

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

SHORT COMMUNICATION

Λ -Generalized closed sets in bitopological spaces

A. Ghareeb *, T. Noiri

Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan

Available online 3 February 2012

KEYWORDS

Bitopological spaces; Λ -generalized closed set

Abstract In this paper, we introduce the notion of Λ -generalized closed sets in bitopological spaces. Also, we give some characterizations and applications of it.

© 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction and Preliminaries

Kelly [1] introduced the notion of bitopological spaces. Such spaces are equipped with two arbitrary topologies. Although [1] is beyond any doubt an original and fundamental work on the theory of bitopological spaces, nevertheless it should be noted that both the notion of a bitopological space and the term itself appeared for the first time in a somewhat narrow sense in [2,3] as auxiliary tool used to characterize Baire spaces. For this use, the topologies τ_1 and τ_2 on a set *X*, one of which was finer than the other, were connected by certain other relations as well.

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be λ -closed [4] if $A = L \cap M$, where L is a Λ -set (i.e., L is equal to its kernel)

* Corresponding author.

E-mail addresses: nasserfuzt@aim.com (A. Ghareeb), t.noiri@nifty. com (T. Noiri).

1110-256X @ 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

 $Peer\ review\ under\ responsibility\ of\ Egyptian\ Mathematical\ Society.\ doi:10.1016/j.joems.2011.12.003$

and *M* is a closed set. The λ -closure of *A* is the intersection of all λ -closed sets containing *A* and is denoted by $Cl_{\lambda}(A)$. A subset *A* is called λ -open if $X \setminus A$ is λ -closed. The union of all λ -open subsets of *A* is called the λ -interior of *A* and is denoted by $Int_{\lambda}(A)$. The λ -frontier of *A* [5], denoted by $Fr_{\lambda}(A)$, is defined by $Fr_{\lambda}(A) = Cl_{\lambda}(A) \setminus Int_{\lambda}(A)$. A subset *A* [6] is called Λg -closed if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \lambda O(X, \tau)$.

In 1991, Sundaram [7] introduced the concept of generalized closed sets in bitopological spaces. The notion has been studied extensively in recent years by many topologists. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-gclosed [8] if $\tau_j - Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$ for i, j = 1, 2 and $i \neq j$.

In this paper, we introduce and investigate the notion of Λg -closed sets in bitopological spaces. The relationships with other kinds of sets are given. Also, we give some applications of (i, j)- Λ_g -closed sets.

2. (i,j)- Λ_g -closed sets

Definition 2.1. A subset *A* of a bitopological space (X, τ_1, τ_2) is called an (i, j)- Λ_g -closed (resp. (i, j)- Λ_g -closed, (i, j)-g-closed) if $\tau_j - Cl(A) \subseteq U$ (resp. $\tau_j - Cl_\lambda(A) \subseteq U$, $\tau_j - Cl_\lambda(A) \subseteq U$) whenever $A \subseteq U$ and $U \in \lambda O(X, \tau_i)$ (resp. $U \in \lambda O(X, \tau_i)$, $U \in \tau_i$) for i, j = 1, 2 and $i \neq j$.

Remark 2.2. We have the following implications. None of the implications can be reversed as shown by some examples stated below:

$$\begin{array}{ccc} (i,j)\text{-}\Lambda_g\text{-}Closed & \Rightarrow & (i,j)\text{-}g\text{-}Closed \\ & & & \downarrow \\ (i,j)\text{-}\Lambda_g\text{-}Closed & \Rightarrow & (i,j)\text{-}g\Lambda\text{-}Closed \end{array}$$

Example 2.1.

(1) Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}\}$. Thus $\lambda O(X, \tau_1) = \{X, \emptyset, \{a\}, \{b, c\}\}$. The subset $A = \{b\}$ is (1, 2)-Ag-closed but it is not (1, 2)-Ag-closed.

