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Abstract Generalized forms of exact solitary wave solutions of the class (1.1) are investigated. The
analysis rests mainly on the standard a direct algebraic method. The most general solutions are
obtained, possibly having a constant term in their expansion into real exponentials. These solutions
of the class (1.1) are performed under certain conditions for the relationship between the coefficients
of the nonlinear, dispersive and dissipative terms. The analytical solutions of this class are of pulse-type
and of kink-type solitary wave solutions and they are obtained with an arbitrary constant phase shift.
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1. Introduction

A vast variety of the powerful and direct methods to find all
kinds of analytic solutions of partial differential equations
(PDEs) have been developed. Among these are Hirota’s bilinear
technique [1], inverse scattering transform [2], Painleve expan-
sions [3], direct algebraic method (the direct real-exponential
method) [4], Biacklund transformation method [1] and so on.
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Among these, a direct algebraic method [4], it can be used
to investigate nonlinear dispersive and dissipative problems
for obtaining the solutions of solitary waves. This method rep-
resents the solutions as infinite series in real exponentials that
satisfy the linearized equations. The coefficients of these series
satisfy the nonlinear recursion relations and the series is then
summed in closed form and the exact solitary wave solutions
are obtained.

In this paper, we consider the class of third order nonlinear
dispersive dissipative PDEs of the form

u, +u, + aju"u, + aru"u, + azite + agu + asiy,; + dgllyy
+ a7uyy + agltyy + Aoty = 0, (Ll)

in which @;(i=1,2,...,9) are real constants and u(x,?) is a
real scalar function defined for all (x,7) € R x 1 , where ¢
denotes a real variable in the interval 7 = (0, 00). We shall here
and henceforth, assume that u(x, ) is continuous for all values
of its respective arguments and that the various partial deriva-
tives of u with respect to x and ¢ exist and are continuous.

For n = 1; the class (1.1) incorporates the Korteweg-de
Vries (KdV) equations without dissipative terms [2,5,6]:


mailto:abdel_razek555@yahoo.com
http://dx.doi.org/10.1016/j.joems.2011.12.001
http://dx.doi.org/10.1016/j.joems.2011.12.001
http://www.sciencedirect.com/science/journal/1110256X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Solitary wave solutions for a certain class of nonlinear differential equations 127

U; + Uiy + Uxxx = 07 (12)
Uy + puldy + Uyyy = Oa (13)
U + putt, — ptdye = 0, (14)

and their alternatives. Also this class contains the KdV
equation with a dissipative term or the KdV-Burgers (KdVB)
equation [7]:

u, + puu, + qu,, — pity, =0, (1.5)

and its alternatives, where p, ¢ and yu are real constants.
For n=2; this class, also incorporates the modified
KdV(mKdV) equations [5,8]:

Uy + 12U + Uy = 0, (1.6)
U+ pru, + e = 0, (1.7)
and their alternatives.

Also, the class (1.1) contains mKdV B equation [7]:
Uy + pUie + qu — fid = 0, (1.8)

and its alternatives, where p,¢ and u are defined as before.
These Egs. (1.2) and (1.8) and their alternatives are widely used
to describe complex phenomena in various fields of science,
especially in physics, as solid-states physics [9], fluid dynamics
[10] and plasma physics [11].

According to the well-known KdV Eq. (1.1) [6], which is spe-
cial case of the class (1.1), is a nonlinear PDE that models the
time-dependent wave motion in one space dimension in media
with nonlinear wave steepening and dispersion, such as shallow
water waves and ion acoustic plasma waves. The pioneering
study in [6], showed that when nonlinear wave steepening, from
the term uu,, is balanced by wave dispersion, owing to the term
Uy, their equation predicts a unidirectional solitary wave, that
is a pulse which moves in one direction with a permanent shape
and a constant speed . Also, the Egs. (1.3), (1.4), (1.6) and (1.7)
have pluse — type solitary wave solutions. But the Egs. (1.5) and
(1.8) have kink-type solutions of the solitary waves.

The first and well-known alternative to the KdJV equation,
was derived in [12], that is Regularized Long Wave (RLW)
equation:

(1.9)

where p is defined as before. Other alternative to the KdV
equation was established in [13]:

Uy + Uy + Uy — Ul = 07

(1.10)

this equation is called the Equal Width (EW) equation and it
can be easily transformed into (1.8) by the transformation
u — u + 1, and therefor, both (1.9) and (1.10) have very similar
analytical solitary wave solutions.

