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Abstract In [1,2] Farrag characterized the stirictly weaker principal topologies than any given
principal topology on a nonempty set by using the minimal open sets which are defined by Steiner
[3]. This paper mainly generalizes this result by using the minimal sets, which are defined in the
paper with respect to the given topology 7 on a nonempty set.
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1. Introduction

Let 7 and 7, be two topologies on a nonempty set X then (1) 7 is
weaker than 1, or 1, is stronger than 7, if t; < 7, (2) 1) is strictly
weaker than 7, if 7,is weaker than 1, and 7, € T < 1, such that
T ¢ {11, 7,} implies that 7 is not a topology on X. In [4] Frohlich
defined an ultratopology on a set X to be a strictly weaker topo-
logy than the discrete topology D on X. The ultratopologies on
X are divided into two classes the principal and the nonprincipal
ultratopologies on X, E.U P, and E.U F, where E. is the
excluding, P, is the particular point topologies on X, F'is an
ultrafilter on X and y, z are any two distinct points of X. In [5]
Mashhour and Farrag showed that the principal ultratopology
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E. U P, onaset Xis the topology on X having the minimal basis
By- = {{x}.{y.z}:x € (X — {z})}where y and z are two distinct
points of X and denoted by D, .. In [3] Steiner defined a minimal
open set at a point x € X in a topological space (X, 1) to be the
open set containing x and is contained in each open set contain-
ing x. The author defined also a principal topology on a set X to
be the topology on X having the minimal basis that consists only
of open sets minimal at each point x € X. It is Proved that a
topology t on a set X is principal iff arbitrary intersections of
members of T are members of 7. In [1] the authors gave a neces-
sary and sufficient conditions for the principal topology t* on X
to be strictly weaker than a given principal topology t on X and
proved that t" must be of the form ©° = 7N D,. which is de-
noted by 7,. where y and z are two distinct points of X satisfying
three conditions depending on the minimal open sets in 7. In
M°Clusky and M°Cartan [6,7] and Kennedy and M“Cartan [8]
defined the 7— kernel {;}\ of {x} to be the intersection of all

open sets which contain the point x.
2. The minimal sets
Definition 2.1. Let (X,7) be a topological space and x € X.

Then, {x} =N{G € 7: x € G} is called the minimal set at the
point x with respect to T on X.
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The set {;}\ is defined in [6] to be the t — kernel of {x}.

As a direct consequence of the definition of the minimal sets
at the points of a nonempty set X with respect to a topology t
on X, if x,y € X are any two distinct points, then we have the
following remarks and theorems:

Remark 2.2. If 7 is a principal topology, then {/v?e T is the
minimal open set at the point x as it is defined in [3].

Remark 2.3. x¢ {y} implies that {x} C {y} Therefore,
{(xF = O} iff xe b} and y € {x].
Remark 2.4. ye{x} iff xe{p} iff tc D,

Ky ={eX:xeN={rex: TCDw}dnd{’C}f{yG
X:xe{yt}={yeX:tC Dy}

Therefore,

Remark 2.5. {/x?: {;}\ iff {x}={y}. For, {/x?: {;}\ iff
xe {y}and y e {x} iff y € {x] and x € [y} iff {x] = {].

Remark 2.6. {;}\: x for each point x € X iff {x} = x for each
point x € X.

Remark 2.7. {;}\ﬂ {;}\: ¢ for any two distinct points x,
y € X iff {x} N {y} = ¢ for any two distinct points x, y € X.

Remark 2.8. If X is an infinite set, then we may have the same
family of minimal sets at the points of X with respect to each of
a class of topologies on X. For example, each of the class of the
T, — topologies has the same family of the minimal sets, that is

B={{x}:xeX}={{x}:xexh.