(2) Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{c\}, \{b, c\}\}$. Thus $\lambda O(X, \tau_1) = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\lambda C(X, \tau_2) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Take $A = \{b, c\}$. Then we obtain that A is (1, 2)- $g\Lambda$ -closed but it is not (1, 2)- Λg -closed. (3) By taking $A = \{b\}$ in (2), then A is (1, 2)- $g\Lambda$ -closed but it is not (1, 2)-g-closed.

Theorem 2.3. The union of two (i,j)- Λ_g -closed sets is (i,j)- Λ_g -closed.

Proof. Let $A \cup B \subseteq U$, then $A \subseteq U$ and $B \subseteq U$ where $U \in \lambda O(X, \tau_i)$. As *A* and *B* are (i, j)- Λ_g -closed, $\tau_j - Cl(A) \subseteq U$ and $\tau_j - Cl(B) \subseteq U$. Hence

 $\tau_j - Cl(A \cup B) = \tau_j - Cl(A) \cup \tau_j - Cl(B) \subseteq U. \qquad \Box$

Remark 2.4. The intersection of two (i,j)- Λ_g -closed sets need not be (i,j)- Λ_g -closed as shown by the following example.

Example 2.2. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}\}$. If $A = \{a, b\}$ and $B = \{a, c\}$ are two (1, 2)- Λ_{e} -closed sets but $A \cap B$ is not (1, 2)- Λ_{e} -closed.

Theorem 2.5. If a subset A of (X, τ_1, τ_2) is (i, j)- Λ_g -closed, then $\tau_j - Cl(A) \setminus A$ contains no nonempty τ_i -closed subset of (X, τ_1, τ_2) .

Proof. Let *F* be a τ_i -closed subset contained in $\tau_j - Cl(A) \setminus A$. Clearly $A \subseteq X \setminus F$ where *A* is (i,j)- Λ_g -closed and $X \setminus F$ is a τ_i open subset of *X*. Thus $\tau_j - Cl(A) \subseteq X \setminus F$ or $F \subseteq X \setminus (\tau_i - Cl(A))$. Then

$$F \subseteq (X \setminus \tau_j - Cl(A)) \cap (\tau_j - Cl(A) \setminus A)$$
$$\subseteq (X \setminus \tau_j - Cl(A)) \cap (\tau_j - Cl(A))$$
$$= \emptyset. \qquad \Box$$

Remark 2.6. The converse of the above theorem need not be true in general as shown by the following example.

Example 2.3. Let $X = \{a, b, c\}$ with the topologies $\tau_1 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{c\}, \{b, c\}\}$. If $A = \{a, c\}$, then $\tau_2 - Cl(A) \setminus A = \{b\}$ does not contain nonempty closed set. But A is not (1, 2)- Λ_g -closed in (X, τ_1, τ_2) .

Definition 2.7. The topologies τ_i and τ_j on a nonempty set X are said to have the property \mathcal{E} if $A \in \lambda C(X, \tau_i)$ and $B \in \lambda C(X, \tau_j)$ imply $A \cap B \in \lambda C(X, \tau_i)$.

Theorem 2.8. Let τ_i and τ_j have the property \mathcal{E} . Then, a subset A is (i,j)- Λ_g -closed if and only if $\tau_j - Cl(A) \setminus A$ contains no nonempty $F \in \lambda C(X, \tau_i)$.

Proof. Suppose that A is (i,j)- Λ_g -closed. Let $F \in \lambda C(X, \tau_i)$ such that $F \subseteq \tau_j - Cl(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is (i,j)- Λ_g -closed, we have $\tau_j - Cl(A) \subseteq X \setminus F$. Consequently $F \subseteq X \setminus \tau_j - Cl(A)$. Hence $F \subseteq (\tau_j - Cl(A) \setminus A) \cap (X \setminus \tau_j - Cl(A)) = \emptyset$. Therefore, $F = \emptyset$.

