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Abstract Generalized forms of exact solitary wave solutions of the class (1.1) are investigated. The

analysis rests mainly on the standard a direct algebraic method. The most general solutions are

obtained, possibly having a constant term in their expansion into real exponentials. These solutions

of the class (1.1) are performed under certain conditions for the relationship between the coefficients

of the nonlinear, dispersive and dissipative terms. The analytical solutions of this class are of pulse-type

and of kink-type solitary wave solutions and they are obtained with an arbitrary constant phase shift.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.
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1. Introduction

A vast variety of the powerful and direct methods to find all
kinds of analytic solutions of partial differential equations

(PDEs) have been developed. Among these are Hirota’s bilinear
technique [1], inverse scattering transform [2], Painlevè expan-
sions [3], direct algebraic method (the direct real-exponential
method) [4], Bäcklund transformation method [1] and so on.
.com

tical Society. Production and
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Among these, a direct algebraic method [4], it can be used
to investigate nonlinear dispersive and dissipative problems
for obtaining the solutions of solitary waves. This method rep-
resents the solutions as infinite series in real exponentials that

satisfy the linearized equations. The coefficients of these series
satisfy the nonlinear recursion relations and the series is then
summed in closed form and the exact solitary wave solutions

are obtained.
In this paper, we consider the class of third order nonlinear

dispersive dissipative PDEs of the form

ut þ ux þ a1u
nux þ a2u

nut þ a3uxx þ a4uxt þ a5utt þ a6uxxx

þ a7uxxt þ a8uxtt þ a9uttt ¼ 0; ð1:1Þ

in which aiði ¼ 1; 2; . . . ; 9Þ are real constants and uðx; tÞ is a

real scalar function defined for all ðx; tÞ 2 R� I , where t
denotes a real variable in the interval I ¼ ð0;1Þ. We shall here
and henceforth, assume that uðx; tÞ is continuous for all values
of its respective arguments and that the various partial deriva-
tives of u with respect to x and t exist and are continuous.

For n ¼ 1; the class (1.1) incorporates the Korteweg-de

Vries ðKdVÞ equations without dissipative terms [2,5,6]:
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ut þ uux þ uxxx ¼ 0; ð1:2Þ
ut þ puux þ uxxx ¼ 0; ð1:3Þ
ut þ puux � luxxx ¼ 0; ð1:4Þ

and their alternatives. Also this class contains the KdV
equation with a dissipative term or the KdV-Burgers ðKdVBÞ
equation [7]:

ut þ puux þ quxx � luxxx ¼ 0; ð1:5Þ

and its alternatives, where p; q and l are real constants.
For n ¼ 2; this class, also incorporates the modified

KdVðmKdVÞ equations [5,8]:

ut þ u2ux þ uxxx ¼ 0; ð1:6Þ
ut þ pu2ux þ uxxx ¼ 0; ð1:7Þ

and their alternatives.
Also, the class (1.1) contains mKdVB equation [7]:

ut þ pu2ux þ quxx � luxxx ¼ 0; ð1:8Þ

and its alternatives, where p; q and l are defined as before.

These Eqs. (1.2) and (1.8) and their alternatives are widely used
to describe complex phenomena in various fields of science,
especially in physics, as solid-states physics [9], fluid dynamics

[10] and plasma physics [11].
According to the well-knownKdV Eq. (1.1) [6], which is spe-

cial case of the class (1.1), is a nonlinear PDE that models the

time-dependent wave motion in one space dimension in media
with nonlinear wave steepening and dispersion, such as shallow
water waves and ion acoustic plasma waves. The pioneering
study in [6], showed that when nonlinear wave steepening, from

the term uux, is balanced by wave dispersion, owing to the term
uxxx, their equation predicts a unidirectional solitary wave, that
is a pulse which moves in one direction with a permanent shape

and a constant speed . Also, the Eqs. (1.3), (1.4), (1.6) and (1.7)
have pluse� type solitary wave solutions. But the Eqs. (1.5) and
(1.8) have kink-type solutions of the solitary waves.

The first and well-known alternative to the KdV equation,
was derived in [12], that is Regularized Long Wave ðRLWÞ
equation:

ut þ ux þ uux � luxxt ¼ 0; ð1:9Þ

where l is defined as before. Other alternative to the KdV
equation was established in [13]:

ut þ uux � luxxt ¼ 0; ð1:10Þ

this equation is called the Equal Width ðEWÞ equation and it

can be easily transformed into (1.8) by the transformation
u! uþ 1, and therefor, both (1.9) and (1.10) have very similar
analytical solitary wave solutions.

