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Abstract A Bubnov-Galerkin finite element method with quintic B-spline functions taken as ele-

ment shape and weight functions is presented for the solution of the KdV equation. To demonstrate

KdV equation;

Quintic B-splines;
Bubnov Galerkin method;
Finite element method

tion is not known.

the accuracy, efficiency and reliability of the method three experiments are undertaken for both the
evolution of a single solitary wave and the interaction of two solitary waves. The numerical results
are compared with analytical solutions and the numerical results in the literature. It is shown that
the method presented is accurate, efficient and can be used at small times when the analytical solu-
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1. Introduction

In this paper we consider the Korteweg-de Vries (KdV) equa-
tion in the form,

U+eUUi+ Uy =0 a<x<b (1)

where U(x, ) is an appropriate field variable, ¢ and p are positive
parameters, and the subscripts 7 and x denote differentiation
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with respect to the time and the space, respectively. The KdV
Eq. (1) is a one-dimensional non-linear partial differential equa-
tion (PDE) of third order, which plays a major role in the study
of non-linear dispersive waves. This equation was originally de-
rived by Korteweg-de Vries [1] to describe the behavior of one-
dimensional shallow water solitary waves. Solitary waves are
wave packets or pulses which propagate in non-linear dispersive
media. For stable solitary wave solutions the non-linear and dis-
persive terms in the KdV Eq. (1) must balance, and in this case
the KdV equation has traveling wave solutions called solitons.
A soliton is a very special type of solitary waves which keeps
its waveform after collision with other solitons.

A small time solutions using a heat balance integral (HBI)
method to solve the KdV equation was obtained by Kutluay
et al. [2]. In their paper, extensive comparisons with the analyt-
ical values over the defined interval are given. Bahadir [3] used
the exponential finite-difference (EFD) technique to solve the
KdV equation. This method has been shown to provide higher
accuracy than the classical explicit finite difference and the HBI
method. Ozer and Kutluay [4] used an analytical-numerical
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(AN) method, for solving the KdV equation and the obtained
results are compared with that of the HBI method and the cor-
responding analytical solution. Irk et al. [5] used a second order
spline approximation (SA) technique and made comparisons
with earlier methods. Ozdes and Aksan [6] used the method
of lines (MOL) for solving the KdV equation and also in [7]
used a quadratic B-spline Galerkin finite element (QBGFE)
method and compared these techniques with the analytical
solutions and other numerical solutions that are obtained ear-
lier using various numerical techniques.

In this paper, we present an algorithm for solving Eq. (1) by
applying Bubnov Galerkin finite element method. The time
integration of the resulting system is carried out using
Crank—Nicholson scheme. Evolution and interaction of soli-
tary waves with various amplitudes are undertaken.

The presence of the third spatial derivative in Eq. (1) re-
quires that the interpolation functions and their first and sec-
ond derivatives must be continuous throughout the region of
solution. When using Bubnov Galerkin, the quintic B-splines
interpolation functions can be used with partial differential
equations containing derivatives up to order four.

The results obtained are compared with their corresponding
analytical solutions and also with the various numerical meth-
ods mentioned above. To check accuracy, efficiency and reli-
ability of the scheme presented we evaluate the invariants
and error norms for the simulations undertaken.

2. Finite element scheme

A numerical solution to the KdV Eq. (1) is sought over the fi-
nite region [a,b] with boundary conditions as will be pre-
scribed. Let @ = xg < x; < ... < xy = b be a partition of
[a,b] by the equally spaced knots x; and let ¢(x) be those quin-
tic B-splines with knots at the points x;, 0 < i < N. The set of
splines {¢p;_2, ¢i_1, Pi i+ 1, Pi+2, P;i+3} forms a basis for func-
tions defined over the finite region [a,b]. We seek the approx-
imation Unx(x,1) to the solution U(x,t) which uses

Un(x,1) = Y dy(x)ui(r) (2)

f— )

where the u; are time dependent parameters to be determined
from the boundary conditions and from conditions to be deter-
mined herein.

