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Abstract A Bubnov-Galerkin finite element method with quintic B-spline functions taken as ele-

ment shape and weight functions is presented for the solution of the KdV equation. To demonstrate

the accuracy, efficiency and reliability of the method three experiments are undertaken for both the

evolution of a single solitary wave and the interaction of two solitary waves. The numerical results

are compared with analytical solutions and the numerical results in the literature. It is shown that

the method presented is accurate, efficient and can be used at small times when the analytical solu-

tion is not known.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In this paper we consider the Korteweg-de Vries (KdV) equa-

tion in the form,

Ut þ eUUx þUxxx ¼ 0 a 6 x 6 b ð1Þ

whereU(x, t) is an appropriate field variable, e and l are positive
parameters, and the subscripts t and x denote differentiation
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with respect to the time and the space, respectively. The KdV

Eq. (1) is a one-dimensional non-linear partial differential equa-
tion (PDE) of third order, which plays a major role in the study
of non-linear dispersive waves. This equation was originally de-

rived by Korteweg-de Vries [1] to describe the behavior of one-
dimensional shallow water solitary waves. Solitary waves are
wave packets or pulses which propagate in non-linear dispersive

media. For stable solitary wave solutions the non-linear and dis-
persive terms in the KdV Eq. (1) must balance, and in this case
the KdV equation has traveling wave solutions called solitons.

A soliton is a very special type of solitary waves which keeps
its waveform after collision with other solitons.

A small time solutions using a heat balance integral (HBI)
method to solve the KdV equation was obtained by Kutluay

et al. [2]. In their paper, extensive comparisons with the analyt-
ical values over the defined interval are given. Bahadir [3] used
the exponential finite-difference (EFD) technique to solve the

KdV equation. This method has been shown to provide higher
accuracy than the classical explicit finite difference and the HBI
method. Ozer and Kutluay [4] used an analytical–numerical
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(AN) method, for solving the KdV equation and the obtained

results are compared with that of the HBI method and the cor-
responding analytical solution. Irk et al. [5] used a second order
spline approximation (SA) technique and made comparisons
with earlier methods. Ozdes and Aksan [6] used the method

of lines (MOL) for solving the KdV equation and also in [7]
used a quadratic B-spline Galerkin finite element (QBGFE)
method and compared these techniques with the analytical

solutions and other numerical solutions that are obtained ear-
lier using various numerical techniques.

In this paper, we present an algorithm for solving Eq. (1) by

applying Bubnov Galerkin finite element method. The time
integration of the resulting system is carried out using
Crank–Nicholson scheme. Evolution and interaction of soli-

tary waves with various amplitudes are undertaken.
The presence of the third spatial derivative in Eq. (1) re-

quires that the interpolation functions and their first and sec-
ond derivatives must be continuous throughout the region of

solution. When using Bubnov Galerkin, the quintic B-splines
interpolation functions can be used with partial differential
equations containing derivatives up to order four.

The results obtained are compared with their corresponding
analytical solutions and also with the various numerical meth-
ods mentioned above. To check accuracy, efficiency and reli-

ability of the scheme presented we evaluate the invariants
and error norms for the simulations undertaken.
2. Finite element scheme

A numerical solution to the KdV Eq. (1) is sought over the fi-
nite region [a,b] with boundary conditions as will be pre-

scribed. Let a = x0 < x1 < . . . < xN = b be a partition of
[a,b] by the equally spaced knots xi and let /i(x) be those quin-
tic B-splines with knots at the points xi, 0 < i< N. The set of

splines {/i�2,/i�1,/i,/i+1,/i+2,/i+3} forms a basis for func-
tions defined over the finite region [a,b]. We seek the approx-
imation UN(x, t) to the solution U(x, t) which uses

UNðx; tÞ ¼
XNþ2
i¼�2

/iðxÞuiðtÞ ð2Þ

where the ui are time dependent parameters to be determined
from the boundary conditions and from conditions to be deter-
mined herein.

