text{ is finite}\} \cup \{X\}$ is a topology on X in which $\{x\} = \{x\}, \{z\} = \{x, z\}, \{y\} = \{y\}$ and $\{t\} = X$ which implies that $\tau_{xz} = \tau \cap D_{xz} = \tau = \tau \cap D_{yt} = \tau_{yt}$ while $\{x\} \neq \{y\}$ and $\{z\} \neq \{t\}$. Because of which the conditions $x \notin \{z\}$ and $y \notin \{t\}$ equivalently $\tau \notin \{\tau_{xz}, \tau_{yt}, \}$ are given in Lemma 3.8.

Theorem 3.10. Let (X,τ) be a topological space and y, z be two distinct points of X such that $\tau_{yz} = \tau \cap D_{yz}$ is strictly weaker than τ . Then the points y and z satisfy the conditions (1), (2) and (3) of Theorem 3.3.

Proof. If $y \in \{\widehat{z}\}$, then $\tau = \tau \cap D_{yz}$ and accordingly $y \notin \{\widehat{z}\}$. If $z \in \{\widehat{x}\}$ then, $\tau = \tau \cap D_{zx}$ and so $\tau \cap D_{yz} = \tau \cap D_{yz} \cap D_{zx} \subset \tau \cap D_{yx} \subset \tau$ If $x \notin \{\widehat{z}\}$, then by Lemma 3.2(a) $\{\widehat{z}\}_{yx} = \{\widehat{z}\}$ implies that $\{\widehat{z}\}_{yz} \neq \{\widehat{z}\}_{yx}$ since, $\{\widehat{z}\}_{yz} \neq \{\widehat{z}\}$ because $y \notin \{\widehat{z}\}$ which implies by Remark 2.10 that $\tau \cap D_{yz} \neq \tau \cap D_{yx}$ which implies that $\tau \cap D_{yx} = \tau$ because τ_{yz} is strictly weaker than τ and so $y \in \{\widehat{x}\}$. Clearly by Lemma 3.2(a), $\{\widehat{z}\}_{yz} = \{\widehat{y}\} \cup \{\widehat{z}\}$ and if $x \in \{\widehat{y}\}$, then $x \in \{\widehat{z}\}_{yz}$ which implies that $\tau \cap D_{yz} = \tau$ because τ_{yz} is strictly weaker than τ and so $y \in \{\widehat{x}\}$. Clearly by Lemma 3.2(a), $\{\widehat{z}\}_{yz} = \{\widehat{y}\} \cup \{\widehat{z}\}$ and if $x \in \{\widehat{y}\}$, then $x \in \{\widehat{z}\}_{yz}$ which implies that $\tau \cap D_{yz} \subset D_{xz}$ which implies that $\tau \cap D_{yz} \subset \tau \cap D_{xz} \subset \tau$. Now $\{\widehat{z}\}_{yz} = \{\widehat{z}\}_{xz}$ implies that $\{\widehat{y}\} \cup \{\widehat{z}\} = \{\widehat{x}\} \cup \{\widehat{z}\}$ and so $y \notin \{\widehat{x}\}$ implies that $\{\widehat{y}\} \cup \{\widehat{z}\} = \{\widehat{x}\} \cup \{\widehat{z}\}$ and so $y \notin \{\widehat{x}\}$ implies that $\widehat{y} \in \{\widehat{z}\}$ implies that $\tau \cap D_{yz}$ implies that $\tau \cap D_{yz} = \tau$ which contradicts that $\tau \cap D_{yz}$ is strictly weaker than τ . Then, $\{\widehat{z}\}_{yz} \neq \{\widehat{z}\}_{xz}$ which implies that $\tau \cap D_{xz} = \tau$ which implies that $x \in \{\widehat{z}\}$. This completes the proof.

Corollary 3.11. If, (X, τ) is a principal topological space, then $\tau_{yz} = \tau \cap D_{yz}$ is a strictly weaker principal topology on X than τ iff y and z satisfy the conditions (1), (2) and (3) of Theorem 3.3.

Theorem 3.12. Let (X,τ) and (X,τ^*) be two topological spaces and τ^* be strictly weaker than τ such that τ and τ^* have different families $\hat{\beta}$ and $\hat{\beta}^*$ of minimal sets. Then, there are two distinct points $y, z \in X$ satisfy the conditions (1), (2) and (3) of Theorem 3.3 such that $\tau^* = \tau \cap D_{yz} = \tau_{yz}$.