Now, suppose that $\tau_j - Cl(A) \setminus A$ contains no nonempty $F \in \lambda C(X, \tau_i)$. Let $A \subseteq G$ and $G \in \lambda O(X, \tau_i)$. If $\tau_j - Cl(A) \subseteq G$, then $\tau_j - Cl(A) \cap (X \setminus G) \neq \emptyset$, $\tau_j - Cl(A) \cap (X \setminus G) \in \lambda C(X, \tau_i)$ and $\tau_j - Cl(A) \cap (X \setminus G) \subseteq \tau_j - Cl(A) \setminus A$. Therefore, A is (i, j)- Λ_g -closed. \Box

Theorem 2.9. If A is (i,j)- Λ_g -closed and $A \subseteq B \subseteq \tau_j - Cl(A)$, then B is (i,j)- Λ_g -closed.

Proof. Let $B \subseteq U$ and $U \in \lambda O(X, \tau_i)$. Then $A \subseteq U$ and A is (i,j)- Λ_g -closed. Hence $\tau_j - Cl(B) \subseteq \tau_j - Cl(A) \subseteq U$ and B is (i,j)- Λ_g -closed. \Box

Theorem 2.10. If A is an (i,j)- Λ_g -closed set in (X, τ_1, τ_2) and $A \in \lambda O(X, \tau_i)$, then A is τ_i -closed.

Proof. Since $A \in \lambda O(X, \tau_i)$ and A is (i, j)- Λ_g -closed, $\tau_j - Cl(A) \subseteq A$ and hence A is τ_j -closed. \Box

Theorem 2.11. If A is τ_i -closed, then A is (i,j)- Λ_g -closed.

Proof. Straightforward. \Box

Theorem 2.12. For each $x \in X$, either $\{x\} \in \lambda C(X, \tau_i)$ or $X \setminus \{x\}$ is (i, j)- Λ_g -closed.

Proof. Suppose that $\{x\}$ is not in $\lambda C(X, \tau_i)$. Then $X \setminus \{x\}$ is not in $\lambda O(X, \tau_i)$ and the only subset that in $\lambda O(X, \tau_i)$ and contains $X \setminus \{x\}$ is X. Therefore $\tau_j - Cl(X \setminus \{x\}) \subseteq X$ and so $X \setminus \{x\}$ is (i, j)- Λ_g -closed. \Box

Theorem 2.13. If A is (i,j)- Λ_g -closed and $A \subseteq U \in \lambda O(X, \tau_i)$, then $\tau_i - Fr_{\lambda}(U) \subset \tau_i - Int(X \setminus A)$.

Proof. Let *A* be (i, j)- Λ_g -closed and $A \subseteq U \in \lambda O(X, \tau_i)$. Then $\tau_j - Cl(A) \subseteq U$. Suppose that $x \in \tau_i - Fr_\lambda(U)$. Since $U \in \lambda O(X, \tau_i)$, $\tau_i - Fr_\lambda(U) = \tau_i - Cl_\lambda(U) \setminus U$. Therefore, $x \notin U$ and $x \notin \tau_j - Cl(A)$. This shows that $x \in \tau_j - Int(X \setminus A)$ and hence $\tau_i - Fr_\lambda(U) \subset \tau_j - Int(X \setminus A)$. \Box

Definition 2.14. A subset A in (X, τ_1, τ_2) is said to be (i,j)- Λ_g -open if $X \setminus A$ is (i,j)- Λ_g -closed.

Theorem 2.15. The intersection of two (i,j)- Λ_g -open sets is (i,j)- Λ_g -open.

Proof. Straightforward. \Box

Theorem 2.16. A subset A is (i,j)- Λ_g -open if and only if $F \subseteq \tau_j - Int(A)$ whenever $F \in \lambda C(X, \tau_i)$ and $F \subseteq A$.

Proof. Suppose that $F \subseteq \tau_j - Int(A)$ whenever $F \in \lambda C(X, \tau_i)$ and $F \subseteq A$. Let $X \setminus A \subseteq G$, where $G \in \lambda O(X, \tau_i)$. Hence $X \setminus G \subseteq A$. By assumption $X \setminus G \subseteq \tau_j - Int(A)$. This implies that $X \setminus \tau_j - Int(A) \subseteq G$ and hence $\tau_j - Cl(X \setminus A) \subseteq G$. Hence $X \setminus A$ is (i, j)- Λ_g -closed i.e., A is (i, j)- Λ_g -open.