Furthermore, the class (1.1) that contains two general types

of RLW equations, established in [14]. The first type of RLW,
is the generalized Equal Width ðgEWÞ equation without dissi-
pative term:

ut þ punux � luxxt ¼ 0; ð1:11Þ

in which the solitary wave of the pulse-type solution. The sec-
ond type of RLW, is the generalized EW-Burgers ðgEWBÞ
equation with a dissipative term:

ut þ punux � quxx � luxxt ¼ 0; ð1:12Þ

and the solution of this case of a kink-type. These alternatives
to the KdV equations are propose on the basis that their
dispersive and dissipative properties are physically and mathe-

matically preferable to these of the KdV equations.
The purpose of this paper, is to find the general solutions of

the class (1.1) for n ¼ 1 or n ¼ 2, by a direct algebraic method.

However, these solutions of this class may have a constant term
in their expansion into real exponentials. In [15,16], we obtained
particular solitary wave solutions of the class (1.1) for n ¼ 1 and
for n ¼ 2; where, we neglected the integration constant to look

only for solutions without the constant term in their expansion.
Moreover, those solutions which have obtained of pulse-type
and kink-type solutions with an arbitrary constant phase shift.

2. General solutions of the class (1.1)

In this section we demonstrate how to construct solutions of

the class (1.1), using a direct algebraic method [4], that contain
a constant term in their expansion into real exponentials. To
obtain the stationary solutions for the class (1.1), we introduce

a traveling frame of reference n ¼ x� ct to transform the
PDEs of (1.1) into an ODE in fðnÞ ¼ uðx; tÞ:
�f0 þ af nf 0 þ bf 00 þ cf 000 ¼ 0; ð2:1Þ

where

a ¼ a1 � a2c

c� 1
; b ¼ a3 � a4cþ a5c

2

c� 1
;

c ¼ a6 � a7cþ a8c
2 � a9c

3

c� 1
; ð2:2Þ

in which c – 1 is the anticipated traveling wave velocity, and

the derivatives are performed with respect to the co-ordinate
n. Integrating (2.1) once with respect to n, to get

�fþ a
nþ 1

f nþ1 þ bf 0 þ cf 00 þ k1K ¼ 0; ð2:3Þ

where k1K is an integration constant As we shall see below, the
purpose of this integration constant is to facilitate exponential

solutions for the linear part of the transformed equation in /:

f ¼ k1 þ /; ð2:4Þ

where k1 is a constant. Indeed, substitution of (2.4) in ((2.3)
yields

�/þ a
nþ 1

ðk1 þ /Þnþ1 þ b/0 þ c/00 þ k1ðK� 1Þ ¼ 0: ð2:5Þ

Case 1: n ¼ 1; b ¼ 0:

For the case n ¼ 1 and b ¼ 0, (2.5) takes the form

ðak1 � 1Þ/þ a
2
/2 þ c/00 þ k1

a
2
k1 þ K� 1

� �
¼ 0; ð2:6Þ

if

c ¼ 1

2a5
a4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a24 � 4a3a5

q� �
; ð2:7Þ

as a sufficient condition.
The linear part of (2.6) ði:e:, for a ¼ 0 with c ¼ a1=a2) has

two real exponential solutions of the form exp ½�kðcÞn� with

k2 ¼ 1

c
ð1� ak1Þ ¼

1

c
ð2K� 1Þ; ð2:8Þ

if and only if the /-independent part in (2.6) is set equal to
zero; i:e:,

k1 ¼
2

a
ð1� KÞ: ð2:9Þ
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Using (2.8) and (2.9), the transformed Eq. (2.6) becomes

ð1� 2KÞ/þ a
2

/2 þ c/00 ¼ 0: ð2:10Þ

We now seek stationary solutions of / in terms of the harmon-
ics of, say, decaying exponentials. To this end, we scale /
according to

/ ¼ 2

a
ð2K� 1Þw; ð2:11Þ

and expand w in terms of the harmonics of the decaying expo-

nential solution to the linear equation:

w ¼
X1
m¼1

bmg
mðnÞ; ð2:12Þ

gðnÞ ¼ expð�knÞ: ð2:13Þ
We next substitute Eqs. (2.11)–(2.13) into (2.10), to get the

recursion relation

ðm2 � 1Þbm þ
Xm�1
l¼0

blbm�1 ¼ 0; m P 2; ð2:14Þ

and b1 arbitrary, where use has been made of Eqs. (2.8) and

(2.9) to simplify. The b0ms are then given by our paper [15]:

bm ¼ 6mð�1Þmþ1bm; b ¼ b1
6
; b1 > 0;m ¼ 1; 2; 3; . . .