U(a,t) = U(b,1) =0, U,(a,t) =U,(b,1)=0 (3)

We identify the finite elements with the intervals [x;, x;4 1] with
nodes at x; and x; ;. Each quintic B-splines covers six elements:
consequently each element [x;,x;+] is covered by six splines
(hi—2:Pic1, i Pi+ 1, @it 2, Py 3) Which are given in terms of a
local coordinate system ( given by h{ = (x — x;) where
h = x;+1 —x;and 0 < { < 1. Leads to the following expressions
for these splines over the element [x;, x; 1] are [8,9],
bis=1—504+107 - 108 + 50 - ¢
b, =26 —50¢ + 20 4208 — 208 4 5¢°

¢, = 66 — 60 + 300 — 108°
biy =264 50( + 208 — 20 — 20¢* + 100
bir = 1+ 504+ 108 + 108 + 5¢* - 50
¢i+3 = Cs

The spline ¢(x) and its three derivatives vanish outside the
interval [x;_3,x;+3]. These spline act like “‘shape” functions
for the element when we set up equations in terms of the ele-
ment parameters u¢ using Eq. (4). The variation of Up(x,1)
over the element [x;_3,x;+3] is given by

i+3

w0 = ) (5)

j=i-2

The nodal value of Un(x, ) and the derivatives at the knots are
given in terms of the element parameters by

Ui = ui_y + 26u;_y + 66u; + 2611 + uzy 2,

hU; = 5(uiyo + 10wy — 100 — u;_s),

RPU! = 20(u;_5 + 2uiy — 6u; + 2wy + i42), (6)
WU = 60(ui2 — 21 + 21 — i),

h4UiW = 120(u;—» — 4uiy + 6u; — 4upy + usyn),

where the dashes denote differentiation with respect to x. An

application of the Galerkin’s method to Eq. (1) with weight
functions W(x), leads to

b
/ WU, + eUU, + U )dx = 0 7)

Now, we set up the relevant element matrices. For typical ele-
ment [x;,Xx;+1] we have the contribution,

/ W(u + euul + puil, . )dx

Replacing the weight function W(x) and the unknown val-
ues u(¢) from (5) by B-spline shape functions (4),

143 X 3 143 Xt
S ([ oar)icre >SS ([ wbarn )

i=l—2 \Jx j=1—2 i=1—2 \Jx

1+3 Xig1
cn 3 ([ o ®)

i=l-2 R

which in matrix form is

A + e T Fuf + puDu’ 9)

Where

U= (U, ey Uy Wy U, Ur3) - (10)

The element matrices are given by the integrals

A:, = f_;m ¢ dx,

Fyo= [ didpjbed, (11)
Dy = [ ¢!,

where i, j, k takeonly /[ — 2,/ — 1,1,/ + 1,1 + 2,/ + 3 for this
element [x;, x;+]. The matrices 4°, D¢ are therefore 6 X 6 and

F°is 6 x 6 X 6. We use the associated 6 x 6 matrix L° instead
of F in our algorithm
I+3
L= Fuf, (12)
k=1-2

which depends upon the parameters u;. The element matrices
A¢, F°, D° can be determined algebraically from Eq. (11),
(see Appendix A), where uj is given by Eq. (10). The assembly
of the element Eq. (9) leads to the equation

Au+ (eL+ puD)u =0 (13)
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where the matrices 4, D, L are assembled from the element
matrices A°, D¢, L¢ in the usual way and

u= (u—27u—17u03“'7uN+17uN+2)T' (14)
3. Crank—Nicholson scheme
To obtain a recurrence relationship for the solution of Eq. (1),

time center on (n+1)Ar, where At is the time step and use
Crank—Nicholson approach [10] with

1 1
u:i(u"+u”“), a:A—Z(u”“fu”) (15)
Substituting (15) into (13), we obtain
A 1
E(unﬂ _un) +§(8L+MD)(LI"+1 +u") =0 (16)
And then