Furthermore, the class (1.1) that contains two general types
of RLW equations, established in [14]. The first type of RLW,
is the generalized Equal Width (gEW) equation without dissi-
pative term:

Uy + Uy — flyy = 0>

U + pu'uy — pitey = 0, (11 1)

in which the solitary wave of the pulse-type solution. The sec-
ond type of RLW, is the generalized EW-Burgers (gEWB)
equation with a dissipative term:

u, + pu'u, — qu,., — iy =0, (1.12)

and the solution of this case of a kink-type. These alternatives
to the KdV equations are propose on the basis that their

dispersive and dissipative properties are physically and mathe-
matically preferable to these of the KdJ equations.

The purpose of this paper, is to find the general solutions of
the class (1.1) for n = 1 or n = 2, by a direct algebraic method.
However, these solutions of this class may have a constant term
in their expansion into real exponentials. In [15,16], we obtained
particular solitary wave solutions of the class (1.1) forn = 1 and
for n = 2; where, we neglected the integration constant to look
only for solutions without the constant term in their expansion.
Moreover, those solutions which have obtained of pulse-type
and kink-type solutions with an arbitrary constant phase shift.

2. General solutions of the class (1.1)

In this section we demonstrate how to construct solutions of
the class (1.1), using a direct algebraic method [4], that contain
a constant term in their expansion into real exponentials. To
obtain the stationary solutions for the class (1.1), we introduce
a traveling frame of reference ¢ = x — ¢t to transform the
PDEs of (1.1) into an ODE in f(¢) = u(x, 1):

—fr+of"f" + Bf" +f" =0, (2.1)
where
oc:al fazc’ ﬁ:a37a4c+a5627

c—1 c—1

_ag—act agc? — ayc? 7 (22)

c—1

in which ¢ # 1 is the anticipated traveling wave velocity, and
the derivatives are performed with respect to the co-ordinate
. Integrating (2.1) once with respect to &, to get

S S B K =0, (23)

where k| K is an integration constant As we shall see below, the
purpose of this integration constant is to facilitate exponential
solutions for the linear part of the transformed equation in ¢:

f=ki+¢, (2.4)

where k; is a constant. Indeed, substitution of (2.4) in ((2.3)
yields

¢+ ﬁ (ki + @) 4+ B +79¢" +h(K—1)=0.  (2.5)
Case l:n=1,=0:
For the case n =1 and f§ = 0, (2.5) takes the form
(aki = 1)+ 28>+ 96" + ki (Ski + K= 1) =0, (2.6)
2 2
if
1
c= 2 (a4 +4/a — 4(13(15>7 (2.7)

as a sufficient condition.

The linear part of (2.6) (i.e., for « = 0 with ¢ = @;/a,) has
two real exponential solutions of the form exp [£A(y)¢] with
(2.8)

1 1
P=—(1—ok)=-2K-1)

Y Y
if and only if the ¢-independent part in (2.6) is set equal to
zero; i.e.,

2

| ==
o

ki ==(1-K). (2.9)
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Using (2.8) and (2.9), the transformed Eq. (2.6) becomes
(1 72K)¢+%¢>2+“/¢”:0. (2.10)

We now seek stationary solutions of ¢ in terms of the harmon-
ics of, say, decaying exponentials. To this end, we scale ¢
according to

¢——(2K— D,

and expand  in terms of the harmonics of the decaying expo-
nential solution to the linear equation:

Y=2 bug"(9)

8(8) = exp(—1). (2.13)
We next substitute Eqs. (2.11)—~(2.13) into (2.10), to get the
recursion relation

(2.11)

(2.12)

m—1

(M = Dby + > by =0, m > 2,
1=0

(2.14)

and b; arbitrary, where use has been made of Eqgs. (2.8) and
(2.9) to simplify. The b/ s are then given by our paper [15]:

by

by = 6m(—1)"""b", (b:€7 b]>07m:1,2,3,...).

(2.15)

So that with (2.4), (2.9), (2.11) and (2.12), the closed form
solution f may be written as:

20 2ok 1%
f (l )+a(2K ])(I—Q—bg)z.