Proof. For each point $x \in X$, let $\{x\}$ and $\{x\}^*$ be the minimal sets at x with respect to τ and τ^* , respectively. Since $\hat{\beta}^* \neq \hat{\beta}$ then there is a point $z \in X$ such that $\{z\}^* \neq \{z\}$, then there is a point $y \in \{z\}^* - \{z\}$ since $\{z\} \subset \{z\}^*$ because $\tau^* \subset \tau$. Then, τ is not contained in D_{yz} because $y \notin \{z\}^*$ and so, $\tau^* \subset \tau$ implies that $\tau^* \subset T$. D_{yz} and $\tau^* \subset D_{yz}$ because $y \in \{z\}^*$ and so, $\tau^* \subset \tau$ implies that $\tau^* \subset \tau \cap D_{yz} \subset \tau$. If, τ^* is strictly weaker than τ then, $\tau^* = \tau \cap D_{yz} = \tau_{yz}$. If, there is a point $t \in X - \{z\}$ such that $\{t\}^* \neq \{t\}$, then using the same argument there is a point $x \in \{t\}^* - \{t\}$ such that $\tau^* = \tau \cap D_{xt}$. Hence, $\tau \cap D_{yz} = \tau \cap D_{xt}$ and so by Lemma 3.8 $\{x\} = \{y\}$ and $\{z\} = \{t\}$. Clearly by Theorem 3.10 y and z satisfy the conditions (1), (2) and (3) of Theorem 3.3.

Corollary 3.13. *Theorem* 3.1 *is a direct consequence of Corollary* 3.11 *and Theorem* 3.12.

Remark 3.14. By using Remark 2.4 one can write the conditions (1), (2) and (3) of Theorem 3.3 as follows:

(1) $z \notin \overline{\{y\}}$,

- (2) $x \in \overline{\{z\}}$ and $z \notin \overline{\{x\}}$ imply that $x \in \overline{\{y\}}$ and
- (3) $y \in \overline{\{x\}}$ and $x \notin \overline{\{y\}}$ imply that $z \in \overline{\{x\}}$.

Proposition 3.15. Let τ be a topology on a nonempty set X and $\tau_{yz} = \tau \cap D_{yz}$ be a topology on X satisfies the condition (3) of Theorem 3.3. Then, $\overline{\{x\}}_{yz} = \overline{\{x\}}$ for each $x \in X$ such that $\overline{\{x\}} \neq \overline{\{y\}}$.

Proof. If $\overline{\{x\}} \neq \overline{\{y\}}$ then either $y \notin \overline{\{x\}}$ which implies by Lemma 3.2(b) that $\overline{\{x\}}_{yz} = \overline{\{x\}}$ or $x \notin \overline{\{y\}}$ and $y \in \overline{\{x\}}$ which implies by condition (3) of Theorem 3.3 that $z \in \overline{\{x\}}$ and so again by Lemma 3.2(b) $\overline{\{x\}}_{yz} = \overline{\{x\}}$.

Theorem 3.16. Let (X,τ) be a T_0 topological space and $y, z \in X$ be two distinct points satisfying the conditions (1), (2) and (3) of Theorem 3.3. Then, (X, τ_{yz}) is T_o iff $z \notin \{y\}$

Proof. If, (X, τ_{yz}) is T_o , then by Remark 2.11 $\{y\}_{yz} \neq \{z\}_{yz}$ and by Lemma 3.2(a) $\{y\}_{yz} = \{y\}$ and $\{z\}_{yz} = \{y\} \cup \{z\}$ which implies that $z \notin \{y\}$.

Conversely; if $z \notin \{y\}$ then, $\{y\} \neq \{y\} \cup \{z\}$ and so $\{y\}_{yz} \neq \{\widehat{z}\}_{yz}$. If (X, τ) is T_o and $x \in X$ then, $\{x\} \neq \{\widehat{z}\}$ and by Theorem 3.3 $\hat{\beta}_{yz} = \{\{x\}, \{y\} \cup \{z\}: \{x\} \notin (\hat{\beta} - \{\{z\}\})\}$. Then, $\{x\}_{yz} \neq \{\widehat{t}\}_{yz}$ for any two distinct points $t, x \in X - \{z\}$. If there is a point $x \in X - \{y, z\}$ such that $\{x\}_{yz} = \{\widehat{z}\}_{yz}$, then $\widehat{\{x\}} = \widehat{\{y\}} \cup \widehat{\{z\}}$. Then, $y, z \in \widehat{\{x\}}$ and either $x \in \widehat{\{y\}}$ which implies that $\widehat{\{x\}} = \widehat{\{y\}}$ or $x \in \widehat{\{z\}}$ which implies that $\widehat{\{x\}} = \widehat{\{z\}}$ which contradicts that (X, τ) is T_o . This contradiction means that $\widehat{\{x\}}_{yz} \neq \widehat{\{z\}}_{yz}$ for each point $x \in X$. Hence (X, τ_{yz}) is T_o .