Now, let *A* be an (i, j)- Λ_g -open set. Then $X \setminus A$ is (i, j)- Λ_g closed. Also let $F \in \lambda C(X, \tau_i)$ such that $F \subseteq A$. Then $X \setminus F \in \lambda O(X, \tau_i)$. Therefore whenever $X \setminus A \subseteq X \setminus F$, $\tau_j - Cl$ $(X \setminus A) \subseteq X \setminus F$. This implies that $F \subseteq X \setminus (\tau_j - Cl(X \setminus A)) =$ $\tau_j - Int(A)$. Thus $F \subseteq \tau_j - Int(A)$. \Box

Theorem 2.17. If $A \in \tau_j$, then A is (i, j)- Λ_g -open.

Proof. Straightforward.

Theorem 2.18. Let τ_i and τ_j have the property \mathcal{E} . Then, a subset A is (i,j)- Λ_g -open if and only if G = X whenever $G \in \lambda O(X, \tau_i)$ and $\tau_i - Int(A) \cup (X \setminus A) \subseteq G$.

Proof. Let A be (i,j)- Λ_g -open, $G \in \lambda O(X, \tau_i)$ and $\tau_j - Int(A) \cup (X \setminus A) \subseteq G$. Then

$$X \setminus G \subseteq (X \setminus \tau_j - Int(A)) \cap (X \setminus (X \setminus A))$$

=(X \ \tau_j - Int(A)) \ (X \ A)
=\tau_j - Cl(X \ A) \ (X \ A).

Since $X \setminus A$ is (i,j)- Λ_g -closed and $X \setminus G \in \lambda C(X, \tau_i)$, by Theorem 2.8, it follows that $X \setminus G = \emptyset$. Therefore X = G. Conversely, suppose that $F \in \lambda C(X, \tau_i)$ and $F \subseteq A$. Then $\tau_j - Int(A) \cup (X \setminus A) \subseteq \tau_j - Int(A) \cup (X \setminus F)$. It follows that $\tau_j - Int(A) \cup (X \setminus F) = X$ and hence $F \subseteq \tau_j - Int(A)$. Therefore A is (i,j)- Λ_g -open. \Box

Theorem 2.19. If $\tau_j - Int(A) \subseteq B \subseteq A$ and A is (i,j)- Λ_g -open, then B is (i,j)- Λ_g -open.

Proof. Suppose that $\tau_j - Int(A) \subseteq B \subseteq A$ and A is (i,j)- Λ_g -open. Then $X \setminus A \subseteq X \setminus B \subseteq \tau_j - Cl(X \setminus A)$ and $X \setminus A$ is (i,j)- Λ_g -closed. By using Theorem 2.9, B is (i,j)- Λ_g -open. \Box

Theorem 2.20. Let τ_i and τ_j have the property \mathcal{E} . Then, a subset A is (i,j)- Λ_g -closed if and only if $\tau_j - Cl(A) \setminus A$ is (i,j)- Λ_g -open.

Proof. Suppose that *A* is (i,j)- Λ_g -closed. Let $F \subseteq \tau_j - Cl(A) \setminus A$, where $F \in \lambda C(X, \tau_i)$. By using Theorem 2.8, $F = \emptyset$. Therefore $F \subseteq \tau_j - Int(\tau_j - Cl(A) \setminus A)$) and by using Theorem 2.16, $\tau_j - Cl(A) \setminus A$ is (i,j)- Λ_g -open. Now, let $A \subseteq G$ where $G \in \lambda O(X, \tau_i)$. Then

$$\tau_j - Cl(A) \cap (X \setminus G) \subseteq \tau_j - Cl(A) \cap (X \setminus A) = \tau_j - Cl(A) \setminus A.$$