Note that the closed form (2.16) for f has been built up from a
convergent power series of decaying exponentials g(&) for
bg <1 (i.e., in the region & > &), & =12). However (2.16) is
also expressible as a convergent power series in ;- for bg > 1
(i.e., in the region & < &;), where 1 ( exp (A€)) is a (bounded)
rising exponential solution to the linear equation. Since
(2.16) is continuous at bg = 1, it is therefore, a valid solution
over the entire region —oo < & < oco. Physically speaking, this
means that the solution in the region ¢ > & (built up from
harmonics of decaying exponentials) provides the boundary
conditions for the solution in region ¢ < &, (built up from
harmonics of rising exponentials) ensuring continuity at
& = ¢, The final solution u(x, ) may now be expressed, using
(2.8), (2.13) and (2.16) as

u(x, 1) zg(l -K)
3

(2.16)

~(2K — 1)sec ch?| = (2K_1) (x—ct) + 4|,

Y
where 6(= % In 1—1)) represents an arbitrary constant phase factor,
o and y are defined in (2.2).

As special cases of (2.17), note that the choice of the con-

stant K as 1 and 1, respectively, lead to the sech’ solution
[15] for the class (1.1):

(2.17)

u(x,t) = ésechz {2\/_( —ct)+ 5} , (2.18)
and a new-type of tanh? solution:
u(x, 1) = 3 tanh2 {2\/_ (x —ct) + 5} (2.19)

where o,y > 0 and ¢ are defined as before.

Moreover; if uﬂuf— n=1,a,=p and ¢;,=0,(i=2,3,
4,5,7,8,9), then (1.1) reduced to the KdV Eq. (1.3) [17,18].
Hence, from (2.2), we get

p 1

o=, ﬁ:()v V:_>0>

. . (c>0).

(2.20)

Using (2.20) in (2.18) and (2.19), respectively, lead to the well-
known sech? solution of the KdV Eq. (1.3) [17,18]

u(x, 1) = sech? {‘/75 (x —cf) + 5} , (2.21)
and a ‘well’-type tanh® solution

3¢ 51 —c
u(x, 1) = Etanh {51 /7(x —ct)+ 5] . (2.22)

In passing, it is interesting to observe that the solution u(x, 7)
in (2.17) contains a constant term and a sech’type term, both
of which are individually solutions of the class (1.1). The gen-
eral solution u, given by (2.17), may therefore be visualized as
the superposition of two particular solutions of (1.1) of appro-
priate amplitudes which are now locked together with a differ-

ent velocity (2-1), where ;- is the velocity of the free

(associated) solutions of the class (1.1), forn =1 and = 0.
Case 2: n=2,=0:
Following the above analysis, we derive here the solitary
wave solutions of the class (1.1), for n =2 and f =0 under
the sufficient condition (2.7), thus (2.5) becomes

(o — 1)¢>+o¢k1¢2+§¢3 +y¢”+kl<§k§+1<_ 1) - 0.

(2.23)
The linear part of (2.23) has exponential solutions
exp[£A(y)¢]. if
ki (%kf Iy 1) =0. (2.24)
For k; =0, (2.23) takes the form [15]
—p+ %dﬁ +9¢" =0. (2.25)
In this case, we find
1

A=—, y>0. 2.26

7 (2.26)
Hence, we perform the scaling

. 3

f=¢= \/;lﬁ, o> 0. (2.27)

Next, we use (2.27), (2.12), (2.13) and (2.8) into (2.25) to get
the recursion relation

(m* — 1)b,, +

-

blbr Ibm r= Oa m = 37
1

(2.28)

||
[N}
T

where b, arbitrary and b, =0, from which the general
structure of b,, may be calculated as [15]

b =0, (2.29)

(7 1 )mb%erl

T m=123,.

(2.30)

b 2m+1 =
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Using (2.29) and (2.30) in (2.12),  may be expressed in closed
form as

_ 2V2bg(é) _ b
%(5)—71+b2g2(£), b_2\/§>0'

(2.31)
By reasoning as in n = 1, it may be readily verified that (2.31)
represents a valid solution over the entire region —oco < ¢ <
00. The final solution for yy and hence for u, after de-normaliza-
tion using (2.27), we obtain the solitary wave solution

u(x, 1) = \/gsech {(X \;;t) + 5} )

where 6 = In(}), defines an arbitrary constant phase shift.