Uða; tÞ ¼ Uðb; tÞ ¼ 0; Uxða; tÞ ¼ Uxðb; tÞ ¼ 0 ð3Þ

We identify the finite elements with the intervals [xi,xi+1] with
nodes at xi and xi+1. Each quintic B-splines covers six elements:
consequently each element [xi,xi+1] is covered by six splines

(/i�2,/i�1,/i,/i+1,/i+2,/i+3) which are given in terms of a
local coordinate system f given by hf = (x � xi) where
h = xi+1 � xi and 0 6 f 6 1. Leads to the following expressions

for these splines over the element [xi,xi+1] are [8,9],

/i�2 ¼ 1� 5fþ 10f2 � 10f3 þ 5f4 � f5

/i�1 ¼ 26� 50fþ 20f2 þ 20f3 � 20f4 þ 5f5

/i ¼ 66� 60f2 þ 30f4 � 10f5

/iþ1 ¼ 26þ 50fþ 20f2 � 20f3 � 20f4 þ 10f5

/iþ2 ¼ 1þ 5fþ 10f2 þ 10f3 þ 5f4 � 5f5

/iþ3 ¼ f5

ð4Þ
The spline /i(x) and its three derivatives vanish outside the

interval [xi�3,xi+3]. These spline act like ‘‘shape’’ functions
for the element when we set up equations in terms of the ele-
ment parameters uei using Eq. (4). The variation of UN(x, t)

over the element [xi�3,xi+3] is given by

ueðx; tÞ ¼
Xiþ3
j¼i�2

/jðxÞujðtÞ ð5Þ

The nodal value of UN(x, t) and the derivatives at the knots are

given in terms of the element parameters by

Ui ¼ ui�2 þ 26ui�1 þ 66ui þ 26uiþ1 þ uiþ2;

hU0i ¼ 5ðuiþ2 þ 10uiþ1 � 10ui�1 � ui�2Þ;
h2U00i ¼ 20ðui�2 þ 2ui�1 � 6ui þ 2uiþ1 þ uiþ2Þ;
h3U000i ¼ 60ðuiþ2 � 2uiþ1 þ 2ui�1 � ui�2Þ;
h4U

0000

i ¼ 120ðui�2 � 4ui�1 þ 6ui � 4uiþ1 þ uiþ2Þ;

ð6Þ

where the dashes denote differentiation with respect to x. An
application of the Galerkin’s method to Eq. (1) with weight
functions W(x), leads toZ b

a

WðUt þ eUUx þ lUxxxÞdx ¼ 0 ð7Þ

Now, we set up the relevant element matrices. For typical ele-

ment [xi,xi+1] we have the contribution,Z
e

Wðuet þ eueuex þ luexxxÞdx

Replacing the weight function W(x) and the unknown val-

ues u(t) from (5) by B-spline shape functions (4),

Xlþ3
i¼l�2

Z xlþ1

xl

/k/idx

� �
_uei þ e

Xlþ3
j¼l�2

Xlþ3
i¼l�2

Z xlþ1

xl

/k/i/
0
jdx

� �
uei u

e
j

þ l
Xlþ3
i¼l�2

Z xlþ1

xl

/kphi
m
i dx

� �
uei ð8Þ

which in matrix form is

Ae _ue þ eueTFeue þ lDeue ð9Þ

Where

ue ¼ ðul�2; ul�1; ul; ulþ1; ulþ2; ulþ3ÞT: ð10Þ

The element matrices are given by the integrals

Ae
ij ¼

R xlþ1
xl

/i/kdx;

Fe
ijk ¼

R xlþ1
xl

/i/
0
j/kdx;

De
ij ¼

R xlþ1
xl

/000i /jdx;

ð11Þ

where i, j, k take only l � 2, l � 1, l, l+ 1, l + 2, l+ 3 for this
element [xl,xl+1]. The matrices Ae,De are therefore 6 · 6 and

Fe is 6 · 6 · 6. We use the associated 6 · 6 matrix Le instead
of Fe in our algorithm

Le
ij ¼

Xlþ3
k¼l�2

Fe
ijku

e
k; ð12Þ

which depends upon the parameters uek. The element matrices
Ae, Fe, De can be determined algebraically from Eq. (11),
(see Appendix A), where uek is given by Eq. (10). The assembly

of the element Eq. (9) leads to the equation

Auþ ðeLþ lDÞu ¼ 0 ð13Þ
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where the matrices A, D, L are assembled from the element

matrices Ae, De, Le in the usual way and

u ¼ ðu�2; u�1; u0; � � � ; uNþ1; uNþ2ÞT: ð14Þ
3. Crank–Nicholson scheme

To obtain a recurrence relationship for the solution of Eq. (1),
time center on ðnþ 1