Remark 2.9. If (X,7) is a topological space, then {;Tgé T
implies that each open set containing x is infinite. For let G
be a finite subset of X, Ge&t and x € G, then either
G— {/’CT: ¢ which implies that G = {;}\ or G— {;}\:
{x1,x2,...,x,} and so for each i € {1,2,...,n} there exists an
open set Giet such that xe€ G/ and xi¢ Gi. Then,
{;?: GNG NGyN...NG, which implies in both cases that
{;TG T.

Remark 2.10. If t* and 7 are two topologies on a nonempty set
X and x € X such that {?c?;é{;}\where {/vi and {?}\ are the
minimal sets at the point x with respect to © and to t respec-
tively, then t ET but not conversely as it shown by Remark
2.8- For, t € {x}* — {x} implies that there is an open set
G € v such that x € G and ¢ ¢ G then G ¢ T because any open
set in T containing x, contains ¢ because ¢ £ {x}*. Hence,
© # 1. Similarly: t € {/\}\— {/v}\* implies that t #7.

Remark 2.11. Let (X, 1) be a topological space, then the follow-
ing statements are equivalent:

() (X,7)is T,
(2) {x}#{y} for any two distinct points x, y € X and
(3) {x} N {x} = {x}, for each point x € X.

Remark 2.12. By using Remarks 2.6 and 2.7 a topological
space (X 1) is T1 iff {x} = {x} for each point x € X iff
{x} N {y} = ¢ for any two distinct points x, y € X.

Theorem 2.13. Let (X, 1) be a regular topological space, then

{;}\: {x} for each x € X. Moreover, the family B = {{/x}\
x € X} of the minimal sets at the points of X with respect to
the topology t on X is a partition of X.

Proof. Suppose that (X,7) is a regular topological space. Then,
every open set containing x also contains {x}, hence
{x} c {;c? If y e {;}\— {x}, then there is an open set G € 1
such that y € G and x ¢ G. Since 7 is regular then there is an
open set ¥ €t such that y€ ¥V C ¥V C G. Then, X — V is an
open set containing x but not y, a contradiction. Thus,

l={lIfye {x} then x € {y}, and so {x} C {y}. On
the other hand, y € {x} = {x} (implies that {y} c {x}, and
thus {x} = {y} whenever y e {\} This clearly shows that
B = {{/x? X € X} must be a partition of X.

As a direct consequence of Theorem 2.13 we have the fol-
lowing corollary.

Corollary 2.14. (X,t) is a regular principal topological space iff

B = {{x} : x € X} is a partition of X where each minimal set at
x is open iff each open set is closed.

Remark 2.15. As a direct consequence of Remarks 2.11, 2.12
and Theorem 2.13, if (X,7) is regular and not 7, then it is
not T) i.e, a regular T, is T3 which is an old and well known
result.

Theorem 2.16. Let (X,

ﬁ = {{}T X € X} is the minimal basis for a principal topology
T on X stronger than t. If, © is a principal topology on X, then
T=r1.

t) be a topological space, then

Proof. Clearly; U{{/x}\ x € X} =X, if x, y, z€ X are distinct
such that x € {y} N {z}, then {x} C {y} N{z}. Therefore,
B = {{x} : x € X} is a basis for some topology T on X. If
x € X and G € 7 such that x € G, then there exists y € X such
that x € {y} C G which implies that {x} C G. Hence, {x} € T
is the minimal open set at the point x. Hence, 7 is a principal
topology on X and f is its minimal basis. If 7 is principal, then

B = {{;}\ x € X} is its minimal basis and 7T = 1.

Example = {{x} : x € X} is the family of the minimal
sets at the points of X with respect to the minimal 7} — topol-
ogy C on X, i.e the topology on X in which each proper non-
empty subset is member iff its complement if finite. Hence,
C = D where D is the discrete topology on X.

3. Strictly weaker topologies

Theorem 3.1. Let (X,t) and (X,t") be two principal topological
spaces. Then, T is a strictly weaker principal topology than t iff
there are two distinct points y and z € X satisfying the
conditions:

1) ye¢ U,
(2) z€ U, and x ¢ U, imply that y € U, and
(3) xe U, and y ¢ U, imply that x € U.
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and T =1nN D,. having the minimal basis f,. = {U,,
U,uU.U, e (p—{U.})} where B is the minimal basis for ,
U, is the minimal open set at the point x for each x € X.