A A A A
(A+7lsL+7luD>“"+l = <A’TISL+7I“D>M7 (7

where the superscripts n and n + 1 are time labels. The system
(17) consists of N + 1 linear equations in N + 5 unknowns.
To obtain a unique solution to this system we need four addi-
tional conditions. These are obtained from the boundary con-
ditions and can be used to eliminate u_», u_y, ug, -+, Un+1,
uy+- from the recurrence relationships (17) so that the solu-
tion set becomes an 11 banded (N + 5) x (N + 5) matrix equa-
tion. An inner iteration at each time step is carried out to
ensure convergence of the non-linear term. The iteration algo-
rithm is as follows:

1. At startup »° is known from the initial conditions. From

Eq. (17) we calculate a first approximation u] to u using

u =1’ A second approximation u} is then found with
u=1(’+uj), and a third u} with u =1 (u° + u}). On this
first step we find 10 iterations are usually sufficient to
obtain a good approximation for u'.

2. On the general step to find a first approximation #!*' to
W' weuseu = u" +1(u" +u"") A second approximation
™! is then found from, u = { (u" +u"*") and so on. Two or
three iterations are usually sufficient to obtain convergence.

The time evolution of #" and hence Uy(x, ) can be started once
the initial vector of the parameters «° is obtained.

4. The initial state

From the initial condition we can determine the vector u° so
that the time evaluation of " ™! using recurrence relationships
(17) can be started. Rewrite the global trial functions Eq. (2),
we get

N2

Un(x,0) =Y ¢i(x)u] (18)

i==2

where 1 are unknown parameters to be determined. To deter-
mine the initial vector #?, we require Uy satisfying the follow-
ing constraints:

1. It must agree with the analytical initial condition at the
knots x;; using Eq. (6) Lead to N + 1 conditions, and

2. The first and second derivatives of the approximate initial
condition shall be zero at both ends of the range; Eq. (6)
produce four further equations.

The start up vector #° is then determined as the solution of
matrix equations.

M’ =b (19)
Where
r3 30 27 1
1 18 33 8

M= 1 26 66 26 1 (20)
12 66 26 1
§ 33 18 1
27 30 3

b= (UN(XO)7 U/(X()), U(x0)7 U(X1)7 Tty U(XN)7 U/(XN)7 UH(XN))T
(21)

0 _ (0~ 01,0 0 0 0 \T
W= (22,2 10y, Uy Unys)

The initial vector «° is then determined as the solution of the
penta-diagonal matrix Eq. (19), the system is solved by a var-
iant of Thomas algorithm.

5. KdV simulations

A numerical algorithm for the KdV equation should possess
the following properties:

1. The migration of solutions should be adequately described.
2. The numerical scheme should exhibit the same conservation
laws as the differential equation.

The numerical algorithm developed in Section 3 will be vali-
dated by studying test problems concerned with the migration
and interaction of solitons. We use the L, and L., error norms
to measure the difference between the numerical and analytical
solutions and hence to show how well the scheme predicts the
position and amplitude of the solution as the simulation pro-
ceeds. The L, and L, error norms of the solution are defined by

N 1

L, = Uexact _ Un — /’l U;xact _ Un 2 bl

= | I = 3|07 ~ U, -
Loc — ”Uexuct _ UnHoc — ’,nax[|U$lecl _ UI’1‘

Also, the conservation properties of the numerical scheme

will be examined by calculating the lowest three invariants

corresponding to conservation of mass /;, momentum /, and
energy I,

N
L= [Udx=~hY U,
i=1

N
L= [ Vdy = by (U)), (23)

i=1

N
L= [J(U =plP)dx ~ h;(u:ff —2u((U)))
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The integrals are approximated by sums and the variables U’
and their derivatives are found from Eq. (6). Accuracy of the
method will also be measured with percentage error (PE) de-
fined by:

PE — |Exact value — Approximate value| o

100 24
Exact value (24)
Experiment 1. Single solitary wave simulations

To allow comparison with earlier works, we solve the KdV
Eq. (1) with the boundary conditions
U0,0)=U2,1)=0, t>0 (25)
And the initial condition
U(x,0) = 3csech*(ax — x;), 0<x<2 (26)

The analytical solution is given by

U(x, 1) = 3esech®(ax — bt — xp), 0<x<2 (27)

(ec/10)
and b = asc. We choose the parameters u = 4.84 x 10~* and
¢ = 1.0. For assessing the accuracy of the present scheme,
we use ¢ = 0.3, xo = 6.0, Az = 0.005, Ax = 0.01 and carry
out the simulation up to ¢ = 3.0. The error norms L, and

where ¢ and x, are constants, @ and b defined by a = %

all three invariants I;, I, and I3 are satisfactorily constant
changing by 5.1x107%%, 3.4x1073% and 1.3x107'% of
their original values respectively during the simulation. The
L, and L, error norms are also recorded and the L, norm is
less than 7 10~%, while the L., norm is less than 4.4 x 107",

To compare the results of the simulations obtained by the
present algorithm with their corresponding analytical values
and also with the numerical solutions obtained by other
numerical methods in the literature [2-7], Eq. (17) is solved
at times ¢ = 0.005 and 7 = 0.01 with xy = 6.0, ¢ = 0.3,
At = 0.001 and Ax = 0.0125. To measure the difference be-
tween the numerical and exact solutions, the percentage error,
defined by Eq. (24), is used and displayed in Table 2, together
with a comparison with earlier results in the literature [2-7]. It
is seen that the present method produces less percentage error
than those in the literature.

Experiment 2. We consider the KdV Eq. (1) subject to the
boundary conditions

U0,1) = U4,1) =0, >0 (28)

and the initial condition which will be derived from the analyt-
ical solution [6] given as

. . U(x,t) = 12u(logF). ., 0<x<4 29
L. as well as the first three invariants I;, I, and I3 are recorded (1) u(log F)., S (29)
in Table 1, for times up to r = 3.0. As it can be seen in Table 1, Where
Table 1 Invariants and error norms for the single solitary wave of the KdV equation at 7 = 0, 0.5, - - -, 3.
t I L I Lx 108 I x 107
0 0.144598097 0.0867593065 0.0467906334 1.62397562 0.59604644
0.5 0.144598857 0.0867593363 0.0468500480 2.42225333 1.19209290
1.0 0.144598886 0.0867593437 0.0468500815 2.45920830 1.19209290
1.5 0.144598842 0.0867593139 0.0468500555 1.76728587 0.59604644
2.0 0.144598871 0.0867593288 0.0468500741 1.88711393 0.59604644
2.5 0.144598886 0.0867593437 0.0468500778 1.61578591 0.59604644
3.0 0.144598842 0.0867593363 0.0468499027 6.80048728 4.30688829
Table 2 Percentage errors of experiment (1) for some selected values of x.
Time Method x =02 x =04 x = 0.6 x =028 x =10
0.005 HBI [2] 3.7987 2.9327 3.2960 3.6626 3.6652
EFD [3] 3.7752 2.9319 3.2940 3.6382 3.6286
AN [4] 0.0271 0.1105 0.0216 0.0470 0.1067
SA [5] 0.0016 0.0884 0.0392 0.0007 0.0000
MOL [6] 0.0129 0.0137 0.0024 0.0154 0.0000
QBGFE [7] 0.0107 0.0104 0.0104 0.0096 0.0000
Present 0.0000 0.0002 0.0006 0.0007 0.0000
0.01 HBI [2] 7.7419 5.9806 6.4701 7.1909 7.1961
EFD [3] 30.753 0.6980 0.6379 32.357 30.864
AN [4] 0.0701 0.2344 0.0393 0.0984 0.1029
SA [5] 0.0020 0.3647 0.1503 0.0050 0.0000
MOL [6] 0.0251 0.0232 0.0026 0.0311 0.0000
EQBGF [7] 0.0242 0.0042 0.0195 0.0240 0.0000
Present 0.0000 0.0002 0.0007 0.0007 0.0000
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o — o\’ Taking the parameters u = 4.84x107% &= 1.0, x, = 6.0,