2
ÞDt, where Dt is the time step and use

Crank–Nicholson approach [10] with

u ¼ 1

2
un þ unþ1
� �

; _u ¼ 1

Dt
unþ1 � un
� �

ð15Þ

Substituting (15) into (13), we obtain

A

Dt
unþ1 � un
� �

þ 1

2
eLþ lDð Þ unþ1 þ un

� �
¼ 0 ð16Þ

And then

Aþ Dt
2

eLþ Dt
2

lD

� �
unþ1 ¼ A� Dt

2
eLþ Dt

2
lD

� �
un; ð17Þ

where the superscripts n and n + 1 are time labels. The system
(17) consists of N+ 1 linear equations in N + 5 unknowns.

To obtain a unique solution to this system we need four addi-
tional conditions. These are obtained from the boundary con-
ditions and can be used to eliminate u�2, u�1, u0, � � � , uN+1,
uN+2 from the recurrence relationships (17) so that the solu-

tion set becomes an 11 banded (N + 5) · (N + 5) matrix equa-
tion. An inner iteration at each time step is carried out to
ensure convergence of the non-linear term. The iteration algo-

rithm is as follows:

1. At startup u0 is known from the initial conditions. From

Eq. (17) we calculate a first approximation u1
1 to u using

u= u0. A second approximation u1
2 is then found with

u ¼ 1
2
ðu0 þ u1

1Þ, and a third u1
3 with u ¼ 1

2
ðu0 þ u1

2Þ. On this

first step we find 10 iterations are usually sufficient to
obtain a good approximation for u1.

2. On the general step to find a first approximation unþ1
1 to

un+1, we use u ¼ un þ 1
2
ðun þ un�1Þ A second approximation

unþ1
2 is then found from, u ¼ 1

2
ðun þ unþ1Þ and so on. Two or

three iterations are usually sufficient to obtain convergence.

The time evolution of un and hence UN(x, t) can be started once
the initial vector of the parameters u0 is obtained.

4. The initial state

From the initial condition we can determine the vector u0 so

that the time evaluation of un+1 using recurrence relationships
(17) can be started. Rewrite the global trial functions Eq. (2),
we get

UNðx; 0Þ ¼
XNþ2
i¼�2

/iðxÞu0i ð18Þ

where u0i are unknown parameters to be determined. To deter-
mine the initial vector u0i , we require UN satisfying the follow-
ing constraints:

1. It must agree with the analytical initial condition at the
knots xj; using Eq. (6) Lead to N+ 1 conditions, and
2. The first and second derivatives of the approximate initial

condition shall be zero at both ends of the range; Eq. (6)
produce four further equations.

The start up vector u0 is then determined as the solution of
matrix equations.

Mu0 ¼ b ð19Þ

Where

M ¼

3 30 27

1 18 33 8

1 26 66 26 1

1 26 66 26 1

: : : : :

1 26 66 26 1

1 26 66 26 1

8 33 18 1

27 30 3

2
6666666666666664

3
7777777777777775

ð20Þ

b ¼ ðU00ðx0Þ;U0ðx0Þ;Uðx0Þ;Uðx1Þ; � � � ;UðxNÞ;U0ðxNÞ;U00ðxNÞÞT

ð21Þ

u0 ¼ ðu0�2; u0�1; u00; � � � ; u0N; u0Nþ1; u0Nþ2Þ
T

The initial vector u0 is then determined as the solution of the

penta-diagonal matrix Eq. (19), the system is solved by a var-
iant of Thomas algorithm.

5. KdV simulations

A numerical algorithm for the KdV equation should possess

the following properties:

1. The migration of solutions should be adequately described.

2. The numerical scheme should exhibit the same conservation
laws as the differential equation.

The numerical algorithm developed in Section 3 will be vali-

dated by studying test problems concerned with the migration
and interaction of solitons. We use the L2 and L1 error norms
to measure the difference between the numerical and analytical

solutions and hence to show how well the scheme predicts the
position and amplitude of the solution as the simulation pro-
ceeds. The L2 and L1 error norms of the solution are defined by

L2 ¼ kUexact �Unk2 ¼ ½h
PN
i¼1
jUexact

i �Un
i j

2�
1
2;