If (X,7) is a topological space and 4 c X in [9] defined the
© — minimal set at 4 to be A= U{{*c} :x € A} and proved
that A =({Ge1:4CG} and clearly 4cBc X implies
that 4 C B. If (X,7) and (X, © ) are two topological spaces and
A c X then ©_c 7 implies that Ac A4 and A C A" where A*
and A* are 4 and 4 with respect to t , respectively. In this

article a generalization of Theorem 3.1 Will be given for any
topology t principal or nonprincipal on a nonempty set X.

Theorem 3.1 will be a special case.

Lemma 3.2. Let (X,t) be a topological space, y,z € X be two
distinct points, t,. = 1N D,. and A < X. Then

(a) A}z C A U {y} ‘and either y € A which implies that
A4, = =4 or vé¢ A which implies that.

~ A if z¢ A
A,=04 v el
AUy if ze A
(b) 4,. € 4U {z} and either z € 4 which implies that 4,. = 4
or z ¢ A which implies in [6] that

A),::{E __ i yed
AU{z}

if yed
Proof. (a) ¢ ¢ AU {;}\implies that there are two open sets U,
V€1 such that Ac U, y € V and 7¢ UU Vwhich imply that
UuVer,. and Ac UUV which imply that ¢¢ 4,.. Then
4,.c AU {y}. Also
1) z¢ A implies that there exists an open set U € 7 such
that Ac U and z¢ U. Then ¢ ¢ A implies that there is an
openset e tsuchthat Ac Vandt¢ V. Then UNVer,.
since z¢ UNV, AcUNV and t¢ UNV which implies
that 7 ¢ A}h and so AV = 4.

Q) Ifze A then G € 7. such that 4 ¢ G implies that z € G
1mp11es that y € G implies that y e A\Z implies that
() c {}f}yz C 4,.. Hence 4,. = AU Or.(b) zedu{z}
implies that 4 U {z} € 7)., where wz= = {X — G:G € 7}
implies that 4,. € 4U {y}. Also

(1) y ¢ 4 implies that 4 € 7. implies that 4,, = A4.

(2) y € 4 implies that z € A4, implies that {z} € {z},. C
A,. implies that 4,. = 4 U {z}.
Theorem 3.3. Let (X, t) be a topological space,

B = {{;}\ x € X} be the family of the minimal sets at the
points of X with respect to the topology © and y, z € X be two
distinct points satisfying the following conditions:

1 yé {Z}
2 ze {x} and x ¢ {z} 1mp1y that y € {x} and
3) xe€ {y} and v ¢ {x} 1mply that x € {;}\Then,

Be=1{{}, (U {zt: {x} € (B— {z})} is the family
of the minimal sets at the points of X with respect to
the topology tv= = 1N Dyz on X. If © is a topology on

X such that 1 #7: and w:zct <71, then

T, =T ND, =1, and the families of the minimal sets

at the points of X with respect to 7 and t are the same.
Proof By the Ve {/z}\
{z} # {y} U {z}. Since 1,.ct then {x} C {x},. for each
point x € X. If, G € 7 such that y € G, then G € = Tz which
1mphes that {y}]_ = {y} If x€ X such that {x} ¢ {{y}

{z}} then we have two cases ze{\} or zé{x}

condition (1) implies that

ze {x} then by the condition (2) y € {x} and so G € 7 such
that x € G implies that G € 1, 1mp11es that {x}}, = {x} If,
z¢ {x} then by Lemma 3.2(a) {x}yz = {x} Also by Lemma
3.2() {zh: = (7} U {z}. Therefore, B = {{x}. i} U {}:
{x} e(p- {{z}})} By the cond1t10n ) yé {z} implies that