Since $\tau_j - Cl(A) \cap (X \setminus G) \in \lambda C(X, \tau_i)$ and $\tau_j - Cl(A) \setminus A$ is (i,j)- Λ_g -open, by Theorem 2.16, we have

$$\tau_j - Cl(A) \cap (X \setminus G) \subseteq \tau_j - Int(\tau_j - Cl(A) \setminus A)) = \emptyset.$$

Hence A is (i,j)- Λ_g -closed. \Box

Theorem 2.21. A subset A is (i,j)- Λ_g -closed if and only if $\tau_i - Cl_{\lambda}(\{x\}) \cap A \neq = \emptyset$ for every $x \in \tau_i - Cl(A)$.

Proof. Suppose that $\tau_i - Cl_{\lambda}(\{x\}) \cap A = \emptyset$ for some $x \in \tau_j - Cl(A)$. Then $X \setminus (\tau_i - Cl_{\lambda}(\{x\})) \in \lambda O(X, \tau_i)$ such that $A \subseteq X \setminus (\tau_i - Cl_{\lambda}(\{x\}))$. Furthermore, $x \in \tau_j - Cl(A) \setminus (X \setminus \tau_i - Cl_{\lambda}(\{x\}))$ and hence $\tau_j - Cl(A) \not\subset (X \setminus \tau_i - Cl_{\lambda}(\{x\}))$. This shows that A is not (i, j)- Λ_g -closed.

Now, suppose that A is not (i, j)- Λ_g -closed. There exists $U \in \lambda O(X, \tau_i)$ such that $A \subseteq U$ and $\tau_j - Cl(A) \setminus U \neq = \emptyset$. There exists $x \in \tau_j - Cl(A)$ such that $x \notin U$. Hence $\tau_i - Cl_{\lambda}(\{x\}) \cap U = \emptyset$. Therefore, $\tau_i - Cl_{\lambda}(\{x\}) \cap A = \emptyset$ for some $x \in \tau_j - Cl(A)$. \Box

3. Applications of (i, j)- Λ_g -closed sets

Definition 3.1. A bitopological space (X, τ_1, τ_2) is said to be (i, j)-normal if for disjoint τ_i -closed sets F_1 and F_2 , there exist $U_1, U_2 \in \tau_j$ such that $F_1 \subset U_1, F_2 \subset U_2$ and $U_1 \cap U_2 = \emptyset$.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space. Then the following properties are equivalent:

- 1. (X, τ_1, τ_2) is (i, j)-normal;
- 2. For any disjoint τ_i -closed sets F_1 , F_2 , there exist (i, j)- Λ_g open sets V_1 , V_2 such that $F_1 \subset V_1$, $F_2 \subset V_2$ and $V_1 \cap V_2 = \emptyset$;
- For any τ_i-closed set F and any τ_i-open set U containing F, there exists an (i, j)-Λ_g-open set V such that F ⊂ V ⊂ τ_j-Cl(V) ⊂ U;
- 4. For any τ_i -closed set *F* and any τ_i -open set *U* containing *F*, there exists an τ_j -open set *G* such that $F \subset G \subset \tau_j Cl(G) \subset U$;
- 5. For any disjoint τ_i -closed sets F_1 , F_2 , there exists an (i, j)- Λ_g -open set V such that $F_1 \subset V$ and $\tau_j Cl(V) \cap F_2 = \emptyset$;
- For any disjoint τ_i-closed sets F₁, F₂, there exists an τ_j-open set G such that F₁ ⊂ G and τ_j − Cl(G) ∩ F₂ = Ø.

Proof.

(1) \Rightarrow (2): Clear from Theorem 2.17.