We have thus constructed the solitary wave solution (2.32)
of the class (1.1) for n =2, # = 0 and for k; = 0. From a phys-
ical point of view, it is interesting to realize that a sech solution
in (2.32) is only built up of odd harmonics of the fundamental
function g, these obviously being the only ones to be generated
by a cubic non-linearity.

As special case of (1.1), if u — uz—l, n=2 a =p and
a;=0,(i=2,3,4,5,7,8,9), then (1.1) reduced to the mKdV
Eq. (1.7) [17,19]. Therefore, from (2.2) we have to obtain on
the same of (2.20).

Using (2.20) in (2.32), leads to the well-known sech solution
of the mKdV Eq. (1.7) [17,19]

(2.32)

1
u(x, 1) = \/%sech[\/g(x —ct)+d], d=In <E> (2.33)
For ki =2 (1 — K), this implies that
3
k| = ;(1 —K) (2.34)
and (2.23) becomes
3
(2-3K)¢ £/ (1 —K)¢2+§¢3+yq>”:0. (2.35)
Next, we obtain
1
2= S (3K -2). (2.36)
For mathematical convenience, we introduce the scale
3
¢ = &(1 — K. (2.37)

We use the scale transformation (2.37), and we substitute the
series expansion for i into the resulting equation. This yields

m—1
( l)bmi 3( Zbl m—[

m—1 r—

blbrflbmfr = 07 m = 3.
1

(2.38)

r=2 I

For K =0, (2.38) takes the form

3 m—1 1 m—=1 r—1
(l’}12 — ])bm F E Zblbm—l - E blbr—lbm—r = 07 m 2 37
=1 r=2 I=1

(2.39)

with b; arbitrary and b, = % The solution of (2.39) is easily
found to be proportional to a constant k, explicitly

bl m
e

Using (2.40) in (2.12), yy may be expressed in closed form as

2bg b]
b=""0.
TFbg’ 27

Again, it can be shown that the closed form (2.41) is valid over
the entire region —oo < & < oo.

For a physical solution we take the plus sign in (2.41); this
means we have chosen the minus sign for k; in (2.34) and using
the scaling in (2.37) with K = 0, the final result u(x, ) of the
class (1.1) for n =2 and f =0, using (2.4), (2.13) and (2.36),

takes the form
1 1

u(x, 1) = —\/gtanh [\/—z—j(v —ct)+ 9],
(2.42)

Also, if we have taken the plus sign in (2.34) and (2.41), follow-
ing the above analysis, the final solution of (1.1) becomes

u(x, ) = \/%{2 — tanh [\/;:;(x —ct)+0 } (2.43)

We again, take the minus sign in (2.41) and the plus sign for k,
in (2.34), straightforward, then the final solution u(x, ¢) of (1.1)
takes the form

u(x,1) = \/gcoth [1 l;—yl(x —ct)+0|,

Furthermore, we have taken the minus sign in (2.34) and (2.41)
and by the same work, the final solitary wave solution of the
class (1.1) for n =2 and = 0, therefore reads

u(x, ) = —\/i{2 — coth {\/Zfl(x —ct)+9 }, (2.45)

where 6 =1 In (}),o and y are defined in (2.2).
Case3:n=1,+#0:
for the case n =1 and f§ # 0, (2.5) takes the form
(ki = 1) +26" + ' +7¢" + s (S + K= 1) = 0.
(2.46)

Clearly, the linear part of (2.46) has exponential solutions
exp [£A(B, y)¢] for two different values ; and 4,, where

b= L p s o
1 2
zz—y[ﬁ:t A/ B+ 42K —1)],

with
2
> 7’87
42K 1)

(2.40)

Y= (2.41)

(2.44)

(2.47)

(2.48)
as a sufficient condition, if and only if the ¢-independent part
in (2.46) is set equal to zero, i.e.,

kl :7(1 7K)7

: (2.49)

which is the same Eq. (2.9) for the case n =1 and = 0.
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Using (2.47) and (2.49), the transformed Eq. (2.46) becomes