L1 ¼ kUexact �Unk1 ¼ maxijUexact
i �Un

i j
ð22Þ

Also, the conservation properties of the numerical scheme
will be examined by calculating the lowest three invariants

corresponding to conservation of mass I1, momentum I2 and
energy I3,

I1 ¼
R b

a
Udx � h

PN
i¼1

Un
i ;

I2 ¼
R b

a
U2dx � h

PN
i¼1
ðUn

i Þ
2
;

I3 ¼
R b

a
ðU3 � 3

e lU
2
xÞdx � h

PN
i¼1
ðUn

i Þ
3 � 3

e lððUxÞni Þ
2

ð23Þ
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The integrals are approximated by sums and the variables Un
i

and their derivatives are found from Eq. (6). Accuracy of the
method will also be measured with percentage error (PE) de-
fined by:

PE ¼ jExact value�Approximate valuej
Exact value

� 100 ð24Þ
Experiment 1. Single solitary wave simulations

To allow comparison with earlier works, we solve the KdV
Eq. (1) with the boundary conditions

Uð0; tÞ ¼ Uð2; tÞ ¼ 0; t > 0 ð25Þ

And the initial condition

Uðx; 0Þ ¼ 3csech2ðax� x0Þ; 0 6 x 6 2 ð26Þ

The analytical solution is given by

Uðx; tÞ ¼ 3csech2ðax� bt� x0Þ; 0 6 x 6 2 ð27Þ

where c and x0 are constants, a and b defined by a ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðec=lÞ

p
and b = aec. We choose the parameters l = 4.84 · 10�4 and

e = 1.0. For assessing the accuracy of the present scheme,

we use c = 0.3, x0 = 6.0, Dt= 0.005, Dx = 0.01 and carry

out the simulation up to t= 3.0. The error norms L2 and

L1 as well as the first three invariants I1, I2 and I3 are recorded

in Table 1, for times up to t= 3.0. As it can be seen in Table 1,
Table 1 Invariants and error norms for the single solitary wave of

t I1 I2

0 0.144598097 0.0867593065

0.5 0.144598857 0.0867593363

1.0 0.144598886 0.0867593437

1.5 0.144598842 0.0867593139

2.0 0.144598871 0.0867593288

2.5 0.144598886 0.0867593437

3.0 0.144598842 0.0867593363

Table 2 Percentage errors of experiment (1) for some selected valu

Time Method x = 0.2 x =

0.005 HBI [2] 3.7987 2.932

EFD [3] 3.7752 2.931

AN [4] 0.0271 0.110

SA [5] 0.0016 0.088

MOL [6] 0.0129 0.013

QBGFE [7] 0.0107 0.010

Present 0.0000 0.000

0.01 HBI [2] 7.7419 5.980

EFD [3] 30.753 0.698

AN [4] 0.0701 0.234

SA [5] 0.0020 0.364

MOL [6] 0.0251 0.023

EQBGF [7] 0.0242 0.004

Present 0.0000 0.000
all three invariants I1, I2 and I3 are satisfactorily constant

changing by 5.1 · 10�4%, 3.4 · 10�3% and 1.3 · 10�1% of

their original values respectively during the simulation. The

L2 and L1 error norms are also recorded and the L2 norm is

less than 7 · 10�8, while the L1 norm is less than 4.4 · 10�7.

To compare the results of the simulations obtained by the
present algorithm with their corresponding analytical values
and also with the numerical solutions obtained by other

numerical methods in the literature [2–7], Eq. (17) is solved
at times t= 0.005 and t = 0.01 with x0 = 6.0, c = 0.3,
Dt= 0.001 and Dx= 0.0125. To measure the difference be-

tween the numerical and exact solutions, the percentage error,
defined by Eq. (24), is used and displayed in Table 2, together
with a comparison with earlier results in the literature [2–7]. It
is seen that the present method produces less percentage error

than those in the literature.

Experiment 2. We consider the KdV Eq. (1) subject to the
boundary conditions

Uð0; tÞ ¼ Uð4; tÞ ¼ 0; t > 0 ð28Þ

and the initial condition which will be derived from the analyt-
ical solution [6] given as

Uðx; tÞ ¼ 12lðlogFÞxx; 0 6 x 6 4 ð29Þ

Where
the KdV equation at t = 0, 0.5, � � � , 3.
I3 I2 · 108 I1 · 107

0.0467906334 1.62397562 0.59604644

0.0468500480 2.42225333 1.19209290

0.0468500815 2.45920830 1.19209290

0.0468500555 1.76728587 0.59604644

0.0468500741 1.88711393 0.59604644

0.0468500778 1.61578591 0.59604644

0.0468499027 6.80048728 4.30688829

es of x.