� �
:

ð2:15Þ
So that with (2.4), (2.9), (2.11) and (2.12), the closed form

solution f may be written as:

f ¼ 2

a
ð1� KÞ þ 2

a
ð2K� 1Þ 6bg

ð1þ bgÞ2
: ð2:16Þ

Note that the closed form (2.16) for f has been built up from a
convergent power series of decaying exponentials gðnÞ for
bg < 1 (i.e., in the region n > n0; n0 ¼ ln b

k ). However, (2.16) is

also expressible as a convergent power series in 1
bg

for bg > 1
(i.e., in the region n < n0), where

1
g
(¼ exp ðknÞ) is a (bounded)

rising exponential solution to the linear equation. Since

(2.16) is continuous at bg ¼ 1, it is therefore, a valid solution
over the entire region �1 < n <1. Physically speaking, this
means that the solution in the region n P n0 (built up from
harmonics of decaying exponentials) provides the boundary

conditions for the solution in region n 6 n0 (built up from
harmonics of rising exponentials) ensuring continuity at
n ¼ n0 The final solution uðx; tÞ may now be expressed, using

(2.8), (2.13) and (2.16) as

uðx; tÞ ¼ 2

a
ð1� KÞ

þ 3

a
ð2K� 1Þsech2 1

2

2K� 1

c

� �1
2

ðx� ctÞ þ d

" #
; ð2:17Þ

where dð¼ 1
2
ln 1

b
Þ represents an arbitrary constant phase factor,

a and c are defined in (2.2).
As special cases of (2.17), note that the choice of the con-

stant K as 1 and 1
4
, respectively, lead to the sech2 solution

[15] for the class (1.1):

uðx; tÞ ¼ 3

a
sech2 1

2
ffiffiffi
c
p ðx� ctÞ þ d

� �
; ð2:18Þ

and a new-type of tanh2 solution:

uðx; tÞ ¼ 3

2a
tanh2 1

2
ffiffiffi
c
p ðx� ctÞ þ d

� �
; ð2:19Þ

where a; c > 0 and d are defined as before.
Moreover; if u! u� 1
p
; n ¼ 1; a1 ¼ p and ai ¼ 0; ði ¼ 2; 3;

4; 5; 7; 8; 9), then (1.1) reduced to the KdV Eq. (1.3) [17,18].
Hence, from (2.2), we get

a ¼ p

c
; b ¼ 0; c ¼ 1

c
> 0; ðc > 0Þ: ð2:20Þ

Using (2.20) in (2.18) and (2.19), respectively, lead to the well-
known sech2 solution of the KdV Eq. (1.3) [17,18]

uðx; tÞ ¼ 3c

p
sech2

ffiffiffi
c
p

2
ðx� ctÞ þ d

� �
; ð2:21Þ

and a ‘well’-type tanh2 solution

uðx; tÞ ¼ 3c

2p
tanh2 1

2

ffiffiffiffiffiffi
�c
2

r
ðx� ctÞ þ d

� �
: ð2:22Þ

In passing, it is interesting to observe that the solution uðx; tÞ
in (2.17) contains a constant term and a sech2-type term, both
of which are individually solutions of the class (1.1). The gen-

eral solution u, given by (2.17), may therefore be visualized as
the superposition of two particular solutions of (1.1) of appro-
priate amplitudes which are now locked together with a differ-

ent velocity ð2K�1cas
Þ, where 1

cas
is the velocity of the free

(associated) solutions of the class (1.1), for n ¼ 1 and b ¼ 0.
Case 2: n ¼ 2; b ¼ 0:
Following the above analysis, we derive here the solitary

wave solutions of the class (1.1), for n ¼ 2 and b ¼ 0 under
the sufficient condition (2.7), thus (2.5) becomes

ðak21 � 1Þ/þ ak1/
2 þ a

3
/3 þ c/00 þ k1

a
3
k21 þ K� 1

� �
¼ 0:

ð2:23Þ

The linear part of (2.23) has exponential solutions
exp ½�kðcÞn�, if

k1
a
3
k21 þ K� 1

� �
¼ 0: ð2:24Þ

For k1 ¼ 0, (2.23) takes the form [15]

�/þ a
3
/3 þ c/00 ¼ 0: ð2:25Þ

In this case, we find

k ¼ 1ffiffiffi
c
p ; c > 0: ð2:26Þ

Hence, we perform the scaling

f ¼ / ¼
ffiffiffi
3

a

r
w; a > 0: ð2:27Þ

Next, we use (2.27), (2.12), (2.13) and (2.8) into (2.25) to get
the recursion relation