(1 =2K)p+3 ¢+ p¢/ + 79" = 0. (2.50)
where use has been made of Cauchy’s rule [20], for the double
product appearing in the nonlinearity ¢*. Since A # 1, # A,, it
follows from (2.51) with (2.47) that by = 0. [The degenerate
case A = Jo,ie.,4y(2K —1) = —f, is still under investiga-
tion.] For a nontrivial solution built up of the mixing of the
two decaying exponentials g, , = exp (—4,,¢) as

[ 1>] »
=1 7 Y
(2K 1) Zx:

m=2 r=I

m—1

bi’ nm— lg’” (2.51)

where use has been made of Cauchy’s rule [20], for the double
product appearing in the nonlinearity ¢°. Since 4 # 1, # A, it
follows from (2.51) with (2.47) that b; = 0. [The degenerate
case A = Jo,ie.,4p(2K — 1) = —f, is still under investiga-
tion.] For a nontrivial solution built up of the mixing of the
two decaying exponentials g, , = exp (—4,,¢) as

$(&) = Z Z bum& ()52 (). (2.52)
my =0 my=0
We look for two integers /| 5, satisfying
M
A=—=— 2.
Lo h (2.53)

then; we require two coefficients b,, to be arbitrary. An obvi-
ous choice is b, and b;, so that, from (2.51), the conditions

2 2K—1

4% — _ﬂ;L _ (_) =0, (2.54)
Y Y
3 2K —1

9)% — Tﬂz - ( . ) =0, (2.55)
Y )

must be fulfilled. Solving for y and A in terms of f, we get

LB

=550k 1) (2.56)
-5

h=og K= (2.57)

Hence, using (2.56) and (2.57) in (2.47), it follows from (2.53)

that
Lh=2 =3, (2.58)

as expected on the basis of our choice (g, = g*> and g, = g°).
Hence,

5 5
M==—(1-2K), l==—(1-2K). 2.
=31 -20 = gp(1-2K) (2:59)
Also, from (2.56) and (2.57), we obtain
B
A== 2.
s, (260

So that, the second and third harmonics of g build up the final
general solution of solitary waves of the class (1.1) for n =1,
through harmonic generation and mixing. The recursion rela-

.f:§(1 —K)+§(1 —21<)( bg )2,

tion following from (2.51) may, in this case, be expressed
canonically as

(m 2) m 6bem,: 5 m 2 27

(2.61)
from which the general structure of b,, may be calculated as [16]

by

_ (_1\nt] _ m __73
by =(=1)""(m-=1)b", b 3,

> 0. (2.62)

Using (2.62) in (2.12),  may be expressed in closed form as

2
=7< be ), —1<bg<l.
g

So that with (2.4), (2.49) and (2.63) after de-normalization
using (2.11), the closed form solution f may be written as

(2.63)

T (2.64)

By reasoning as in the case f = 0, it may be readily verified
that (2.64) represents a valid solution over the entire region
—00 < & < oo. The final solution u(x, 7) may now be expressed,
using 2.47, 2.13 and 2.64, as

u(x, 1) = flx —cr)

2 1
=—(1-K)+—(2K
L 1=K +5(
1(B :
where 6 = 1 In ( ) defines an arbitrary constant phase shift, o, f§

and y are deﬁned in (2.2).
As special case of (2.65), note that if K = 1, the solution of
the class (1.1) takes the form [16]

u(x, 1) :2_105{1 ~ {anh B (%)(x—cz)JraHz,a—%ln G)

(2.66)

In retrospect, note that the series (2.12), with (2.62), may be
re-expressed as

00

Z E bl”]l?‘l’)gll”] n12 (&:)’ (2'67)
my=0 my=0
with
g =g &=g, (2.68)
and
bio=by, by =bs, by =by=-3b, by =23b,
B
by = bs = =2bybs, by =—=2, etc., (2.69)

27

which is analogous to (2.52), demonstrating mixing between g,
and g, as in [16], for n = 1.