0.4 x= 0.6 x = 0.8 x = 1.0

7 3.2960 3.6626 3.6652

9 3.2940 3.6382 3.6286

5 0.0216 0.0470 0.1067

4 0.0392 0.0007 0.0000

7 0.0024 0.0154 0.0000

4 0.0104 0.0096 0.0000

2 0.0006 0.0007 0.0000

6 6.4701 7.1909 7.1961

0 0.6379 32.357 30.864

4 0.0393 0.0984 0.1029

7 0.1503 0.0050 0.0000

2 0.0026 0.0311 0.0000

2 0.0195 0.0240 0.0000

2 0.0007 0.0007 0.0000
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F ¼ 1þ expðg1Þ þ expðg2Þ þ
a1 � a2

a1 þ a2

� �2

expðg1 þ g2Þ

gi ¼ aix� a3
i ltþ bi; ði ¼ 1; 2Þ;

a1 ¼
ffiffiffiffiffiffiffi
0:3

l

s
; a2 ¼

ffiffiffiffiffiffiffi
0:1

l

s
; b1 ¼ �0:48a1; b2 ¼ �1:07a2
Table 3 Invariants and error norms for the experiment 2 of the Kd

t I1 I2

0 0.0990547816 0.0195130249

1 0.0990551323 0.0195130249

2 0.0990551338 0.0195130249

3 0.0990551341 0.0195130249

4 0.0990551341 0.0195130249

5 0.0990551341 0.0195130249

6 0.0990551341 0.0195130249

Figure 1 The solution of expe

Table 4 Percentage errors of experiment (2) for some selected valu

Time Method x= 0.4 x =

0.005 HBI [2] 2.8928 3.373

EFD [3] 1.2138 6.206

AN [4] 2.7820 0.095

SA [5] 2.0640 0.003

MOL [6] 2.0798 0.009

QBGFE [7] 2.0295 0.001

Present 0.0000 0.000

0.01 HBI [2] 5.8995 6.634

EFD [3] 2.7756 2.197

AN [4] 5.7381 0.187

SA [5] 4.1864 0.008

MOL [6] 4.2541 0.020

EQBGF [7] 4.3404 0.003

Present 0.0001 0.000
Taking the parameters l = 4.84 · 10�4, e = 1.0, x0 = 6.0,

c= 0.3, Dt= 0.001 and Dx = 0.0125.
Table 3 records the invariants and error norms for the same

experiment.

As it can be seen in Table 3, all three invariants I1, I2 and I3
are satisfactorily constant changing by 3.6 · 10�4%, 0.0% and

4.3 · 10�2% of their original values respectively during the
V equation at t= 0, 1, � � � , 6.
I3 L2 · 108 L1 · 107

0.0023114084 9.51884576 2.65299403

0.0023240522 9.51884576 2.64979965

0.0025207695 9.51884576 2.59474802

0.0026153580 9.51884578 1.95004410

0.0027354542 9.51884577 2.5307659

0.0023408480 9.51884576 2.65437841

0.0023123914 9.51884576 2.66182834

riment 2 at t= 0, 1, � � � , 6.

es of x.

0.8 x = 1.2 x= 1.6 x = 2.0

8 1.1503 3.2403 3.2848

5 0.3269 4.0980 2.1853

6 0.3860 0.0291 0.0000

0 0.3895 0.0336 0.0000

3 0.9311 5.9459 0.0000

5 0.3879 0.3333 0.0000

0 0.0000 0.0809 0.0000

2 2.2426 6.5870 6.6775

0 0.3489 3.2415 3.9930

4 0.7759 0.0591 0.0000

9 0.7862 0.0684 0.0000

8 0.7903 0.0728 0.0000

0 0.7850 0.0684 0.0000

0 0.0000 0.0000 0.0000



Table 5 Invariants and error norms for the interaction of two solitary waves, experiment 3, with different amplitudes, at times t = 0,