ðm2 � 1Þbm þ
Xm�1
r¼2

Xr�1
l¼1

blbr�lbm�r ¼ 0; m P 3; ð2:28Þ

where b1 arbitrary and b2 ¼ 0, from which the general

structure of bm may be calculated as [15]

b2m ¼ 0; ð2:29Þ

b2mþ1 ¼
ð�1Þmb2mþ11

23m
; m ¼ 1; 2; 3; . . . ð2:30Þ
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Using (2.29) and (2.30) in (2.12), w may be expressed in closed

form as

wðnÞ ¼ 2
ffiffiffi
2
p

bgðnÞ
1þ b2g2ðnÞ

; b ¼ b1

2
ffiffiffi
2
p > 0: ð2:31Þ

By reasoning as in n ¼ 1, it may be readily verified that (2.31)

represents a valid solution over the entire region �1 < n <
1. The final solution for w and hence for u, after de-normaliza-
tion using (2.27), we obtain the solitary wave solution

uðx; tÞ ¼
ffiffiffi
6

a

r
sech

ðx� ctÞffiffiffi
c
p þ d

� �
; ð2:32Þ

where d ¼ lnð1
b
Þ, defines an arbitrary constant phase shift.

We have thus constructed the solitary wave solution (2.32)
of the class (1.1) for n ¼ 2; b ¼ 0 and for k1 ¼ 0. From a phys-
ical point of view, it is interesting to realize that a sech solution

in (2.32) is only built up of odd harmonics of the fundamental
function g, these obviously being the only ones to be generated
by a cubic non-linearity.

As special case of (1.1), if u! u2 � 1
p
; n ¼ 2; a1 ¼ p and

ai ¼ 0; ði ¼ 2; 3; 4; 5; 7; 8; 9), then (1.1) reduced to the mKdV
Eq. (1.7) [17,19]. Therefore, from (2.2) we have to obtain on

the same of (2.20).
Using (2.20) in (2.32), leads to the well-known sech solution

of the mKdV Eq. (1.7) [17,19]

uðx; tÞ ¼
ffiffiffiffiffi
6c

p

s
sech½

ffiffiffi
c
p
ðx� ctÞ þ d�; d ¼ ln

1

b

� �
: ð2:33Þ

For k21 ¼ 3
a ð1� KÞ, this implies that

k1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

a
ð1� KÞ

r
; ð2:34Þ

and (2.23) becomes

ð2� 3KÞ/� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

a
ð1� KÞ

r
/2 þ a

3
/3 þ c/00 ¼ 0: ð2:35Þ

Next, we obtain

k2 ¼ 1

c
ð3K� 2Þ: ð2:36Þ

For mathematical convenience, we introduce the scale

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

a
ð1� KÞ

r
w: ð2:37Þ

We use the scale transformation (2.37), and we substitute the
series expansion for w into the resulting equation. This yields

ðm2 � 1Þbm �
3ð1� KÞ
3K� 2

Xm�1
l¼1

blbm�l

þ ð1� KÞ
3K� 2

Xm�1
r¼2

Xr�1
l¼1

blbr�lbm�r ¼ 0; m P 3: ð2:38Þ

For K ¼ 0, (2.38) takes the form

ðm2 � 1Þbm �
3

2

Xm�1
l¼1

blbm�l �
1

2

Xm�1
r¼2

Xr�1
l¼1

blbr�lbm�r ¼ 0; m P 3;

ð2:39Þ
with b1 arbitrary and b2 ¼ b21
2
. The solution of (2.39) is easily

found to be proportional to a constant k, explicitly

bm ¼ �2
b1
2

� �m

ð2:40Þ

Using (2.40) in (2.12), w may be expressed in closed form as

w ¼ 2bg

1� bg
; b ¼ b1

2
> 0: ð2:41Þ

Again, it can be shown that the closed form (2.41) is valid over
the entire region �1 < n <1.

For a physical solution we take the plus sign in (2.41); this
means we have chosen the minus sign for k1 in (2.34) and using
the scaling in (2.37) with K ¼ 0, the final result uðx; tÞ of the
class (1.1) for n ¼ 2 and b ¼ 0, using (2.4), (2.13) and (2.36),
takes the form

uðx; tÞ ¼ �
ffiffiffi
3

a

r
tanh

ffiffiffiffiffiffiffi
�1
2c

s
ðx� ctÞ þ d

" #
; d ¼ 1

2
ln

1

b

� �
:

ð2:42Þ
Also, if we have taken the plus sign in (2.34) and (2.41), follow-

ing the above analysis, the final solution of (1.1) becomes

uðx; tÞ ¼
ffiffiffi
3

a

r
2� tanh

ffiffiffiffiffiffiffi
�1
2c

s
ðx� ctÞ þ d

" #( )
: ð2:43Þ

We again, take the minus sign in (2.41) and the plus sign for k1
in (2.34), straightforward, then the final solution uðx; tÞ of (1.1)
takes the form

uðx; tÞ ¼
ffiffiffi
3

a

r
coth

ffiffiffiffiffiffiffi
�1
2c

s
ðx� ctÞ þ d

" #
; ð2:44Þ

Furthermore, we have taken the minus sign in (2.34) and (2.41)
and by the same work, the final solitary wave solution of the
class (1.1) for n ¼ 2 and b ¼ 0, therefore reads

uðx; tÞ ¼ �
ffiffiffi
3

a

r
2� coth

ffiffiffiffiffiffiffi
�1
2c

s
ðx� ctÞ þ d

" #( )
; ð2:45Þ

where d ¼ 1
2
ln 1

b

	 

; a and c are defined in (2.2).

Case 3: n ¼ 1; b – 0:
for the case n ¼ 1 and b – 0, (2.5) takes the form

ðak1 � 1Þ/þ a
2
/2 þ b/0 þ c/00 þ k1

a
2
k1 þ K� 1

� �
¼ 0:

ð2:46Þ
Clearly, the linear part of (2.46) has exponential solutions

exp ½�kðb; cÞn� for two different values k1 and k2, where

k1;2 ¼
1

2c
½b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4cð1� ak1Þ

q
�

¼ 1

2c
½b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4cð2K� 1Þ

q
�; ð2:47Þ

with

c >
�b2

4ð2K� 1Þ ; ð2:48Þ

as a sufficient condition, if and only if the /-independent part
in (2.46) is set equal to zero, i:e:,

k1 ¼
2

a
ð1� KÞ; ð2:49Þ

which is the same Eq. (2.9) for the case n ¼ 1 and b ¼ 0.
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Using (2.47) and (2.49), the transformed Eq. (2.46) becomes

ð1� 2KÞ/þ a
2

/2 þ b/0 þ c/00 ¼ 0: ð2:50Þ

where use has been made of Cauchy’s rule [20], for the double

product appearing in the nonlinearity /2. Since k – k1 – k2, it
follows from (2.51) with (2.47) that b1 ¼ 0. [The degenerate
case k1 ¼ k2; i:e:; 4cð2K� 1Þ ¼ �b2, is still under investiga-

tion.] For a nontrivial solution built up of the mixing of the
two decaying exponentials g1;2 ¼ exp ð�k1;2nÞ as

X1
m¼1

m2k2 � b
c
mk� ð2K� 1Þ

c

� �
bmg

m

þ ð2K� 1Þ
c

X1
m¼2

Xm�1
r¼1

brbm�rg
m ¼ 0; ð2:51Þ

where use has been made of Cauchy’s rule [20], for the double

product appearing in the nonlinearity /2. Since k – k1 – k2, it
follows from (2.51) with (2.47) that b1 ¼ 0. [The degenerate
case k1 ¼ k2; i:e:; 4cð2K� 1Þ ¼ �b2, is still under investiga-
tion.] For a nontrivial solution built up of the mixing of the

two decaying exponentials g1;2 ¼ exp ð�k1;2nÞ as

/ðnÞ ¼
X1
m1¼0

X1
m2¼0

bm1m2
gm1
1 ðnÞgm2

2 ðnÞ: ð2:52Þ

We look for two integers l1;2, satisfying

k ¼ k1

l1
¼ k2

l2
; ð2:53Þ

then; we require two coefficients bm to be arbitrary. An obvi-
ous choice is b2 and b3, so that, from (2.51), the conditions

4k2 � 2b
c

k� 2K� 1

c

� �
¼ 0; ð2:54Þ

9k2 � 3b
c

k� 2K� 1

c

� �
¼ 0; ð2:55Þ

must be fulfilled. Solving for c and k in terms of b, we get

c ¼ �6b2

25ð2K� 1Þ ; ð2:56Þ

k ¼ �5
6b
ð2K� 1Þ: ð2:57Þ

Hence, using (2.56) and (2.57) in (2.47), it follows from (2.53)

that

l1 ¼ 2; l2 ¼ 3; ð2:58Þ

as expected on the basis of our choice (g1 ¼ g2 and g2 ¼ g3).
Hence,

k1 ¼
5

3b
ð1� 2KÞ; k2 ¼

5

2b
ð1� 2KÞ: ð2:59Þ

Also, from (2.56) and (2.57), we obtain

k ¼ b
5c
: ð2:60Þ

So that, the second and third harmonics of g build up the final
general solution of solitary waves of the class (1.1) for n ¼ 1,

through harmonic generation and mixing. The recursion rela-
tion following from (2.51) may, in this case, be expressed

canonically as

ðm� 2Þðm� 3Þbm � 6
Xm�1
r¼1

brbm�r ¼ 0; m P 2; b1 ¼ 0;