Case 4 n=2,%#0:

We derive here the solutions of solitary waves of the class
(1.1) for the case n =2 and f # 0, thus (2.5) becomes

(o} = 1)k 7 +5.6" + B+ 70" + K (3

Sk + K1) =0,

(2.70)
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which has two real solutions, exp[+4,,(f,7)&], for its linear
part, if

ki (§k§+1<—1) =0. (2.71)
For k; =0, (2.70) takes the form [16]
—p+3¢" + B¢ +7¢" = 0. (2.72)

Real solutions of the linear part of (2.72) may be represented
as exp (412¢) in which

1
212 :2—y(ﬁj: B +4y), (2.73)
with

2
y > %, (2.74)

as a sufficient condition.
We next substitute (2.27), (2.12) and (2.13) into (2.72) to get
the recursion relation

00 oo m—1 r—1
Z (mz)“z - EM}“ - l) bmgm +1 Z b/-b,__,-bm,,.gm =0.
m=1 v v v m=3 r=2 j=I1
(2.75)
It can be shown [16] that the choice
25
y=— 2.76
=5 (2.76)
-3
A= ﬁ’ (2.77)

ensures the commensurability expressed by (2.53) with

)»1 = j., j.z = 2/17 (278)

so that the second and third harmonics of g, which are legiti-
mate solutions of the linear part of (2.72), build up the final
solitary wave solution through harmonic generation and mix-
ing. Also, from (2.76) and (2.77), we get

B

J=1 .
5 (2.79)

The recursion relation following from (2.75) may, in this case,
be expressed canonically as

m—1 r=1

(m—=1)(m=2)by =2> "> bbby, =0, m >3,

r=2 j=1

(2.80)
from which the general structure of b,,, may be calculated as [16]

—b
h=—2>0.

bm _ i(_l)l17+]bn17 5
1

(2.81)

Using (2.81) in (2.12), ¥ may be expressed in closed form as

PR

= -1 <bg<1.
1+bg’ g

(2.82)

For the same reasons as in the preceding case (n = 1), it may be
readily verified that (2.82) represents a valid solution over the
entire region —oo < ¢ < oo. The final solution for f, and hence
for u, after de-normalization using (2.27) therefore reads

u(x, 1) =flx —ct)

= i;\/i{l — tanh B <3%)(x—cl)+5}}’

where 6 =1 In (1), which is defined as before, o,  and 7 are de-
fined in (2.2).

For k} = 3 (1 — K), following the analysis for the case n = 1
and f§ # 0, the linear part of (2.70) has two real exponential
solutions exp (£A¢) for two different values 4; and 1,, where

Jia :2% [ﬂi VB + 41— ak?)}

(2.83)

1
=5 {ﬂi \/ﬁ2+4«/(31<72)}, (2.84)

with

p 2
/>4(2—3K)’ K#3, (2.85)
as sufficient conditions, and (2.70) becomes

3 / '
(2-3K)p £ m/> (1= K)¢’ +§¢3 LB +9d" =0, (2.86)
We perform the scaling
o== $¢ (2.87)
Vel =K '

and, therefore, substitute the expansion (2.12) into the
re-scaled non-linear equation. This yields

m—1 r—1

) b m=2 r=1
+ (1 — K) i ijbrﬁjbmﬂ'gm = 07

1
y m=3 r=2 j=1

m—1

bl‘bm—rgm

(2.88)

where use has been made of Cauchy’s rule [20], for the double
product and for the triple product appearing in ¥* and y°,
respectively.

It follows from (2.88) with (2.84) that b, =0, where
J1 # J2. [The degenerate case A, = A, i.e., 4p(2 — 3K) = f* still
under investigation.] For same reasons as in the preceding case
(n = 1), we require two coefficients b,, to be arbitrary. An obvi-
ous choice is b, and bs, so that, from (2.88), the conditions

(2 - 3K)

2
4,* —Tﬁuﬁ_q (2.89)
9230, 223K _, (2.90)
Y Y
must be fulfilled. Hence, it follows that
65°
Y= 291
' =252 -3K) @91)
5(2 — 3K)
== 2.92
- (292)
From (2.91) and (2.92), we get
p
l=—. 2.93
- (2.93)

It follows from (2.53), and by using (2.91) and (2.92) in (2.84),
we have

L=2 bL=3 (2.94)
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Therefore, we get

M =24 A =34 (2.95)
The recursion relation following from (2.88) may in this case,

be expressed canonically as

(m — 2) (m — S)bm 3K ) Zb bm —r
6(K m—1 r—1
TIP3 bbby, =0, m > 3. (2.96)
r=2 j=
For K =0, (2.96) takes the form
m—1 m—1 r—1
(m - 2) (m - 3)17/11 +9 Zbrbm—r +3 b/br /bm r= 7
r=1 r=2 j=1
m = 3,b =0. (2.97)

From (2.97), we can calculate the first few coefficients b,,,
leading to

by = _79175, (2.98)
_ —3b2b3, (2.99)
bg = 1231) b§, (2.100)

etc., but it is very hard to speculate on that the explicit form of
b,, will be. We remark that regarding (2.98)—(2.100), one may
expect an alternation sign in successive b, if b, and b; have
opposite signs. Furthermore, since b, = 0, then m — 1 is a fac-
tor in b,,.