Corollary 3.17. *If*, (X,τ) *is* T_1 *and* $y,z \in X$ *are any two distinct points, then:*

(1) by Remark 2.11 (X, τ_{yz}) is T_o and (X, (τ_{yz})_{zy}) is not T_o.
(2) by Remark 2.12 (X, τ_{yz}) is not T₁.

Theorem 3.18. Let (X, τ) be a regular topological space and $y, z \in X$ be two distinct points satisfying the conditions (1), (2) and (3) of Theorem 3.3. Then, (X, τ_{yz}) is not regular and $(X, (\tau_{yz})_{zy})$ is regular.

Proof. It is a direct consequence of Theorems 2.13 and 3.3.

Theorem 3.19. Let X be an infinite set, $p \in X$ and $y, z \in X - \{p\}$ be any two distinct points. Then (1) $\tau = C \cup E_p = \{G \subset X: p \notin G \text{ or } X - G \text{ is finite}\}$ is a topology on X where C is the cofinite topology and E_p is the excluding point topology onX with the excluding point p and (2) $\tau_{yz} = \tau \cap D_{yz}$ is a strictly weaker topology on X than τ .

Proof. $\tau_{yz} = \tau \cap D_{yz} = (C \cap D_{yz}) \cup (E_p \cap D_{yz}) = C_{yz} \cup (E_p)_{yz}$. If $\tau_{yz} \subset \tau^* \subset \tau$ then $G \in \tau^* - \tau_{yz}$ implies that $G \in \tau$ such that $z \in G$ and $y \notin G$. Now $G \in \tau^*$ implies that $X - \{y, z\} \cup G = X - \{y\} \in \tau^*$ because $X - \{y, z\} \in C_{yz} \subset \tau^*$ and $x \in X$ such that $x \neq y$ implies that $X - \{x\} \in C_{yz}$ and so $\{X - \{x\}: x \in X\} \subset \tau^*$ which implies that $C \subset \tau^*$ and $\{y, z\} \cap G = \{z\} \in \tau^*$ since $\{y, z\} \in (E_p)_{yz} \subset \tau^*$ and hence $\{z\} \in \tau^*$ which implies that $E_p \subset \tau^*$. So, $\tau^* = \tau$. Therefore τ_{yz} is a strictly weaker topology on X than τ .

Theorem 3.20. Let X be an infinite set, (X, C) be the minimal T_1 topological space and $y, z \in X$ be any two distinct points. Then, $C_{yz} = C \cap D_{yz}$ is a strictly weaker topology on X than C

Remark 3.21. If (X, τ) is T_1 , then $C_{yz} \subset \tau_{yz}$ for any two points $y, z \in X$.

Remark 3.22. If (X, τ) is a topological space, then $\tau_{yz} \subset \hat{\tau}_{yz} \subset \hat{\tau}$ and $\tau_{yz} \subset \tau \subset \hat{\tau}$. If τ is a principal topology on X, then $\tau_{yz} = \hat{\tau}_{yz}$ is a strictly weaker topology on X than τ .

References

- [1] A.S. Farrag, A.A. Sewisy, Computer construction and enumeration of topologies on finite sets, Int. J. Comput. Math. 72 (1999) 433–440.
- [2] A.S. Farrag, A.A. Sewisy, Computer construction and enumeration of all topologies and hyperconnected topologies on finite sets, Int. J. Comput. Math. 74 (2000) 471–482.
- [3] A.K. Steiner, The lattice of topologies structure and complementation, Tran. Am. Math. Soc. 122 (1966) 379–398.
- [4] O. Frohlich, Das halbordnungs system der topoloischen raume auf einer menge, Math. Ann. 156 (1964) 76–95.

- [5] A.S. Mashhour, A.S. Farrag, Simple Topological Spaces, in: In 14th An.Conf. In Stat. Comp. Sci. Res. Math., Cairo University, 1979, pp. 78–85.
- [6] A.E. M^cCluskey, S.D. M^cCartan, Minimal structures for T_{FA}, Rend. Inst. Univ. Trieste. 27(1–2) (1995) 11–24 (1996).
- [7] A.E. M^cCluskey, S.D. M^cCartan, A minimal Sober topology is always scott, Ann. NY Acad. Sci. 806 (1996) 293–303.
- [8] G.J. Kennedy, S.D. M^cCartan, Minimal weakly submaximal topologies, Math. Proc. Royal Irish Acad. 99A (2) (1999) 133–149.
- [9] A.S. Farrag, A.A. Nasef, E.A. Zanaty, Computer programming for constructing minimal sets and all normal and regular topologies on finite sets, Int. J. Appl. Mathe. Inform. Sci. (in press).