ð2:61Þ

from which the general structure of bm may be calculated as [16]

bm ¼ ð�1Þmþ1ðm� 1Þbm; b ¼ �b3
2b2

> 0: ð2:62Þ

Using (2.62) in (2.12), w may be expressed in closed form as

w ¼ � bg

1þ bg

� �2

; �1 < bg < 1: ð2:63Þ

So that with (2.4), (2.49) and (2.63) after de-normalization
using (2.11), the closed form solution f may be written as

f ¼ 2

a
ð1� KÞ þ 2

a
ð1� 2KÞ bg

1þ bg

� �2

: ð2:64Þ

By reasoning as in the case b ¼ 0, it may be readily verified
that (2.64) represents a valid solution over the entire region
�1 < n <1. The final solution uðx; tÞmay now be expressed,

using 2.47, 2.13 and 2.64, as

uðx; tÞ ¼ fðx� ctÞ

¼ 2

a
ð1� KÞ þ 1

2a
ð2K

� 1Þ 1� tanh
1

2

b
5c

� �
ðx� ctÞ þ d

� �� �2

; ð2:65Þ

where d ¼ 1
2
ln 1

b

	 

defines an arbitrary constant phase shift, a; b

and c are defined in (2.2).

As special case of (2.65), note that if K ¼ 1, the solution of
the class (1.1) takes the form [16]

uðx; tÞ ¼ 1

2a
1� tanh

1

2

b
5c

� �
ðx� ctÞ þ d

� �� �2

; d ¼ 1

2
ln

1

b

� �
:

ð2:66Þ

In retrospect, note that the series (2.12), with (2.62), may be
re-expressed as

wðnÞ ¼
X1
m1¼0

X1
m2¼0

bm1m2
gm1
1 ðnÞg

m2
2 ðnÞ; ð2:67Þ

with

g1 ¼ g2; g2 ¼ g3; ð2:68Þ

and

b10 ¼ b2; b01 ¼ b3; b20 ¼ b4 ¼ �3b22; b02 ¼ 3b32;

b11 ¼ b5 ¼ �2b2b3; b30 ¼ �
b23
2
; etc:; ð2:69Þ

which is analogous to (2.52), demonstrating mixing between g1
and g2 as in [16], for n ¼ 1.

Case 4: n ¼ 2; b – 0:
We derive here the solutions of solitary waves of the class

(1.1) for the case n ¼ 2 and b – 0, thus (2.5) becomes

ðak21� 1Þ/þ ak1/
2þ a

3
/3þb/0 þ c/00 þk1

a
3
k21þK� 1

� �
¼ 0;

ð2:70Þ
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which has two real solutions, exp ½�k1;2ðb; cÞn�, for its linear

part, if

k1
a
3
k21 þ K� 1

� �
¼ 0: ð2:71Þ

For k1 ¼ 0, (2.70) takes the form [16]

�/þ a
3

/3 þ b/0 þ c/00 ¼ 0: ð2:72Þ

Real solutions of the linear part of (2.72) may be represented

as exp ðk1;2nÞ in which

k1;2 ¼
1

2c
ðb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4c

q
Þ; ð2:73Þ

with

c >
�b2

4
; ð2:74Þ

as a sufficient condition.

We next substitute (2.27), (2.12) and (2.13) into (2.72) to get
the recursion relation

X1
m¼1

m2k2 � b
c
mk� 1

c

� �
bmg

m þ 1

c

X1
m¼3

Xm�1
r¼2

Xr�1
j¼1

bjbr�jbm�rg
m ¼ 0:

ð2:75Þ

It can be shown [16] that the choice

c ¼ 2b2

9
; ð2:76Þ

k ¼ �3
2b

; ð2:77Þ

ensures the commensurability expressed by (2.53) with

k1 ¼ k; k2 ¼ 2k; ð2:78Þ

so that the second and third harmonics of g, which are legiti-
mate solutions of the linear part of (2.72), build up the final
solitary wave solution through harmonic generation and mix-

ing. Also, from (2.76) and (2.77), we get

k ¼ b
3c
: ð2:79Þ

The recursion relation following from (2.75) may, in this case,
be expressed canonically as