F=1+exp(n) + exp(n,) + (al +a2) exp(m +15) ¢ = 0.3, Ar = 0.001 and Ax = 0.0125.
Table 3 records the invariants and error norms for the same

n=owx —out+b, (i=1,2), experiment.

03 01 As it can be seen in Table 3, all three invariants I, I, and 15
w=q— m=4/— b =-048x, b =-107x are satisfactorily constant changing by 3.6 x 107%, 0.0% and
" 4.3 % 1072% of their original values respectively during the

Table 3 Invariants and erro

r norms for the experiment 2 of the KdV equation at t = 0, 1, -- - ,6.

t I, L L L,x 108 L., x 107

0 0.0990547816 0.0195130249 0.0023114084 9.51884576 2.65299403
1 0.0990551323 0.0195130249 0.0023240522 9.51884576 2.64979965
2 0.0990551338 0.0195130249 0.0025207695 9.51884576 2.59474802
3 0.0990551341 0.0195130249 0.0026153580 9.51884578 1.95004410
4 0.0990551341 0.0195130249 0.0027354542 9.51884577 2.5307659
5 0.0990551341 0.0195130249 0.0023408480 9.51884576 2.65437841
6 0.0990551341 0.0195130249 0.0023123914 9.51884576 2.66182834

Ar
3 3
27
1}
0

P 4

~ay %)
% 0 ! ¥ -axis
Figure 1  The solution of experiment 2 at ¢+ = 0, 1, ---,6.

Table 4 Percentage errors o

f experiment (2) for some selected values of x.

Time Method x=04 x =038 x=12 x=1.6 x =20

0.005 HBI [2] 2.8928 3.3738 1.1503 3.2403 3.2848
EFD [3] 1.2138 6.2065 0.3269 4.0980 2.1853
AN [4] 2.7820 0.0956 0.3860 0.0291 0.0000
SA [5] 2.0640 0.0030 0.3895 0.0336 0.0000
MOL [6] 2.0798 0.0093 0.9311 5.9459 0.0000
QBGFE [7] 2.0295 0.0015 0.3879 0.3333 0.0000
Present 0.0000 0.0000 0.0000 0.0809 0.0000

0.01 HBI [2] 5.8995 6.6342 2.2426 6.5870 6.6775
EFD [3] 2.7756 2.1970 0.3489 3.2415 3.9930
AN [4] 5.7381 0.1874 0.7759 0.0591 0.0000
SA [5] 4.1864 0.0089 0.7862 0.0684 0.0000
MOL [6] 4.2541 0.0208 0.7903 0.0728 0.0000
EQBGEF [7] 4.3404 0.0030 0.7850 0.0684 0.0000
Present 0.0001 0.0000 0.0000 0.0000 0.0000
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Table 5 Invariants and error norms for the interaction of two solitary waves, experiment 3, with different amplitudes, at times ¢ = 0,
1,---,6.

t I 2 L L,x 108 L., x 107

0 0.228081778 0.107062168 0.0533164255 2.53124242 1.19209291
0.5 0.228082836 0.116139457 0.0629577562 3.02784713 1.19209291
1.0 0.228082955 0.138995498 0.0908666700 5.06542044 2.98023224
1.5 0.228082970 0.169026405 0.1332870720 3.75928941 1.19209291
2.0 0.228083014 0.170222476 0.1350912150 4.99049406 2.38418579
2.5 0.228082836 0.140746310 0.0931761935 4.06871976 2.38418579
3.0 0.228082657 0.117008276 0.0639321804 2.61114312 1.19209291
3.5 0.228080586 0.107343979 0.0535983741 3.22539364 1.19209291

]
= TE 25 01 "0 4s
t- axis ~ 3 350 : *..mﬂ
Figure 2  Interaction of two solitary waves, experiment 3, with different amplitudes, at r = 0, 0.5, ---,3.5.

simulation. The L, and L., error norms are also recorded and
the L, norm is less than 1.0 x 1077 while the L., norm is less
than 3.0 x 1077, while Fig. 1 represents the graphical solution
of experiment 2, for timest = 0, 1,---,6, respectively.