1, � � � , 6.
t I1 I2 I3 L2 · 108 L1 · 107

0 0.228081778 0.107062168 0.0533164255 2.53124242 1.19209291

0.5 0.228082836 0.116139457 0.0629577562 3.02784713 1.19209291

1.0 0.228082955 0.138995498 0.0908666700 5.06542044 2.98023224

1.5 0.228082970 0.169026405 0.1332870720 3.75928941 1.19209291

2.0 0.228083014 0.170222476 0.1350912150 4.99049406 2.38418579

2.5 0.228082836 0.140746310 0.0931761935 4.06871976 2.38418579

3.0 0.228082657 0.117008276 0.0639321804 2.61114312 1.19209291

3.5 0.228080586 0.107343979 0.0535983741 3.22539364 1.19209291

Figure 2 Interaction of two solitary waves, experiment 3, with different amplitudes, at t= 0, 0.5, � � � , 3.5.

A small time solutions for the KdV equation usingBubnov-Galerkin finite element method 123
simulation. The L2 and L1 error norms are also recorded and
the L2 norm is less than 1.0 · 10�7 while the L1 norm is less
than 3.0 · 10�7, while Fig. 1 represents the graphical solution

of experiment 2, for timest = 0, 1, � � � , 6, respectively.

To compare the results of the simulations obtained by the

present algorithm with their corresponding analytical values
and also with the numerical solutions obtained by other
numerical methods in the literature [2–7], we display in Table 4
the percentage errors obtained at times t= 0.005 and

t= 0.01, respectively. To measure the difference between the
numerical and exact solutions, the percentage error, defined by
Eq. (24), is used and displayed in Table 4, together with a

comparison with earlier results in the literature [2–7]. It is seen
that the present method produces less percentage error than
those in the literature.

Experiment 3. Two soliton simulationsThe linear sum of two

separated solitons of various amplitudes is considered as the
initial condition

Uðx; tÞ ¼ 3c1sech
2ða1x� x1Þ þ 3c2sech

2ða2x� x2Þ; 0 6 x 6 2

ð30Þ

and the boundary conditions

Uð0; tÞ ¼ Uð2; tÞ ¼ 0; t > 0 ð31Þ
Where

ai ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeci=lÞ

p
; and bi ¼ aieci; ði ¼ 1; 2Þ

In this experiment, we study the behavior of two solitons with

different amplitudes traveling in the same direction. We take
the parameters l = 4.84 · 10�4, e = 1.0, c1 = 0.3, c2 = 0.1,
x1 = x2 = 6, Dt = 0.005 and Dx = 0.005. Table 5 shows

the invariants and error norms for experiment 3. The three
invariantsI1, I2 and I3 are monitored and the experiment is
stopped when the three invariants retained their original val-

ues within acceptable error. The three invariants changed
by5.3 · 10�4%, 2.7 · 10�1% and 5.3 · 10�1% of their original
values, respectively. The L2 and L1 error norms are also
recorded and the L2 norm is less than 3.5 · 10�8 while the

L1 norm is less than 1.2 · 10�7. Fig. 2 displays the interac-
tion of two soliton waves at t= 0, 0.5, � � � , 3.5, respectively.
It is observed that the two solitons pass through each other

and then emerge unchanged.
6. Conclusions

The KdV equation is a transient nonlinear dispersive equation

so that any numerical scheme that simulates this equation must
represent faithfully all the features of this equation. To fulfill
these requirements, we have constructed a one dimensional



124 N.K. Amein, M.A. Ramadan
B-spline finite element scheme based on Bubnov Galerkin to-

gether with shape and weight functions taken as quintic B-
spline functions to cope with the third derivative of Eq. (1). Dis-
cretization in time is set up using Crank–Nicholson scheme.
This leads to a nonlinear system of equations with 11 diagonal

matrices. All calculations were performed in Fortran code un-
der a core 2 duo 2.0 MHz processor using double precession
arithmetic.

The performance of the method was examined on two test
problems (experiments 1 and 2) with known exact solutions.
The obtained numerical results indicated that the present

method produces more accurate results than the mentioned re-
sults in the literature [2–7] compared with the corresponding
analytical solutions. The method is then used to study the

interaction of two solitons (experiment 3). The results obtained
proved the method to be reliable, accurate and efficient
through the calculated error norms.