ðm� 1Þðm� 2Þbm � 2
Xm�1
r¼2

Xr�1
j¼1

bjbr�jbm�r ¼ 0; m P 3;

ð2:80Þ

fromwhich the general structure of bm, may be calculated as [16]

bm ¼ �ð�1Þmþ1bm; b ¼ �b2
b1

> 0: ð2:81Þ

Using (2.81) in (2.12), w may be expressed in closed form as

w ¼ � bg

1þ bg
; �1 < bg < 1: ð2:82Þ

For the same reasons as in the preceding case (n ¼ 1), it may be
readily verified that (2.82) represents a valid solution over the

entire region �1 < n <1. The final solution for f, and hence
for u, after de-normalization using (2.27) therefore reads
uðx; tÞ ¼ fðx� ctÞ

¼ � 1

2

ffiffiffi
3

a

r
1� tanh

1

2

b
3c

� �
ðx� ctÞ þ d

� �� �
; ð2:83Þ

where d ¼ 1
2
ln 1

b

	 

, which is defined as before, a; b and c are de-

fined in (2.2).

For k2
1 ¼ 3

a ð1� KÞ, following the analysis for the case n ¼ 1
and b – 0, the linear part of (2.70) has two real exponential
solutions exp ð�knÞ for two different values k1 and k2, where

k1;2 ¼
1

2c
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4cð1� ak21

q
Þ

� �

¼ 1

2c
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4cð3K� 2Þ

q� �
; ð2:84Þ

with

c >
b2

4ð2� 3KÞ ; K –
2

3
; ð2:85Þ

as sufficient conditions, and (2.70) becomes

ð2� 3KÞ/� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

a
ð1� KÞ

r
/2 þ a

3
/3 þ b/0 þ c/00 ¼ 0: ð2:86Þ

We perform the scaling

/ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

að1� KÞ

s
w; ð2:87Þ

and, therefore, substitute the expansion (2.12) into the
re-scaled non-linear equation. This yields

X1
m¼1

m2k2�b
c
mkþð2� 3KÞ

c

� �
bmg

mþ 3ð1�KÞ
c

X1
m¼2

Xm�1
r¼1

brbm�rg
m

þð1�KÞ
c

X1
m¼3

Xm�1
r¼2

Xr�1
j¼1

bjbr�jbm�rg
m ¼ 0; ð2:88Þ

where use has been made of Cauchy’s rule [20], for the double
product and for the triple product appearing in w2 and w3,
respectively.

It follows from (2.88) with (2.84) that b1 ¼ 0, where

k1 – k2. [The degenerate case k1 ¼ k2, i.e., 4cð2� 3KÞ ¼ b2 still
under investigation.] For same reasons as in the preceding case
(n ¼ 1), we require two coefficients bm to be arbitrary. An obvi-

ous choice is b2 and b3, so that, from (2.88), the conditions

4k2 � 2b
c

kþ ð2� 3KÞ
c

¼ 0; ð2:89Þ

9k2 � 3b
c

kþ ð2� 3KÞ
c

¼ 0; ð2:90Þ

must be fulfilled. Hence, it follows that

c ¼ 6b2

25ð2� 3KÞ ; ð2:91Þ

k ¼ 5ð2� 3KÞ
6b

: ð2:92Þ

From (2.91) and (2.92), we get

k ¼ b
5c
: ð2:93Þ

It follows from (2.53), and by using (2.91) and (2.92) in (2.84),

we have

l1 ¼ 2; l2 ¼ 3: ð2:94Þ
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Therefore, we get

k1 ¼ 2k; k2 ¼ 3k: ð2:95Þ

The recursion relation following from (2.88) may in this case,
be expressed canonically as

ðm� 2Þðm� 3Þbm þ
18ðK� 1Þ
3K� 2

Xm�1
r¼1

brbm�r

þ 6ðK� 1Þ
3K� 2

Xm�1
r¼2

Xr�1
j¼1

bjbr�jbm�r ¼ 0; m P 3: ð2:96Þ

For K ¼ 0, (2.96) takes the form

ðm� 2Þðm� 3Þbm þ 9
Xm�1
r¼1

brbm�r þ 3
Xm�1
r¼2

Xr�1
j¼1

bjbr�jbm�r ¼ 0;

m P 3; b1 ¼ 0: ð2:97Þ

From (2.97), we can calculate the first few coefficients bm,
leading to

b4 ¼
�9
2

b22; ð2:98Þ

b5 ¼ �3b2b3; ð2:99Þ

b6 ¼
13

2
b32 �

3

4
b23; ð2:100Þ

etc., but it is very hard to speculate on that the explicit form of
bm will be. We remark that regarding (2.98)–(2.100), one may

expect an alternation sign in successive bm if b2 and b3 have
opposite signs. Furthermore, since b1 ¼ 0, then m� 1 is a fac-
tor in bm.