Finally, note that if b,, is a solution of (2.97) then b,,b™, with
b > 0 and constant, is also a solution of the same recursion rela-
tion. Taking all this into account, the form of b,, must be

by = L(—=1)""" (m — 1)p". (2.101)

Now, the constants L and b which both may depend on b, and

b3, must be determined. In order to calculate b and L, it follows

readily from (2.101) expressed for m = 2 and m = 3, provided
—bs _ —4b;

(2.102)

Next, we obtain L = 2 for m = 4 after substituting (2.101) into
(2.97). Hence, we hdve

_p?
b} = 73 (2.103)
and

2 m+1 m
b,, = 5(—1) (m—1)b". (2.104)

After substituting (2.104) into (2.12) and application of the
formula for the binomial series

S 2y 1>y"'—2(i)2 pl<1, (2105)
o 3 3 \1+y
Y(&) can be re-expressed in closed form:

-2 /( bg :
S “l<bg<l.
V=73 (1+bg>7 <bgs<

(2.106)

So that with (2.4), (2.34) (2.106) for K = 0 after de-normaliza-
tion using (2.87), the closed form solution f may be written as:

/= \/ \[< +bg)

By reasoning as before, it may be readily verified that (2.107)
represents a valid solution over the entire region —oo <
¢ < oo. The final solution of the class (1.1) (for n =2 and
p # 0) for f, and hence for u, using (2.13) and (2.93), therefore

reads
et |
{1 — tanh {2 (5%) (x—ct)—Q—é} } , (2.108)

where 0 = ‘ In ( ) defines an arbitrary constant phase shift, «, §
and y are deﬁned in (2.2)

(2.107)

u(x, 1) =flx—ct)

Conclusion

In this work, we have found the general solutions of the class
(1.1) for n =1 and for n = 2 using a direct algebraic method
[4]. These solutions are obtained with the relationship between
the coefficients which have given in (2.2) of the present class.
When = 0in (2.5) for the case n = 1 (using (2.7)), the general
solution u(x, r) given in (2.17) contains a constant term and a
sech’-type term, both of which are individually solutions of the
class (1.1). This solution, may therefore be visualized as the
superposition of two particular solutions given in (2.18) and
(2.19) of (1.1), and names the sech? and tanh? solutions. Fur-
thermore, the solutions (2.18) and (2.19) reduced to the other
solutions (2.21) and (2.22) of the KdV Eq. (1.3) [17,18], which
as the special case of (1.1).

Also, for n =2 with =0 in (2.5), exact solutions of (1.1)
given in (2.32) and (2.42)—(2.45). These solutions called the
well-known sech and ’well’-type (tanh or coth) solutions. The
special case of (2.32) given in (mKdV: sech) (2.33) [17,19] of
the mKdV Eq. (1.7).

Moreover; for the case n = 1 and f§ # 0 in (2.5), the general
solution u of (1.1) given in (2.65) contains a constant term and
a “well’-type (1 — tanh)2 term, and the special case of (2.65)
reduced to the solution (2.66) [16] for the class (1.1). Also,
for n =2 with # 0, the solution u of (1.1) given in (2.83)
for the constant term k; =0 in (2.70) and this solution is
nothing else than the (1 — tanh)-type solution of [16]. Finally;
for n=2 and f# 0, and using (2.34), the solution of (1.1)
given in (2.108).

As a collection, the general solutions which are studied of
(1.1) when n = 1,2 for f = 0 or f§ # 0 (using a direct algebraic
method) are obtained, having a constant term in their expan-
sion into real exponentials. These solutions and others (any
particular solution) of the class (1.1) are of pulse-type or of
kink-type solutions with an arbitrary constant phase shift.
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