We believe that the scheme presented can be useful for

other applications where continuity of derivatives is essential.
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Appendix A. The element matrices Ae, De and Le are calculated
algebraically using the computer’s program ‘‘Mathematica5’’
and the results are as follows,

Ae ¼ h

2772

252 9113 29558 15498 1018 1

9113 397416 1558706 1072186 121641 1018

29558 1558706 7464456 6602476 1072186 15498

15498 1072186 6602476 7464456 1558706 29558

1018 121641 1072186 1558706 397416 9113

1 1018 15498 29558 9113 252

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

De ¼ 1

14h2

�105 145 190 �390 155 5

�4485 3045 16710 �23550 7215 1065

�16990 �5650 107940 �120020 23770 10950

�10950 �23770 120020 �107940 5650 16990

�1065 �7215 23550 �16710 �3045 4485

�5 �155 390 �190 �145 105

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
Le
11¼

1

18018
ð�6006;�75510;�15900;85800;11610;6Þue

Le
12¼

1

18018
ð�196479;�2640045;�762400;3123360;474915;649Þue

Le
13¼

1

18018
ð�586644;�8316700;�2956980;10159260;1697200;3864Þue

Le
14¼

1

18018
ð�277134;�4198800;�1855260;5330580;997050;3564Þue

Le
15¼

1

18018
ð�14814;�255690;�157760;348300;79470;494Þue

Le
16¼

1

18018
ð�3;�155;�300;300;155;3Þue

Le
21¼

1

18018
ð�196479;�2640045;�762400;3123360;474915;649Þue

Le
22¼

1

18018
ð�6900078;�105555450;�50414400;135287940;27405030;176958Þue

Le
23¼

1

18018
ð�21839788;�376504110;�256736460;516367540;136899000;1813818Þue

Le
24¼

1

18018
ð�11104728;�225391560;�223879220;334775580;122871300;2728628Þue

Le
25¼

1

18018
ð�687693;�19558365;�32766420;32766420;19558365;687693Þue

Le
26¼

1

18018
ð�494;�79470;�348300;157760;255690;14814Þue

Le
31¼

1

18018
ð�586644;�8316700;�2956980;10159260;1697200;3864Þue

Le
32¼

1

18018
ð�21839788;�376504110;�256736460;516367540;136899000;1813818Þue

Le
33¼

1

18018
ð�72572448;�1514993520;�1621139520;2278115040;907749120;22841328Þue

Le
34¼

1

18018
ð�39222888;�1065460520;�1757435280;1757435280;1065460520;39222888Þue

Le
35¼

1

18018
ð�2728628;�122871300;�334775580;223879220;225391560;11104728Þue

Le
36¼

1

18018
ð�3564;�997050;�5330580;1855260;4198800;277134Þue

Le
41¼

1

18018
ð�277134;�4198800;�1855260;5330580;997050;3564Þue

Le
42¼

1

18018
ð�11104728;�225391560;�223879220;334775580;122871300;2728628Þue

Le
43¼

1

18018
ð�39222888;�1065460520;�1757435280;1757435280;1065460520;39222888Þue

Le
44¼

1

18018
ð�22841328;�907749120;�2278115040;1621139520;1514993520;72572448Þue

Le
45¼

1

18018
ð�1813818;�136899000;�516367540;256736460;376504110;21839788Þue

Le
46¼

1

18018
ð�3864;�1697200;�10159260;2956980;8316700;586644Þue

Le
51¼

1

18018
ð�14814;�255690;�157760;348300;79470;494Þue

Le
52¼

1

18018
ð�687693;�19558365;�32766420;32766420;19558365;687693Þue

Le
53¼

1

18018
ð�2728628;�122871300;�334775580;223879220;225391560;11104728Þue

Le
54¼

1

18018
ð�1813818;�136899000;�516367540;256736460;376504110;21839788Þue

Le
55¼

1

18018
ð�176958;�27405030;�135287940;50414400;105555450;6900078Þue

Le
56¼

1

18018
ð�649;�474915;�3123360;762400;2640045;196479Þue

Le
61¼

1

18018
ð�3;�155;�300;300;155;3Þue

Le
62¼

1

18018
ð�494;�79470;�348300;157760;255690;14814Þue

Le
63¼

1

18018
ð�3564;�997050;�5330580;1855260;4198800;277134Þue

Le
64¼

1

18018
ð�3864;�1697200;�10159260;2956980;8316700;586644Þue

Le
65¼

1

18018
ð�649;�474915;�3123360;762400;2640045;196479Þue

Le
66¼

1

18018
ð�6;�11610;�85800;15900;75510;6006Þue
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