To compare the results of the simulations obtained by the
present algorithm with their corresponding analytical values
and also with the numerical solutions obtained by other
numerical methods in the literature [2-7], we display in Table 4
the percentage errors obtained at times ¢ = 0.005 and
t = 0.01, respectively. To measure the difference between the
numerical and exact solutions, the percentage error, defined by
Eq. (24), is used and displayed in Table 4, together with a
comparison with earlier results in the literature [2-7]. It is seen
that the present method produces less percentage error than
those in the literature.

Experiment 3. Two soliton simulationsThe linear sum of two

separated solitons of various amplitudes is considered as the

initial condition

U(x, t) = 3¢isech®(a1x — xy) + 3easech(ax — x3),0 < x < 2
(30)

and the boundary conditions

U,0))=U(2,t)=0,t>0 (31)

Where

1
a; = z\/(sc,-/u), and b; = a;ec;, (i = 1,2)

In this experiment, we study the behavior of two solitons with
different amplitudes traveling in the same direction. We take
the parameters u = 4.84 x 1074 ¢ =1.0, ¢; = 0.3, ¢, = 0.1,
X; = x; =6, At = 0.005 and Ax = 0.005. Table 5 shows
the invariants and error norms for experiment 3. The three
invariants/;, I, and I3 are monitored and the experiment is
stopped when the three invariants retained their original val-
ues within acceptable error. The three invariants changed
by3.3 x 1074%, 2.7 x 107'% and 5.3 x 10™'% of their original
values, respectively. The L, and L., error norms are also
recorded and the L, norm is less than 3.5x 10~% while the
L., norm is less than 1.2x 107", Fig. 2 displays the interac-
tion of two soliton waves at ¢t = 0, 0.5, ---,3.5, respectively.
It is observed that the two solitons pass through each other
and then emerge unchanged.

6. Conclusions

The KdV equation is a transient nonlinear dispersive equation
so that any numerical scheme that simulates this equation must
represent faithfully all the features of this equation. To fulfill
these requirements, we have constructed a one dimensional
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B-spline finite element scheme based on Bubnov Galerkin to-
gether with shape and weight functions taken as quintic B-
spline functions to cope with the third derivative of Eq. (1). Dis-
cretization in time is set up using Crank—Nicholson scheme.
This leads to a nonlinear system of equations with 11 diagonal
matrices. All calculations were performed in Fortran code un-
der a core 2 duo 2.0 MHz processor using double precession
arithmetic.

The performance of the method was examined on two test
problems (experiments 1 and 2) with known exact solutions.
The obtained numerical results indicated that the present
method produces more accurate results than the mentioned re-
sults in the literature [2-7] compared with the corresponding
analytical solutions. The method is then used to study the
interaction of two solitons (experiment 3). The results obtained
proved the method to be reliable, accurate and efficient
through the calculated error norms.

We believe that the scheme presented can be useful for
other applications where continuity of derivatives is essential.
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Appendix A. The element matrices A, D¢ and L° are calculated
algebraically using the computer’s program ‘“Mathematica5”
and the results are as follows,

252 9113 29558 15498 1018 1
9113 397416 1558706 1072186 121641 1018
29558 1558706 7464456 6602476 1072186 15498
A= 27]172 15498 1072186 6602476 7464456 1558706 29558
1018 121641 1072186 1558706 397416 9113
1 1018 15498 29558 9113 252
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