Finally, note that if bm is a solution of (2.97) then bmb
m, with

b > 0 and constant, is also a solution of the same recursion rela-
tion. Taking all this into account, the form of bm must be

bm ¼ Lð�1Þmþ1ðm� 1Þbm: ð2:101Þ

Now, the constants L and b which both may depend on b2 and
b3, must be determined. In order to calculate b and L, it follows

readily from (2.101) expressed for m ¼ 2 and m ¼ 3, provided

b ¼ �b3
2b2

> 0; L ¼ �4b
3
2

b23
: ð2:102Þ

Next, we obtain L ¼ 2
3
for m ¼ 4 after substituting (2.101) into

(2.97). Hence, we have

b32 ¼
�b23
6
; ð2:103Þ

and

bm ¼
2

3
ð�1Þmþ1ðm� 1Þbm: ð2:104Þ

After substituting (2.104) into (2.12) and application of the
formula for the binomial series

X1
m¼2

2

3
ð�1Þmþ1ðm� 1Þym ¼ �2

3

y

1þ y

� �2

; jyj < 1; ð2:105Þ

wðnÞ can be re-expressed in closed form:

w ¼ �2
3

bg

1þ bg

� �2

; �1 < bg < 1: ð2:106Þ
So that with (2.4), (2.34) (2.106) for K ¼ 0 after de-normaliza-

tion using (2.87), the closed form solution f may be written as:

f ¼ �
ffiffiffi
3

a

r
� 2

3

ffiffiffi
3

a

r
bg

1þ bg

� �2

: ð2:107Þ

By reasoning as before, it may be readily verified that (2.107)
represents a valid solution over the entire region �1 <
n <1. The final solution of the class (1.1) (for n ¼ 2 and
b – 0) for f, and hence for u, using (2.13) and (2.93), therefore
reads

uðx; tÞ ¼ fðx� ctÞ ¼�
ffiffiffi
3

a

r
� 1

6

ffiffiffi
3

a

r

1� tanh
1

2

b
5c

� �
ðx� ctÞþ d

� �� �2

; ð2:108Þ

where d ¼ 1
2
ln 1

b

	 

defines an arbitrary constant phase shift, a, b

and c are defined in (2.2)

Conclusion

In this work, we have found the general solutions of the class
(1.1) for n ¼ 1 and for n ¼ 2 using a direct algebraic method
[4]. These solutions are obtained with the relationship between

the coefficients which have given in (2.2) of the present class.
When b ¼ 0 in (2.5) for the case n ¼ 1 (using (2.7)), the general
solution uðx; tÞ given in (2.17) contains a constant term and a
sech2-type term, both of which are individually solutions of the

class (1.1). This solution, may therefore be visualized as the
superposition of two particular solutions given in (2.18) and
(2.19) of (1.1), and names the sech2 and tanh2 solutions. Fur-

thermore, the solutions (2.18) and (2.19) reduced to the other
solutions (2.21) and (2.22) of the KdV Eq. (1.3) [17,18], which
as the special case of (1.1).

Also, for n ¼ 2 with b ¼ 0 in (2.5), exact solutions of (1.1)
given in (2.32) and (2.42)–(2.45). These solutions called the
well-known sech and ’well’-type (tanh or coth) solutions. The

special case of (2.32) given in (mKdV: sech) (2.33) [17,19] of
the mKdV Eq. (1.7).

Moreover; for the case n ¼ 1 and b – 0 in (2.5), the general
solution u of (1.1) given in (2.65) contains a constant term and

a ’well’-type ð1� tanh Þ2 term, and the special case of (2.65)
reduced to the solution (2.66) [16] for the class (1.1). Also,
for n ¼ 2 with b – 0, the solution u of (1.1) given in (2.83)

for the constant term k1 ¼ 0 in (2.70) and this solution is
nothing else than the (1� tanh)-type solution of [16]. Finally;
for n ¼ 2 and b – 0, and using (2.34), the solution of (1.1)

given in (2.108).
As a collection, the general solutions which are studied of

(1.1) when n ¼ 1; 2 for b ¼ 0 or b – 0 (using a direct algebraic

method) are obtained, having a constant term in their expan-
sion into real exponentials. These solutions and others (any
particular solution) of the class (1.1) are of pulse-type or of
kink-type solutions with an arbitrary constant phase shift.
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