TN Dyir and clearly t,. cr If t° is a topology on X such
that © #1,. then, ryzcr c t implies that ry_.cr ND,.c

tND,. = t,implies that 7; = 1,.. Then, {/x}\f = {;}\} and
o B= {{E}\ {?}\u ) e (B (3 = {03 0
Uil (e (B = {z})} = By and B ={{x}":x e x}.
Since 1,.c 1 1, {x} C {x} C {;E = {x} which 1mp11es
that { (} = {x} for each point x € X such that {A} #* {z}
and {z}‘ = {z}}, implies that {y} U {z} = {}} U {z}

te {z} — {z} then ¢¢€ {z} 1mp11es that 7€ {y} U {z}
implies that 7 € {y} because ¢ ¢ {z} and we have two cases:
(i) y ¢ {1} which implies by condition (3) that 7 € {z} and this
contradicts that ¢ {/z-}\ i) ye {?}? which implies that
{y} C {t} C {t} C {z} because 7 1t and f€ {z} which
implies that y € {Z} which implies that t° ¢ D,. which 1Inp11es
that t* =7 ND,. = ry: = 1,. which contradlcts that © #71,..
Hence, such point ¢ does not exist and so, {;]?‘ = {;}\because
{;}\ C {z/}\* This completes the Proof.

Remark 3.4. Let X be an infinite set, y and z be two distinct
points of X satisfy the conditions (1), (2) and (3) of Theorem
33 and 7 be a nonprincipal topology on X. Then,
B = {{xh YU ) : {x) € (B—{{z}})} may be a family
with respect to more than one topology on X. For,
t={GcXy¢G or {y,z} G such that X — G is finite} =
E,U (P, -, NC) is a nonprincipal topology on X in which
{7} = {2} and {z} = {z}. So. B,- = {{x}, {r.z} 1 x € (X—
{y,z})} is the family of the minimal sets with respect to the
topologies:

T ={GcX: {y,z} NG = ¢or{yz} cGsuchthat X — G
is finite} =Ey, - U (P, NC) = 1,. and

7, = {Gc X:X — G is finite and either {y,z} NG = ¢ or
1.2 CGYU{P) = (Epy NO)U (P NC) =1,

C;learly n=tND, =1, #0=1ND, =1, where

T ={GcX:X-—G is finite and either y¢G or
{y,Z} < G} U {¢} = (E) n C) U (P{y, z} N C)

and clearly the minimal sets with respect to t and 7" are coin-
cided, ° c t and T, C 7,..In fact 1y = N D, is not strictly
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weaker than 7 for, if t* = {Gc X:{y,z2} NG = por X — G is
y

finite and either {y,z} NG = {z} or {y,z} NG = {y,z}} = Ey,,
SUENP.NCOUP,,NC). Then, 1, =1,.ct’cr
where £, ={GcX:GNA=¢}U{X}, P,= {GcX:GnN

A = A} U{¢} and C is the cofinite topology on X. While
T, =1 ﬂDy =1, is a strictly weaker topology on X than T
for, if 1 is a topology on X such that 7, C v C 77, then
Get -1 1mp11es thatze Gand y ¢ G. Hence GUX - {y,
z}) =X — {y} et” since X — {y,z} € 7 .80, if G X such
that X — G is finite, z€ G and y ¢ G, then X — (GU {y}) =

{x1, xz,.. Xnp andX — {x;} €1, for each i€ {1 2,...,n}.
So, G = (X—-{HNWX—{xa}) n X = {x2)n. N -
{x,,)E‘: Hence, 7" = 7.

Remark 3.5. Let 7 and t° be two topologies on a nonempty set
X, 1 ct,t#7 and v, z € X be two distinct points satisfying
the conditions (1), (2) and (3) of Theorem 3.3 then:

(1) G €t — 7" such that veGory,z ¢ G imply that 7,. 77}

vz
(Z)T}ZC’E ct imply that t—t c{GerzeG and

y¢Gl = t—r1.and 1, =1,
(3) 7, is a strictly weaker principal topology than T on X
where 7 is the topology on X defined by Theorem 2.16.