(2) \Rightarrow (3): Let *F* be a τ_i -closed set and $U \in \tau_i$ such that $F \subset U$. Then *F*, $X \setminus U$ are disjoint τ_i -closed sets and by (2) there exist (i, j)- Λ_g -open sets V_1 and V_2 such that $F \subset V_1$, $X \setminus U \subset V_2$ and $V_1 \cap V_2 = \emptyset$. Since V_2 is (i, j)- Λ_g -open, by using Theorem 2.16, $X \setminus U \subset \tau_j - Int(V_2)$ and $\tau_j - Int(V_2)$ is τ_j -open. Hence, $\tau_j - Cl(V_1) \cap \tau_j - Int(V_2) = \emptyset$. Therefore, we obtain $F \subset V_1 \subset \tau_j - Cl(V_1)$ $\subset X \setminus (\tau_j - Int(V_2)) \subset U$. Put $V = V_1$, then we obtain $F \subset V \subset \tau_j - Cl(V) \subset U$.

(3) \Rightarrow (4): Let *F* be a τ_i -closed set and $U \in \tau_i$ such that $F \subset U$. Then by using (3), there exists an (i, j)- Λ_g -open set *V* such that $F \subset V \subset \tau_j - Cl(V) \subset U$. By using Theorem 2.16, $F \subset \tau_j - Int(V)$. Put $G = \tau_j - Int(V)$. Then $F \subset G \subset \tau_j - Cl(G) \subset \tau_j - Cl(V) \subset U$.

(4) \Rightarrow (5): Let F_1 , F_2 be any disjoint τ_i -closed sets. Since $X \setminus F_2$ is a τ_i -open set such that $F_1 \subset X \setminus F_2$, by (4) there exists an τ_j -open set V such that $F_1 \subset V \subset \tau_j - Cl(V) \subset X \setminus F_2$. By using Theorem 2.17, V is (i, j)- Λ_g -open. Furthermore, we have $F_1 \subset V$ and $\tau_j - Cl(V) \cap F_2 = \emptyset$.

(5) \Rightarrow (6): Let F_1 , F_2 be any disjoint τ_i -closed sets. Then, there exists an (i, j)- Λ_g -open set V such that $F_1 \subset V$ and $\tau_j - Cl(V) \cap F_2 = \emptyset$. By using Theorem 2.16, $F_1 \subset \tau_j -$ Int(V). Set $G = \tau_j - Int(V)$. Then we have $G \in \tau_j$, $F_1 \subset G$ and $\tau_j - Cl(G) \cap F_2 = \emptyset$. (6) \Rightarrow (1): Let F_1 , F_2 be any disjoint τ_i -closed sets. Then, by (6) there exists $G \in \tau_j$ such that $F_1 \subset G$ and $\tau_j - Cl(G) \cap$ $F_2 = \emptyset$. Now, put $U_1 = G$ and $U_2 = X \setminus (\tau_i - Cl(G))$. Then

 U_1 and U_2 are disjoint τ_j -open sets, $F_1 \subset U_1$ and $F_2 \subset U_2$. This shows that (X, τ_i, τ_j) is (i, j)-normal. \Box

References

 J.C. Kelly, Bitopological spaces, Proc. London Math. Soc 13 (3) (1963) 71–89.

- [2] L. Motchane, Sur la notion d'espace bitopologique et sur les espaces de Baire, C.R. Acad. Sci. Paris 224 (1957) 3121–3124.
- [3] L. Motchane, Sur la characterization des espaces de Baire, C.R. Acad. Sci. Paris 246 (1958) 215–218.
- [4] F.G. Arenas, J. Dontchev, M. Ganster, On λ-sets and the dual of generalized continuity, Questions Answers Gen. Topology 15 (1997) 3–13.
- [5] M. Caldas, S. Jafari, G. Navalagi, More on λ -closed sets in topological space, Rev. Colomb. Mat 41 (2) (2007) 355–369.
- [6] M. Caldas, S. Jafari, T. Noiri, On λ-generalized closed sets in topological spaces, Acta Math. Hungar 114 (4) (2008) 337–343.
- [7] P. Sundaram. Studies on generalizations of continuous maps in topological spaces, Ph. D. Thesis, Bharathiar University, Coimbatore (India), 1991.
- [8] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. III 35 (1985) 19–28.