Corollary 3.6. Let 1 be a principal topology on X, 8 be the min-
imal basis for T and y, z € X be two distinct points satisfying the
conditions (1), (2) and (3) of Theorem 3.1. Then, B,. = {U,,
U,UU.:U, € (p —{U.})} is the minimal basis for the principal
topology t,. = t N D,. which is strictly weaker than t where U,
is the minimal open set at x for each point x € X.

Proof. It is a direct consequence of Theorem 3.3.

Lemma 3.7. Let (X, ©) be a topological space and x, y, z, t € X

such that x ¢ {;}\ and y ¢ {;}T Then, EM#B‘,, implies that
Ty 7 Ty

Proof. By Theorem 3.3; if {;}T € sz — B.w and {;}\ € B‘,, - sz
then there are two cases: (i) {z} = {ﬁ in this case if G € t then
zeG iff teG. Since {z}..=nN{Ge€1.:z2€G}=n{G €
t:z,t,x€ G} and {t}, =n{Ger,:teGt=n{Ge1:z
t, y € G} hence BXZ#BJ,, implies that {Z/}\xﬁé{;}\y: implies that
{Get z, t, xeG}#{G €1z, t, y € G} implies that there
exists G € T such that z € G and either (1) x€ G and y¢ G
which implies that G € 7. — 7,, or (2) y € G and x ¢ G which

implies that G € 1, — 7,.. Therefore 7. #1,,. (ii) {Tz?;é{ﬁ
which implies that either z ¢ {1} or ¢ ¢ {z}. If z ¢ {7} then by
Lemma 3.2(a) {Y}Tﬂ = {;}? and {;}\y, = {;}\U {?}\# {;}\ which
implies that {;?xz;é{?}\yh Hence by Remark 2.10 7. # 1,,. Sim-
ilarly, 7 ¢ {z/}\implies that .. # 7).

Lemma 3.8. Let (X t) be a topological space and x, y, z, t € X
be such that x ¢ {z} and y ¢ {Z} Then, 1., = 1N Dy, = 1N
Dy = v, iff {x} = {v} and {z} = {1}.

Proof. Clearly, x ¢ {?}\ and y ¢ {?}\ iff ¢ {1\, 1,,}. Suppose
that {x} = {y} and {z} ={¢}. Then, by Remark 24

yE {;}\ and z € {?}\ implies that © D, N D, which implies
that t = 7N D,, N D., which implies that TN D,. =7tND,N
D.ND., CctnD,.ND.,CtND,. Similarly, one can show
that tN D, ctNDy..

Conversely, by Lemma 3. 2(d) {z} = {x} U {z} and
{z}}, = {y} U {t} Then, {z}sﬁ{z} implis that z ¢ {t} which
implies by Lemma 3.2(a) that {t} € B.. which implies by Lem-
ma 3.7 that 7. # 7, because {¢} ¢ B‘,, or t ¢ {z} which implies
by Lemma 3.7 that t,. # 7,, because {/z}\é ﬁxz. Hence, 7,. =
7,, implies that {/z}\— {;]T If, {/z}\— {?}\ and {;}\# {;T then
either x ¢ {y} or y¢ {x} Now {z}.. = {t}}, implies that
{x} U {z} = {y} U {t} and there are two cases:

(1) x ¢ {y} implies that x € {r} which implies that x € {z}
this contradicts the assumption that x ¢ {z}.

2) yv¢ {;}\ implies that y € {;}\ which implies_that y € {;}\
this contradicts the assumption that y ¢ {¢}.
Hence, {/z}\z {ﬁ and {ﬁ# {7}\ imply that {/z\}\ # {?}\y,
implies that ’Bx; #= ﬁy, implies by Lemma 3.7 that 7. # 1.
Its contra positive is if x ¢ {/z}\ and y ¢ {ﬁ then, 7. = 1,, im-

plies that {ic?: {;}\ This completes the proof.

Remark 3.9. In general Lemma 3.8 is not true for, let X be an
infinite set, x, y,z and ¢ be distinct points of X and X =x-
{t}. Then, 1={Gc X z¢G or {x,z}cG and X —G is

ﬁmte} U{X}is a topology on X in which {x} = {x},
{z} ={x,z}, {y} ={y} and {t} = X which 1mp11es that
Ty = TN Dy, = 1= tN Dy, = 1), while {x};é{y} and {z}

# {?}\ Because of which the conditions x ¢ {;}\ and y ¢ {?}\
equivalently 7 ¢ {7.., 7,;, } are given in Lemma 3.8.

Theorem 3.10. Let (X,t) be a topological space and y,z be two
distinct points of X such that t,. = TN\ D,. is strictly weaker
than t. Then the points y and z satisfy the conditions (1), (2)
and (3) of Theorem 3.3.

Proof. If y € {?i then t = N D,. and accordingly y ¢ {;?If
z€ {x} then,t =tND.,and sotND,. = tND,.ND..C
tN D, ct If x¢{z}, then by Lemma 3.2(a) {z},, = {z}
implies that {/z.}: #* {/z.}\” since, {/ZT) #* {/ZT because y ¢ {;}\
which implies by Remark 2.10 that tND,.# 1N D, which
implies that TN D, = 7 because 7,. is strictly weaker than t

and so y € {;}\ Clearly by Lemma 3.2(a), {z/}\yZ = {;}\U {;}\
andif x € {;}\, then x € {;}\l which implies that t N D,. € D,
which implies that tND,.ctND,.ct. Now {z/?} = {z/}\\
implies that {;}\U {;}\: {;}\U {;}\ and so y¢ {Tc}\ implies

that y € {/z-}\ implies that 7 D,. implies that tND,. =
which contradicts that t N D). is strictly weaker than 7. Then,

{/ZT}._ﬁé{/Z-i - which implies by remark (2.10) that TN D, #
1N D,. which implies that 1N D,., = © which implies that

X € {/z}\ This completes the proof.
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Corollary 3.11. If, (X,t) is a principal topological space, then
7,. = 1N D, is a strictly weaker principal topology on X than t
iff v and z satisfy the conditions (1), (2) and (3) of Theorem 3.3.

Theorem 3.12. Let (X,t) and (X,T°) be two topologlcal spaces
and T be > strictly weaker than t such that © and ©" have different
Sfamilies ﬁ and ﬁ of minimal sets. Then, there are two distinct
points y,z € X satisfy the conditions (1), (2) and (3) of Theo-
rem 3.3 such that t* = t N D,. = 1,..

Proof. For each point x € X, let {Tc}\ and {;T* be the minimal
sets at x with respect to r and 7", respectively. Since B*#/:’ then
there is a point z € X such that {z/}\*#{;i then there is a point
yEe {;}\ - {;}\since {/z}\c {/z}\ because ¢ . Then, t is not
contained in D,. because y ¢ {z} which 1mphes thatt£tND,.

and T D,. because yE {z} and so, T  ct implies that
T TN D,.crt. If, 7 is strictly weaker than t then,
T = TN D,. = 1,.. If, there is a point € X — {z} such that

{t} #{t} then using the same argument there is a point
x € {t} - {t} such thatt” = tN D,,. Hence, TN D,. = 1N
D,, and so by Lemma 3.8 {;}\: {;}\and {;}\: {;}\ . Clearly
by Theorem 3.10 y and z satisfy the conditions (1), (2) and (3)
of Theorem 3.3.

Corollary 3.13. Theorem3.1 is a direct consequence of Corollary
3.11 and Theorem 3.12.

Remark 3.14. By using Remark 2.4 one can write the condi-
tions (1), (2) and (3) of Theorem 3.3 as follows:

(M z¢ O},
(2) x € {z} and z ¢ {x} imply that x € {y} and
(3) y € {x} and x ¢ {y} imply that z € {x}.
Proposition 3.15. Let © be a topology on a nonempty set X and

7. = tN D, be atopology on X satisfies the condition (3) of The-
orem 3.3. Then, {x},. = {x} for each x € X such that {x}#{y}.

Proof. If {x};é{y} then either y ¢ {x} which implies by
Lemma 3.2(b) that {x},. = {x} or x¢ {y} and y € {x} which
implies by condition (3) of Theorem 3.3 that z € {x} and so
again by Lemma 3.2(b) {x},. = {x}.

Theorem 3.16. Let (X,t) be a Ty topological space and y,z € X
be two distinct points satisfying the conditions (1), (2) and (3)
of Theorem 3.3. Then, (X,t,.) is T, iff z ¢ {y}

Proof. If, (X,7,.) is To, then by Remark 2.11 {y}‘jﬁ{z})z and
by Lemma 3.2(a) {y}}Z = {y} and {z}y = {y} U {z} which
implies that z ¢ {y}

Conversely; if z¢ {/y—}\ then, {ﬁ# {}TU {/z}\ and so
{j}}\ﬂ# {;}\J If (X,7) is T, and x € X then, {}T#{;}\and by
m 33 Bo={{x}.0Yu i} (FeB- (D
Then, {x},.#{t},. for any two distinct points 7,x € X — {z}.
If there is a point x € X — {y,z} such that {}T} = {/z\}y_., then

Theorem

{x} = {y} u {z} Then, n, ¥,z € {x} and either x € {y} which
1mpl1es that {x} = {y} or xe€ {z} which implies that
{x} = {z} which contradicts that (X, 1) is T,. This contradic-

tion means that {x}_\,_.#{z}yz for each point x € X. Hence
(X,7,.) is T,.

Corollary 3.17. If,(X,t) is T; and y,z € X are any two distinct
points, then:

(1) by Remark 2.11 (X,z,.) is T, and (X, (1,.),) is not T,
(2) by Remark 2.12 (X,7,.) is not T;.

Theorem 3.18. Let (X, t) be a regular topological space and
v,z € X be two distinct points satisfying the conditions (1),
(2) and (3) of Theorem 3.3. Then, (X,1,.) is not regular and
(X, (1y:)-,) is regular.

Proof. It is a direct consequence of Theorems 2.13 and 3.3.

Theorem 3.19. Let X be an infinite set,p € X and y,z € X — {p}
be any two distinct points. Then (1) 1= CUE, = {GC X:

p¢Gor X — G is finite} is a topology on X where C is the cofi-

nite topology and E,, is the excluding point topology onX with the
excluding point p and (2) t,. = 1N D,. is a strictly weaker
topology on X than t.

Proof. T =tND,. = (CﬂD JU(E,ND,) =CU(E),..
If 7,.c T ctthen Get — Ty implies that G € t such that
zeG and y¢G. Now G €1 implies that X — {y,z} UG =
X — {y} €1 because X — {y,z} € C,.c " and x € X such that
x# yimplies that X — {x} € C,. and so {X — {x}:x € X} T
which implies that Cct and {yz}NG = {z} €7 since
{y,z} € ( ,,)}, C v and hence {z} €7  which implies that
E,c 7. S0, © = 1. Therefore 7,- is a strictly weaker topology
on X than 7.

Theorem 3.20. Let X be an infinite set, (X, C) be the minimal T,
topological space and y,z € X be any two distinct points. Then,
C,. = CN D,. is a strictly weaker topology on X than C

Remark 3.21. If (X, 1) is Ty, then C,. C 1, for any two points
y,zeX.

Remark 3.22. If (X,7) is a topological space, then 1, C 7,. C T
and t,, CtC7. If 7 is a principal topology on X, then
T,. = T,. 18 a strictly weaker topology on X than 7.
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